Probing Vacuum Polarization Effects with High-Intensity Lasers
Abstract
:1. Introduction
2. Heisenberg–Euler Effective Lagrangian
2.1. Manifestly Non-Perturbative Physics
2.2. Perturbative Weak-Field Regime
3. Classical Derivation of the Differential Signal Photon Number
4. All-Optical Signatures of Quantum Vacuum Nonlinearity
4.1. Laser Pulse Profiles
4.2. Head-On Collision of Two Laser Pulses
4.2.1. Head-On Collision of High-Intensity Laser Pulses
4.2.2. Head-On Collision of High-Intensity and Free-Electron Laser Pulses
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Karbstein, F. The quantum vacuum in electromagnetic fields: From the Heisenberg-Euler effective action to vacuum birefringence. In Proceedings of the Helmholtz International Summer School 2016 (HQ 2016), Dubna, Russia, 18–30 July 2016; pp. 44–57. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Consequences of Dirac’s theory of positrons. Z. Phys. 1936, 9, 714–732. [Google Scholar] [CrossRef]
- Dunne, G.V. Heisenberg-Euler effective Lagrangians: Basics and extensions. arXiv 2004, 1, 445–522. [Google Scholar]
- Gies, H.; Karbstein, F. An Addendum to the Heisenberg-Euler effective action beyond one loop. JHEP 2017, 1703. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, J.S. On gauge invariance and vacuum polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M. Quantum Electrodynamics with Unstable Vacuum; Springer Series in Nuclear and Particle Physics; Springer: Berlin, Germany, 1991; 288p. [Google Scholar]
- Dittrich, W.; Gies, H. Probing the quantum vacuum. Perturbative effective action approach in quantum electrodynamics and its application. Springer Tracts Mod. Phys. 2000, 166, 1–241. [Google Scholar]
- Marklund, M.; Shukla, P.K. Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 2006, 78, 591. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177. [Google Scholar] [CrossRef] [Green Version]
- Dunne, G.V. The Heisenberg-Euler Effective Action: 75 years on. Int. J. Mod. Phys. A 2012, 27, 1260004. [Google Scholar] [CrossRef] [Green Version]
- Battesti, R.; Rizzo, C. Magnetic and electric properties of quantum vacuum. Rep. Prog. Phys. 2013, 76, 016401. [Google Scholar] [CrossRef] [Green Version]
- King, B.; Heinzl, T. Measuring Vacuum Polarisation with High Power Lasers. High Power Laser Sci. Eng. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Nikishov, A.I. Pair production by a constant external field. Sov. Phys. JETP 1970, 30, 660. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 5th ed.; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 5th ed.; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Furry, W.H. A Symmetry Theorem in the Positron Theory. Phys. Rev. 1937, 51, 125. [Google Scholar] [CrossRef]
- CILEX. Available online: http://cilexsaclay.fr/ (accessed on 18 January 2020).
- CoReLS. Available online: http://corels.ibs.re.kr/ (accessed on 18 January 2020).
- ELI. Available online: https://eli-laser.eu/ (accessed on 18 January 2020).
- Xie, X.; Zhu, J.; Yang, Q.; Kang, J.; Zhu, H.; Sun, M.; Guo, A. Introduction to SG-II 5 PW Laser Facility. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), CLEO Technical Digest, San Jose, CA, USA, 5–10 June 2016. [Google Scholar] [CrossRef]
- Karbstein, F.; Shaisultanov, R. Photon propagation in slowly varying inhomogeneous electromagnetic fields. Phys. Rev. D 2015, 91, 085027. [Google Scholar] [CrossRef] [Green Version]
- LCLS-II. Available online: https://lcls.slac.stanford.edu/lcls-ii/ (accessed on 18 January 2020).
- European XFEL. Available online: https://www.xfel.eu/ (accessed on 18 January 2020).
- Galtsov, D.; Skobelev, V. Photons creation by an external field. Phys. Lett. B 1971, 36, 238–240. [Google Scholar] [CrossRef]
- Karbstein, F.; Shaisultanov, R. Stimulated photon emission from the vacuum. Phys. Rev. D 2015, 91, 113002. [Google Scholar] [CrossRef] [Green Version]
- Bialynicka-Birula, Z.; Bialynicki-Birula, I. Nonlinear effects in Quantum Electrodynamics. Photon propagation and photon splitting in an external field. Phys. Rev. D 1970, 2, 2341. [Google Scholar] [CrossRef]
- Adler, S.L.; Bahcall, J.N.; Callan, C.G.; Rosenbluth, M.N. Photon splitting in a strong magnetic field. Phys. Rev. Lett. 1970, 25, 1061. [Google Scholar] [CrossRef]
- Adler, S.L. Photon Splitting and Photon Dispersion in a Strong Magnetic Field. Ann. Phys. 1971, 67, 599–647. [Google Scholar] [CrossRef]
- Lee, R.N.; Milstein, A.I.; Strakhovenko, V.M. High-energy photon splitting on heavy atoms. Phys. Rev. A 1998, 57, 2325. [Google Scholar] [CrossRef] [Green Version]
- Papanyan, V.O.; Ritus, V.I. Vacuum polarization and photon splitting in an intense field. Zh. Eksp. Teor. Fiz. 1972, 61, 2231, [Sov. Phys. JETP 1972, 34, 1195]. [Google Scholar]
- Papanyan, V.O.; Ritus, V.I. Three-photon interaction in an intense field and scaling invariance. Zh. Eksp. Teor. Fiz. 1974, 65, 1756, [Sov. Phys. JETP 1974, 38, 879]. [Google Scholar]
- Stoneham, R.J. Phonon splitting in the magnetised vacuum. J. Phys. A 1979, 12, 2187. [Google Scholar] [CrossRef]
- Baier, V.N.; Milshtein, A.I.; Shaisultanov, R.Z. Photon Splitting in a Strong Electromagnetic Field. Zh. Eksp. Teor. Fiz. 1986, 90, 1141, [Sov. Phys. JETP 1986, 63, 665]. [Google Scholar]
- Baier, V.N.; Milshtein, A.I.; Shaisultanov, R.Z. Photon splitting in a very strong magnetic field. Phys. Rev. Lett. 1996, 77, 1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, S.L.; Schubert, C. Photon splitting in a strong magnetic field: Recalculation and comparison with previous calculations. Phys. Rev. Lett. 1996, 77, 1695. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Milstein, A.I.; Keitel, C.H. Photon splitting in a laser field. Phys. Rev. A 2007, 76, 032103. [Google Scholar] [CrossRef] [Green Version]
- Toll, J.S. The Dispersion Relation for Light and Its Application to Problems Involving Electron Pairs. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1952, unpublished. [Google Scholar]
- Baier, R.; Breitenlohner, P. Photon Propagation in External Fields. Act. Phys. Austriaca 1967, 25, 212. [Google Scholar]
- Baier, R.; Breitenlohner, P. The vacuum refraction index in the presence of external fields. Nuov. Cim. B 1967, 47, 117. [Google Scholar] [CrossRef]
- Aleksandrov, E.B.; Ansel’m, A.A.; Moskalev, A.N. Vacuum birefringence in an intense laser radiation field. Zh. Eksp. Teor. Fiz. 1985, 62, 1181, [Sov. Phys. JETP 1985, 62, 680]. [Google Scholar]
- Kotkin, G.L.; Serbo, V.G. Variation in polarization of high-energy gamma quanta traversing a bunch of polarized laser photons. Phys. Lett. B 1997, 413, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Heinzl, T.; Liesfeld, B.; Amthor, K.U.; Schwoerer, H.; Sauerbrey, R.; Wipf, A. On the observation of vacuum birefringence. Opt. Commun. 2006, 267. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Hatsagortsyan, K.Z.; Keitel, C.H. Light diffraction by a strong standing electromagnetic wave. Phys. Rev. Lett. 2006, 97, 083603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, V.; Heinzl, T.; Ilderton, A.; Marklund, M.; Torgrimsson, G. Vacuum refractive indices and helicity flip in strong-field QED. Phys. Rev. D 2014, 89, 125003. [Google Scholar] [CrossRef] [Green Version]
- Nakamiya, Y.; Homma, K.; Moritaka, T.; Seto, K. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale. Phys. Rev. D 2017, 96, 053002. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F.; Gies, H.; Reuter, M.; Zepf, M. Vacuum birefringence in strong inhomogeneous electromagnetic fields. Phys. Rev. D 2015, 92, 071301. [Google Scholar] [CrossRef] [Green Version]
- Ilderton, A.; Marklund, M. Prospects for studying vacuum polarisation using dipole and synchrotron radiation. J. Plasma Phys. 2016, 82. [Google Scholar] [CrossRef] [Green Version]
- King, B.; Elkina, N. Vacuum birefringence in high-energy laser-electron collisions. Phys. Rev. A 2016, 94, 062102. [Google Scholar] [CrossRef] [Green Version]
- Schlenvoigt, H.-P.; Heinzl, T.; Schramm, U.; Cowan, T.; Sauerbrey, R. Detecting vacuum birefringence with X-ray free electron lasers and high-power optical lasers: A feasibility study. Phys. Scr. 2016, 91, 023010. [Google Scholar] [CrossRef]
- Karbstein, F.; Sundqvist, C. Probing vacuum birefringence using X-ray free electron and optical high-intensity lasers. Phys. Rev. D 2016, 94, 013004. [Google Scholar] [CrossRef] [Green Version]
- Bragin, S.; Meuren, S.; Keitel, C.H.; Di Piazza, A. High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field. Phys. Rev. Lett. 2017, 119, 250403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gies, H.; Karbstein, F.; Seegert, N. Quantum Reflection as a New Signature of Quantum Vacuum Nonlinearity. New J. Phys. 2013, 15, 083002. [Google Scholar] [CrossRef]
- Gies, H.; Karbstein, F.; Seegert, N. Quantum reflection of photons off spatio-temporal electromagnetic field inhomogeneities. New J. Phys. 2015, 17, 043060. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, V.P. Incoherent electromagnetic wave scattering in a Coulomb field. Zh. Eksp. Teor. Fiz. 1967, 51, 619, [Sov. Phys. JETP 1967, 24, 411]. [Google Scholar]
- Di Piazza, A.; Hatsagortsyan, K.Z.; Keitel, C.H. Non-perturbative vacuum-polarization effects in proton-laser collisions. Phys. Rev. Lett. 2008, 100, 010403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Piazza, A.; Hatsagortsyan, K.Z.; Keitel, C.H. Laser photon merging in proton-laser collisions. Phys. Rev. A 2008, 78, 062109. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Karbstein, F.; Shaisultanov, R. Laser photon merging in an electromagnetic field inhomogeneity. Phys. Rev. D 2014, 90, 033007. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Karbstein, F.; Seegert, N. Photon merging and splitting in electromagnetic field inhomogeneities. Phys. Rev. D 2016, 93, 085034. [Google Scholar] [CrossRef] [Green Version]
- Rozanov, N.N. Four-wave interactions of intense radiation in vacuum. Zh. Eksp. Teor. Fiz. 1993, 103, 1996, [Sov. Phys. JETP 1993, 96, 991]. [Google Scholar]
- Mckenna, J.; Platzman, P.M. Nonlinear Interaction of Light in a Vacuum. Phys. Rev. 1963, 129, 2354. [Google Scholar] [CrossRef]
- Varfolomeev, A.A. Induced Scattering of Light by Light. Zh. Eksp. Teor. Fiz. 1966, 50, 1024, [Sov. Phys. JETP 1966, 23, 681]. [Google Scholar]
- Moulin, F.; Bernard, D. Four-wave interaction in gas and vacuum. Definition of a third order nonlinear effective susceptibility in vacuum: χvacuum(3). Opt. Commun. 1999, 164, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Lundström, E.; Brodin, G.; Lundin, J.; Marklund, M.; Bingham, R.; Collier, J.; Mendonca, J.T.; Norreys, P. Using high-power lasers for detection of elastic photon-photon scattering. Phys. Rev. Lett. 2006, 96, 083602. [Google Scholar] [CrossRef] [Green Version]
- Lundin, J.; Marklund, M.; Lundström, E.; Brodin, G.; Collier, J.; Bingham, R.; Mendonca, J.T.; Norreys, P. Detection of elastic photon-photon scattering through four-wave mixing using high power lasers. Phys. Rev. A 2006, 74, 043821. [Google Scholar] [CrossRef] [Green Version]
- Tommasini, D.; Michinel, H. Light by light diffraction in vacuum. Phys. Rev. A 2010, 82, 011803. [Google Scholar] [CrossRef] [Green Version]
- Hatsagortsyan, K.Z.; Kryuchkyan, G.Y. Bragg Scattering of Light in Vacuum Structured by Strong Periodic Fields. Phys. Rev. Lett. 2011, 107, 053604. [Google Scholar]
- King, B.; Keitel, C.H. Photon-photon scattering in collisions of laser pulses. New J. Phys. 2012, 14, 103002. [Google Scholar] [CrossRef]
- King, B.; Di Piazza, A.; Keitel, C.H. A matterless double slit. Nat. Photon. 2010, 4, 92. [Google Scholar] [CrossRef] [Green Version]
- King, B.; Di Piazza, A.; Keitel, C.H. Double-slit vacuum polarisation effects in ultra-intense laser fields. Phys. Rev. A 2010, 82, 032114. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Karbstein, F.; Kohlfürst, C. All-optical signatures of Strong-Field QED in the vacuum emission picture. Phys. Rev. D 2018, 97, 036022. [Google Scholar] [CrossRef] [Green Version]
- Gies, H.; Karbstein, F.; Kohlfürst, C.; Seegert, N. Photon-photon scattering at the high-intensity frontier. Phys. Rev. D 2018, 97, 076002. [Google Scholar] [CrossRef] [Green Version]
- King, B.; Hu, H.; Shen, B. Three-pulse photon-photon scattering. Phys. Rev. A 2018, 98, 023817. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F.; Blinne, A.; Gies, H.; Zepf, M. Boosting quantum vacuum signatures by coherent harmonic focusing. Phys. Rev. Lett. 2019, 123, 091802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bialynicka-Birula, Z. Nonlinear phenomena in the propagation of electromagnetic waves in the magnetized vacuum. Physica D 1981, 2, 513–524. [Google Scholar] [CrossRef]
- Kaplan, A.E.; Ding, Y.J. Field-gradient-induced second-harmonic generation in magnetized vacuum. Phys. Rev. A 2000, 62, 043805. [Google Scholar] [CrossRef] [Green Version]
- Valluri, S.R.; Jentschura, U.D.; Lamm, D.R. The Study of the Heisenberg-Euler Lagrangian and some of its applications. AIP Conf. Proc. 2003, 687, 203–222. [Google Scholar]
- Fedotov, A.M.; Narozhny, N.B. Generation of harmonics by a focused laser beam in vacuum. Phys. Lett. A 2007, 362, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Hatsagortsyan, K.Z.; Keitel, C.H. Harmonic generation from laser-driven vacuum. Phys. Rev. D 2005, 72, 085005. [Google Scholar] [CrossRef]
- King, B.; Böhl, P.; Ruhl, H. Interaction of photons traversing a slowly varying electromagnetic background. Phys. Rev. D 2014, 90, 065018. [Google Scholar] [CrossRef] [Green Version]
- Böhl, P.; King, B.; Ruhl, H. Vacuum high harmonic generation in the shock regime. Phys. Rev. A 2015, 92, 032115. [Google Scholar] [CrossRef] [Green Version]
- Kadlecová, H.; Korn, G.; Bulanov, S.V. Electromagnetic shocks in the quantum vacuum. Phys. Rev. D 2019, 99, 036002. [Google Scholar] [CrossRef] [Green Version]
- Blinne, A.; Gies, H.; Karbstein, F.; Kohlfürst, C.; Zepf, M. All-optical signatures of quantum vacuum nonlinearities in generic laser fields. Phys. Rev. D 2019, 99, 016006. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrov, I.A.; Plunien, G.; Shabaev, V.M. Photon emission in strong fields beyond the locally-constant field approximation. Phys. Rev. D 2019, 100, 116003. [Google Scholar] [CrossRef] [Green Version]
- Siegman, A.E. Lasers, 5th ed.; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Karbstein, F.; Mosman, E.A. Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams. Phys. Rev. D 2017, 96, 116004. [Google Scholar] [CrossRef] [Green Version]
- Dinu, V.; Heinzl, T.; Ilderton, A.; Marklund, M.; Torgrimsson, G. Photon polarization in light-by-light scattering: Finite size effects. Phys. Rev. D 2014, 90, 045025. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F. Vacuum birefringence in the head-on collision of X-ray free-electron laser and optical high-intensity laser pulses. Phys. Rev. D 2018, 98, 056010. [Google Scholar] [CrossRef] [Green Version]
- Battesti, R.; Beard, J.; Böser, S.; Bruyant, N.; Budker, D.; Crooker, S.A.; Daw, E.J.; Flambaum, V.V.; Inada, T.; Irastorza, I.G.; et al. High magnetic fields for fundamental physics. Phys. Rep. 2018, 765–766. [Google Scholar] [CrossRef] [Green Version]
- Cantatore, G. Recent results from the PVLAS experiment on the magnetized vacuum. Lect. Notes Phys. 2008, 741, 157–197. [Google Scholar]
- Zavattini, E.; Zavattini, G.; Ruoso, G.; Raiteri, G.; Polacco, E.; Milotti, E.; Lozza, V.; Karuza, M.; Gastaldi, U.; Di Domenico, G.; et al. New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 2008, 77, 032006. [Google Scholar] [CrossRef] [Green Version]
- Della Valle, F.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Piemontese, L.; Ruoso, G.; Zavattini, G. Measurements of vacuum magnetic birefringence using permanent dipole magnets: The PVLAS experiment. New J. Phys. 2013, 15, 053026. [Google Scholar] [CrossRef] [Green Version]
- Della Valle, F.; Ejlli, A.; Gastaldi, U.; Messineo, G.; Milotti, E.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: Measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry–Perot cavity. Eur. Phys. J. C 2016, 76, 24. [Google Scholar] [CrossRef] [Green Version]
- Berceau, P.; Battesti, R.; Fouche, M.; Rizzo, C. The vacuum magnetic birefringence experiment: A test for quantum electrodynamics. Can. J. Phys. 2011, 89, 153–158. [Google Scholar] [CrossRef]
- Berceau, P.; Fouche, M.; Battesti, R.; Rizzo, C. Magnetic linear birefringence measurements using pulsed fields. Phys. Rev. A 2012, 85, 013837. [Google Scholar] [CrossRef] [Green Version]
- Cadene, A.; Berceau, P.; Fouche, M.; Battesti, R.; Rizzo, C. Vacuum magnetic linear birefringence using pulsed fields: Status of the BMV experiment. Eur. Phys. J. D 2014, 68, 16. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Kamioka, S.; Inada, T.; Yamazaki, T.; Namba, T.; Asai, S.; Omachi, J.; Yoshioka, K.; Kuwata-Gonokami, M.; Matsuo, A.; et al. The OVAL experiment: A new experiment to measure vacuum magnetic birefringence using high repetition pulsed magnets. Eur. Phys. J. D 2017, 71, 308. [Google Scholar] [CrossRef] [Green Version]
- Karbstein, F.; Mosman, E.A. X-ray photon scattering at a focused high-intensity laser pulse. Phys. Rev. D 2019, 100, 033002. [Google Scholar] [CrossRef] [Green Version]
- Marx, B.; Uschmann, I.; Höfer, S.; Lötzsch, R.; Wehrhan, O.; Förster, E.; Kaluza, M.; Stöhlker, T.; Gies, H.; Detlefs, C.; et al. Determination of high-purity polarization state of X-rays. Opt. Commun. 2011, 284, 915–918. [Google Scholar] [CrossRef]
- Marx, B.; Schulze, K.S.; Uschmann, I.; Kämpfer, T.; Lötzsch, R.; Wehrhan, O.; Wagner, W.; Detlefs, C.; Roth, T.; Härtwig, J.; et al. High-Precision X-ray Polarimetry. Phys. Rev. Lett. 2013, 110, 254801. [Google Scholar] [CrossRef]
- Schulze, K.S. Fundamental limitations of the polarization purity of X rays. APL Photonics 2018, 3, 126106. [Google Scholar] [CrossRef] [Green Version]
- HIBEF. Available online: https://www.hibef.eu/ (accessed on 18 January 2020).
- SACLA. Available online: http://xfel.riken.jp/ (accessed on 18 January 2020).
- Inada, T.; Yamazaki, T.; Yamaji, T.; Seino, Y.; Fan, X.; Kamioka, S.; Namba, T.; Asai, S. Probing Physics in Vacuum Using an X-ray Free-Electron Laser, a High-Power Laser, and a High-Field Magnet. Appl. Sci. 2017, 7, 671. [Google Scholar] [CrossRef] [Green Version]
- Seino, Y.; Inada, T.; Yamazaki, T.; Namba, T.; Asai, S. New Estimation of the Curvature Effect for the X-ray Vacuum Diffraction Induced by an Intense Laser Field. arXiv 2019, arXiv:1912.01390. [Google Scholar]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comput. Phys. Commun. 2019, 240, 1–14. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbstein, F. Probing Vacuum Polarization Effects with High-Intensity Lasers. Particles 2020, 3, 39-61. https://doi.org/10.3390/particles3010005
Karbstein F. Probing Vacuum Polarization Effects with High-Intensity Lasers. Particles. 2020; 3(1):39-61. https://doi.org/10.3390/particles3010005
Chicago/Turabian StyleKarbstein, Felix. 2020. "Probing Vacuum Polarization Effects with High-Intensity Lasers" Particles 3, no. 1: 39-61. https://doi.org/10.3390/particles3010005
APA StyleKarbstein, F. (2020). Probing Vacuum Polarization Effects with High-Intensity Lasers. Particles, 3(1), 39-61. https://doi.org/10.3390/particles3010005