The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction
Abstract
1. Introduction
1.1. HIV
1.2. HIV and Neurogenetics
1.3. HAND
2. Neuropathogenesis
2.1. Impact of HIV on Neurogenetics
2.2. Impact of Proteins of HIV on Neurogenetics
2.3. Host Genes Along with HIV Affecting Neurons
3. Molecular and Computational Strategies for Neurogenetic Study
4. Clinical Relevance
5. Conclusions and Future Aspects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANI | Asymptomatic Neurocognitive Impairment |
ART | Antiretroviral Therapy |
ATAC-seq | Assay for Transposase-Accessible Chromatin Using Sequencing |
BBB | Blood–Brain Barrier |
CCR5 | chemokine receptor 5 |
CNS | Central Nervous System |
CND | Central Nervous Diseases |
CpG | Cytosine phosphate Guanine |
CRISPR-Cas9 | Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) CRISPR-associated protein 9 (Cas9). |
CXCR4 | C-X-C motif chemokine receptor 4 |
DNMT | DNA Methyltransferase enzyme |
ELISA | Enzyme-Linked Immunosorbent Assay |
fMRI | Functional Magnetic Resonance Imaging |
HAD | HIV-Associated Dementia |
HAT | Histone Acetyltransferases |
HAND | HIV-Associated Neurocognitive Diseases |
HIV | Human Immunodeficiency Virus |
HMT | Histone Methyltransferases |
HLA | Human Leukocyte Antigen |
ISH | In situ Hybridization |
MND | Mild Neurocognitive Disorder |
MRI | Magnetic Resonance Imaging |
NMDA | N-methyl-D-aspartate |
PET | Positron Emission Tomography |
ROS | Reactive Oxygen Species |
scRNA-seq | Single-Cell RNA sequencing |
scDNA-seq | Single-Cell DNA sequencing |
SOD | Superoxide Dismutase |
SMRT | Single-Molecule Real Time Sequencing |
SLC | Solute Carrier |
References
- Takehisa, J.; Zekeng, L.; Ido, E.; Mboudjeka, I.; Moriyama, H.; Miura, T.; Yamashita, M.; Gürtler, L.G.; Hayami, M.; Kaptué, L. Various Types of HIV Mixed Infections in Cameroon. Virology 1998, 245, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abongwa, L.E.; Nyamache, A.K.; Torimiro, J.N.; Okemo, P.; Charles, F. Human immunodeficiency virus type 1 ((HIV-1) subtypes in the northwest region, Cameroon. Virol. J. 2019, 16, 103. [Google Scholar] [CrossRef]
- Eberle, J.; Gürtler, L. HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies. Intervirology 2012, 55, 79–83. [Google Scholar] [CrossRef]
- Hemelaar, J.; Elangovan, R.; Yun, J.; Dickson-Tetteh, L.; Fleminger, I.; Kirtley, S.; Williams, B.; Gouws-Williams, E.; Ghys, P.D.; Abimiku, A.G.; et al. Global and regional molecular epidemiology of HIV-1, 1990–2015: A systematic review, global survey, and trend analysis. Lancet Infect. Dis. 2019, 19, 143–155. [Google Scholar] [CrossRef]
- Antinori, A.; Arendt, G.; Becker, J.T.; Brew, B.J.; Byrd, D.A.; Cherner, M.; Clifford, D.B.; Cinque, P.; Epstein, L.G.; Goodkin, K.; et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef]
- Rumbaugh, J.A.; Tyor, W. HIV-associated neurocognitive disorders: Five new things. Neurol. Clin. Pract. 2015, 5, 224–231. [Google Scholar] [CrossRef]
- For the CHARTER and HNRC Groups; Heaton, R.K.; Franklin, D.R.; Ellis, R.J.; McCutchan, J.A.; Letendre, S.L.; LeBlanc, S.; Corkran, S.H.; Duarte, N.A.; Clifford, D.B.; et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Saylor, D.; Dickens, A.M.; Sacktor, N.; Haughey, N.; Slusher, B.; Pletnikov, M.; Mankowski, J.L.; Brown, A.; Volsky, D.J.; McArthur, J.C. HIV-associated neurocognitive disorder—Pathogenesis and prospects for treatment. Nat. Rev. Neurol. 2016, 12, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Fadel, A.; Garcia, E.; Michel, G.; Saadoon, Z.F.; Fernandes, A.; Jarrett, O.; Naseer, L.; Abellard, R.-B.; Dalgado, P. HIV and dementia. Microbe 2024, 2, 100052. [Google Scholar] [CrossRef]
- Avdoshina, V.; Mocchetti, I. Recent Advances in the Molecular and Cellular Mechanisms of gp120-Mediated Neurotoxicity. Cells 2022, 11, 1599. [Google Scholar] [CrossRef]
- Firdaus, Z.; Li, X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 2320. [Google Scholar] [CrossRef] [PubMed]
- Houlden, H.; Cortese, A.; Wild, E. Neurogenetics. In Neurology, 1st ed.; Howard, R., Kullmann, D., Werring, D., Zandi, M., Eds.; Wiley: New York, NY, USA, 2024; pp. 79–89. [Google Scholar] [CrossRef]
- Varatharajan, L.; Thomas, S.A. The transport of anti-HIV drugs across blood–CNS interfaces: Summary of current knowledge and recommendations for further research. Antivir. Res. 2009, 82, A99–A109. [Google Scholar] [CrossRef] [PubMed]
- Decloedt, E.H.; Rosenkranz, B.; Maartens, G.; Joska, J. Central Nervous System Penetration of Antiretroviral Drugs: Pharmacokinetic, Pharmacodynamic and Pharmacogenomic Considerations. Clin. Pharmacokinet. 2015, 54, 581–598. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Zhou, Y.; Wang, W.; Wen, Y. Learning from cerebrospinal fluid drug-resistant HIV escape-associated encephalitis: A case report. Virol. J. 2023, 20, 292. [Google Scholar] [CrossRef] [PubMed]
- Osborne, O.; Peyravian, N.; Nair, M.; Daunert, S.; Toborek, M. The Paradox of HIV Blood–Brain Barrier Penetrance and Antiretroviral Drug Delivery Deficiencies. Trends Neurosci. 2020, 43, 695–708. [Google Scholar] [CrossRef]
- Bogdan, R.; Hyde, L.W.; Hariri, A.R. A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology. Mol. Psychiatry 2013, 18, 288–299. [Google Scholar] [CrossRef]
- Ferrell, D.; Giunta, B. The impact of HIV-1 on neurogenesis: Implications for HAND. Cell. Mol. Life Sci. 2014, 71, 4387–4392. [Google Scholar] [CrossRef]
- Lindl, K.A.; Marks, D.R.; Kolson, D.L.; Jordan-Sciutto, K.L. HIV-Associated Neurocognitive Disorder: Pathogenesis and Therapeutic Opportunities. J. Neuroimmune Pharmacol. 2010, 5, 294–309. [Google Scholar] [CrossRef]
- Kolanu, N.D. CRISPR–Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Glob. Med. Genet. 2024, 11, 113–122. [Google Scholar] [CrossRef]
- Jha, N.K.; Chen, W.-C.; Kumar, S.; Dubey, R.; Tsai, L.-W.; Kar, R.; Jha, S.K.; Gupta, P.K.; Sharma, A.; Gundamaraju, R.; et al. Molecular mechanisms of developmental pathways in neurological disorders: A pharmacological and therapeutic review. Open Biol. 2022, 12, 210289. [Google Scholar] [CrossRef]
- Notaras, M.; Lodhi, A.; Dündar, F.; Collier, P.; Sayles, N.M.; Tilgner, H.; Greening, D.; Colak, D. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol. Psychiatry 2022, 27, 1416–1434. [Google Scholar] [CrossRef] [PubMed]
- Haorah, J.; Malaroviyam, S.; Iyappan, H.; Samikkannu, T. Neurological impact of HIV/AIDS and substance use alters brain function and structure. Front. Med. 2025, 11, 1505440. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, J.; Teng, Z.; Liu, Q. Role of ART and PrEP treatments in a stochastic HIV/AIDS epidemic model. Math. Comput. Simul. 2024, 221, 337–357. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, X.; Chang, L.; Ji, H.; Sun, H.; Yan, Y.; Xu, J.; Wang, L. Optimizing HIV testing: Comparing diagnostic signatures and assay performance in ART-treated and general screening populations. Clin. Chim. Acta 2025, 570, 120207. [Google Scholar] [CrossRef] [PubMed]
- Braibant, M.; Xie, J.; Samri, A.; Agut, H.; Autran, B.; Barin, F. Disease progression due to dual infection in an HLA-B57-positive asymptomatic long-term nonprogressor infected with a nef-defective HIV-1 strain. Virology 2010, 405, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, K.; Banerjee, A.; Sarkar, R.; Banerjee, R.; Chowdhury, S.R.; Ganguly, K.; Karak, P. HIV-associated neurocognitive disorders (HAND): Optimal diagnosis, antiviral therapy, pharmacological treatment, management, and future scopes. J. Neurol. Sci. 2025, 470, 123410. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Musselman, D.; Jayaweera, D.; Da Fonseca Ferreira, A.; Marzouka, G.; Dong, C. HIV-Associated Neurocognitive Disorder (HAND) and Alzheimer’s Disease Pathogenesis: Future Directions for Diagnosis and Treatment. Int. J. Mol. Sci. 2024, 25, 11170. [Google Scholar] [CrossRef]
- Norcini-Pala, A.; Stringer, K.L.; Kempf, M.-C.; Konkle-Parker, D.; Wilson, T.E.; Tien, P.C.; Wingood, G.; Neilands, T.B.; Johnson, M.O.; Weiser, S.D.; et al. Longitudinal associations between intersectional stigmas, antiretroviral therapy adherence, and viral load among women living with HIV using multidimensional latent transition item response analysis. Soc. Sci. Med. 2025, 366, 117643. [Google Scholar] [CrossRef]
- Putatunda, R.; Ho, W.-Z.; Hu, W. HIV-1 and Compromised Adult Neurogenesis: Emerging Evidence for a New Paradigm of HAND Persistence. Aids Rev. 2019, 21, 1908. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Sreeram, S.; Ye, F.; Garcia-Mesa, Y.; Nguyen, K.; El Sayed, A.; Leskov, K.; Karn, J. The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol. 2022, 43, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Graur, A.; Erickson, N.; Sinclair, P.; Nusir, A.; Kabbani, N. HIV-1 gp120 Interactions with Nicotine Modulate Mitochondrial Network Properties and Amyloid Release in Microglia. Neurochem. Res. 2025, 50, 103. [Google Scholar] [CrossRef] [PubMed]
- Kandanearatchi, A.; Nath, A.; Lipton, S.A.; Masliah, E.; Everall, I.P. Protection against HIV-1 gp120 and HIV-1 Tat neurotoxicity. In Neurol AIDS, 2nd ed.; Gendelman, H.E., Grant, I., Everall, I.P., Lipton, S.A., Swindells, S., Eds.; Oxford University Press: Oxford, UK, 2005; pp. 201–210. [Google Scholar] [CrossRef]
- Smith, L.K.; Babcock, I.W.; Minamide, L.S.; Shaw, A.E.; Bamburg, J.R.; Kuhn, T.B. Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS ONE 2021, 16, e0248309. [Google Scholar] [CrossRef]
- Jadhav, S.; Makar, P.; Nema, V. The NeuroinflammatoryPotential of HIV-1 NefVariants in Modulating the Gene Expression Profile of Astrocytes. Cells 2022, 11, 3256. [Google Scholar] [CrossRef]
- Siddiqui, A.; He, C.; Lee, G.; Figueroa, A.; Slaughter, A.; Robinson-Papp, J. Neuropathogenesis of HIV and emerging therapeutic targets. Expert Opin. Ther. Targets 2022, 26, 603–615. [Google Scholar] [CrossRef] [PubMed]
- McRae, M. HIV and viral protein effects on the blood brain barrier. Tissue Barriers 2016, 4, e1143543. [Google Scholar] [CrossRef]
- Jadhav, S.; Nema, V. HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediat. Inflamm. 2021, 2021, 1267041. [Google Scholar] [CrossRef]
- Mu, T.; Wei, J.; Sun, J.; Jin, J.; Zhang, T.; Wu, H.; Su, B. Association of apolipoprotein E epsilon 4 and cognitive impairment in adults living with human immunodeficiency virus: A meta-analysis. Chin. Med. J. 2022, 135, 2677–2686. [Google Scholar] [CrossRef]
- Pisani, A.; Paciello, F.; Del Vecchio, V.; Malesci, R.; De Corso, E.; Cantone, E.; Fetoni, A.R. The Role of BDNF as a Biomarker in Cognitive and Sensory Neurodegeneration. J. Pers. Med. 2023, 13, 652. [Google Scholar] [CrossRef]
- Nickoloff-Bybel, E.A.; Festa, L.; Meucci, O.; Gaskill, P.J. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021, 18, 24. [Google Scholar] [CrossRef]
- Freedman, B.D.; Liu, Q.-H.; Del Corno, M.; Collman, R.G. HIV-1 gp120 Chemokine Receptor-Mediated Signaling in Human Macrophages. Immunol. Res. 2003, 27, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, L.W.; Bragatte, M.A.D.S.; Vieira, G.F. The influence of HLA/HIV genetics on the occurrence of elite controllers and a need for therapeutics geotargeting view. Braz. J. Infect. Dis. 2021, 25, 101619. [Google Scholar] [CrossRef]
- Lobos, C.A.; Downing, J.; D’Orsogna, L.J.; Chatzileontiadou, D.S.M.; Gras, S. Protective HLA-B57: T cell and natural killer cell recognition in HIV infection. Biochem. Soc. Trans. 2022, 50, 1329–1339. [Google Scholar] [CrossRef]
- Jadhav, S.; Nema, V. Association of Viral and Host Genetic Architecture with the Status of Neurocognitive Disorder in HIV-Infected Individuals. AIDS Res. Hum. Retroviruses 2023, 39, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Jennings, A.; Akbarian, S. Genomic Exploration of the Brain in People Infected with HIV—Recent Progress and the Road Ahead. Curr. HIV/AIDS Rep. 2023, 20, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Mackiewicz, M.; Overk, C.; Achim, C.L.; Masliah, E. Pathogenesis of age-related HIV neurodegeneration. J. Neurovirol. 2019, 25, 622–633. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics 2019, 14, 1141–1163. [Google Scholar] [CrossRef]
- Nehme, Z.; Pasquereau, S.; Herbein, G. Control of viral infections by epigenetic-targeted therapy. Clin. Epigenetics 2019, 11, 55. [Google Scholar] [CrossRef]
- Kong, W.; Frouard, J.; Xie, G.; Corley, M.J.; Helmy, E.; Zhang, G.; Schwarzer, R.; Montano, M.; Sohn, P.; Roan, N.R.; et al. Neuroinflammation generated by HIV-infected microglia promotes dysfunction and death of neurons in human brain organoids. PNAS Nexus 2024, 3, 179. [Google Scholar] [CrossRef]
- El-Amine, R.; Germini, D.; Zakharova, V.V.; Tsfasman, T.; Sheval, E.V.; Louzada, R.A.N.; Dupuy, C.; Bilhou-Nabera, C.; Hamade, A.; Najjar, F.; et al. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol. 2018, 15, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.W.; Norman, J.P.; Litzburg, A.; Zhang, D.; Dewhurst, S.; Gelbard, H.A. HIV-1 Transactivator of Transcription Protein Induces Mitochondrial Hyperpolarization and Synaptic Stress Leading to Apoptosis. J. Immunol. 2005, 174, 4333–4344. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.K.; Sharma, D.; Kumar, S.; Puri, B. Understanding HIV-associated neurocognitive and neurodegenerative disorders (neuroAIDS): Enroute to achieve the 95-95-95 target and sustainable development goal for HIV/AIDS response. VirusDisease 2023, 34, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Griñán-Ferré, C.; Bellver-Sanchis, A.; Guerrero, A.; Pallàs, M. Advancing personalized medicine in neurodegenerative diseases: The role of epigenetics and pharmacoepigenomics in pharmacotherapy. Pharmacol. Res. 2024, 205, 107247. [Google Scholar] [CrossRef]
- Tonti, E.; Dell’Omo, R.; Filippelli, M.; Spadea, L.; Salati, C.; Gagliano, C.; Musa, M.; Zeppieri, M. Exploring Epigenetic Modifications as Potential Biomarkers and Therapeutic Targets in Glaucoma. Int. J. Mol. Sci. 2024, 25, 2822. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiu, X.; Wang, Z.; Zhang, Y. Neuroimaging advances in neurocognitive disorders among HIV-infected individuals. Front. Neurol. 2025, 16, 1479183. [Google Scholar] [CrossRef]
- Zhao, Y. Advances in HIV Research: Mechanisms, Transmission Routes, and Emerging Therapeutic Strategies. Highlights Sci. Eng. Technol. 2024, 123, 505–509. [Google Scholar] [CrossRef]
- Ojeda-Juárez, D.; Kaul, M. Transcriptomic and Genetic Profiling of HIV-Associated Neurocognitive Disorders. Front. Mol. Biosci. 2021, 8, 721954. [Google Scholar] [CrossRef]
- Borrajo, A.; Pérez-Rodríguez, D.; Fernández-Pereira, C.; Prieto-González, J.M.; Agís-Balboa, R.C. Genomic Factors and Therapeutic Approaches in HIV-Associated Neurocognitive Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 14364. [Google Scholar] [CrossRef]
- Jang, W.-J.; Lee, S.; Jeong, C.-H. Uncovering transcriptomic biomarkers for enhanced diagnosis of methamphetamine use disorder: A comprehensive review. Front. Psychiatry 2024, 14, 1302994. [Google Scholar] [CrossRef]
- Du, P.; Fan, R.; Zhang, N.; Wu, C.; Zhang, Y. Advances in Integrated Multi-omics Analysis for Drug-Target Identification. Biomolecules 2024, 14, 692. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Agrawal, K.; Stanley, J.; Li, R.; Jacobs, N.; Wang, H.; Lu, C.; Qu, R.; Clarke, D.; Chen, Y.; et al. Multi-omic Characterization of HIV Effects at Single Cell Level across Human Brain Regions. bioRxiv 2025. bioRxiv:8:2025.02.05.636707. [Google Scholar] [CrossRef]
No. | Techniques | Category | Methodology | Outcomes | Relevance to HAND |
---|---|---|---|---|---|
1. | Real-time PCR (qPCR) | Molecular techniques | Amplifies and quantifies specific DNA/RNA targets in tissue or fluid samples using fluorescent probes. | Sensitive detection and quantification of HIV genomes. | Reveals persistent HIV-1 RNA in post-mortem brain (even under cART), indicating viral reservoirs linked to ongoing neuroinflammation in HAND. |
2. | Digital droplet PCR | Partitioned PCR with end-point fluorescence readout, enabling absolute quantification of low-abundance HIV DNA/RNA. | Highly sensitive measurement of viral copy number. | Allows the precise detection of rare HIV sequences in the CNS, aiding studies of latent reservoirs and minor variants associated with HAND. | |
3. | In situ PCR | Laser-capture microdissection of specific cells (e.g., neurons/glia) followed by PCR amplification of HIV DNA. | Detection of HIV proviral DNA in individual brain cells. | Identifies latent HIV infection in neurons/glial cells that appear uninfected by conventional uncovering hidden CNS reservoirs relevant to HAND. | |
4. | Viral genome sequencing | Sequencing of HIV genomic regions (e.g., env and pol) or full genomes from CNS samples, including Single-Genome Amplification to avoid artifacts. | Characterizes viral quasispecies diversity and mutations. | Reveals compartmentalized viral populations in CNS vs. blood and identifies CNS-adapted variants, informing how HIV evolution correlates with neurocognitive impairment (HAND). | |
5. | Western blot | Functional assays | Gel electrophoresis of brain or CSF proteins followed by antibody probing for HIV antigens (e.g., p24 and gp120). | Confirms the presence of viral proteins or host biomarkers. | Validates infection status and immune responses in CNS tissue; can corroborate PCR/IHC findings of HIV presence related to HAND. |
6. | Immunohistochemistry | Antibody staining of brain tissue sections to localize HIV proteins or cellular markers. | Visual identification of HIV-infected cells in situ. | Shows that CNS HIV antigens are primarily found in helping to map infection sites underlying HAND neuropathology. | |
7. | Flow cytometry | Fluorescent antibody labeling of cells (e.g., intracellular HIV p24 and CD markers) to quantify infected or activated immune cells. | Quantification of infected cell populations and immune activation. | Monitors HIV-infected monocytes/macrophages or lymphocytes in blood/CSF, correlating immune cell changes with HAND severity (e.g., elevated activated monocytes in HAND). | |
8. | In situ hybridization | Labeled nucleic acid probes hybridized to HIV RNA/DNA in fixed brain sections to detect viral genomes. | Locates HIV nucleic acid within tissue architecture. | Complements IHC by detecting viral RNA; combined in situ PCR/ISH studies have found HIV genetic material in neurons and suggesting direct or indirect effects on neuronal cells in HAND. | |
9. | Electron microscopy | Ultrastructural imaging (TEM/SEM) of brain tissue to visualize HIV virions or damage at cellular/subcellular levels. | Direct visualization of viral particles and infection-induced pathology. | Provides confirmatory evidence of HIV in the brain (e.g., virions in microglia) and neuronal damage patterns in HAND, linking morphological changes to viral presence. | |
10. | Sequence alignment | Bioinformatic tools | Aligns HIV sequences or host genomic data to reference genomes or among samples. | Identifies homologous regions and mutations. | Foundation for downstream analyses (phylogenetics and variant calling); enables the detection of HAND-related polymorphisms and comparison of CNS vs. systemic viral sequences. |
11. | Phylogenetic analysis | Constructs evolutionary trees (e.g., Neighbor-Joining and Maximum Likelihood) from aligned HIV sequences. | Infers viral lineage relationships and compartmentalization. | Demonstrated significant CNS vs. peripheral virus compartmentalization; identified meninges as a key route linking brain and blood, which impacts understanding of HIV reservoirs and HAND emergence. | |
12. | Molecular docking | Computational docking and molecular dynamics simulations of HIV proteins with host receptors. | Predicts structural interactions and binding modes. | Elucidated how HIV-1 Tat binds the dopamine transporter, inhibiting uptake; provides mechanistic insight into Tat-induced dopaminergic dysfunction implicated in HAND. | |
13. | Gene co-expression network analysis | Builds gene co-expression networks (e.g., WGCNA) from CNS transcriptome data to identify modules of co-regulated genes. | Discovers gene modules and hub genes associated with disease. | Revealed dysregulated immune response modules (IRF8/SPI1-regulated and interferon-related) in HAND, highlighting pathway alterations underpinning neuroinflammation in HAND. | |
14. | Pathway enrichment analysis | Statistical analysis of gene sets for overrepresented biological pathways or functions. | Annotates gene networks with functional significance. | Identified immune signaling (e.g., interferon pathways) and neural processes enriched among HAND-associated, linking molecular findings to known HAND pathophysiology. | |
15. | Primary neural cells | Cell culture models | Culture of human fetal or iPSC-derived neurons/glia, often with mixed neuronal/astrocyte lineages, infected with HIV in vitro. | Model direct HIV infection and replication in CNS cell types. | Showed that neural progenitor cells/neurons can support HIV suggesting these cells may act as latent CNS reservoirs or mediators of HAND pathology. |
16. | Monocyte-derived macrophage cultures | Differentiate primary human monocytes into macrophages and infect with HIV. | Simulate perivascular macrophage infection and neuroinflammatory responses. | Reflects CNS infection route; HIV-infected macrophages release neurotoxic cytokines. This system models the macrophage-mediated reservoir central to HAND pathogenesis. | |
17. | Astrocyte cultures | Culture of human astrocytes (primary or iPSC-derived) with HIV infection or gene manipulation. | Investigate limited/latent infection and neuroimmune signaling by astrocytes. | Astrocytes can harbor HIV DNA without active replication; culture models help study their role in HAND (e.g., release of viral proteins like Tat contributing to neuronal injury). | |
18. | Brain organoid model | Three-dimensional human brain organoids (with incorporated microglia) infected with HIV. | Recapitulate multicellular brain environment and HIV neuroinvasion. | HIV-infected organoids exhibit neuroinflammation (e.g., TNF-α secretion) and neuronal damage consistent with HAND nature.com, offering a physiologically relevant platform to study HAND mechanisms. | |
19. | iPSC-derived CNS cell models | Patient-derived iPSC neurons, astrocytes, or microglia differentiated in vitro for HIV infection/genetic studies. | Enable personalized HAND modeling and gene editing. | Emerging tools allow modeling patient-specific genetic risk (e.g., CCR5 variants) in HAND; can reveal how host genetics influences HIV neurotropism and neurotoxicity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, S.; Nair, S.; Nema, V. The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction. Neuroglia 2025, 6, 23. https://doi.org/10.3390/neuroglia6020023
Jadhav S, Nair S, Nema V. The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction. Neuroglia. 2025; 6(2):23. https://doi.org/10.3390/neuroglia6020023
Chicago/Turabian StyleJadhav, Sushama, Shreeya Nair, and Vijay Nema. 2025. "The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction" Neuroglia 6, no. 2: 23. https://doi.org/10.3390/neuroglia6020023
APA StyleJadhav, S., Nair, S., & Nema, V. (2025). The Genetic Fingerprint of HIV in the Brain: Insights into Neurocognitive Dysfunction. Neuroglia, 6(2), 23. https://doi.org/10.3390/neuroglia6020023