Application of Pebbles for Geotechnical Seismic Isolation (GSI): Experimental Parametric Study
Abstract
:1. Introduction
- Determination of the influence of numerous parameters on the effectiveness of the aseismic layer ASL-1: the pebbles fraction, the compaction of the layer, the layer thickness, the moisture content of the layer, the vertical contact stress below the foundation, and the effect of repeated excitations on the effectiveness of the layer.
- Determination of the optimal ASL-1 aseismic layer.
- Determination of the effect of structural stiffness on the effectiveness of the ASL-1 layer.
- Determination of the effect of foundation size on the effectiveness of the ASL-1 layer.
- Determination of the effect of numerous parameters on ASL-2 aseismic layer efficiency: combination of stone pebbles and geosynthetics.
- Determination of the influence of structural stiffness on the efficiency of the ASL-2 layer.
2. Application of Stone Pebbles as a GSI Layer
2.1. Optimal Aseismic Layer ASL-1
2.2. Behavior of the Deformable Building Models M1–M4 on the Optimal Aseismic Layer ASL-1
- The highest seismic isolation efficiency was obtained for M1, followed by M2, M3, and M4. Moreover, the isolation efficiency was greater as the stiffness of the structure increased.
- Regardless of the model tested, the seismic isolation efficiency was strongly dependent on the type of acceleration program applied.
- For the case of a single base acceleration of the adopted excitation with elastic strain/stress in the model column, models with larger foundations were found to result in higher accelerations, larger column strains, significantly smaller foundation and column top displacements, and significantly smaller vertical foundation displacements. Therefore, only the model with a larger foundation, which has a higher conservative isolation efficiency, was tested further.
- The highest efficiency of this seismic isolation was obtained for the M1 and M2 structural models (T < 0.3 s). For the M3 and M4 models (T > 0.6 s), the effectiveness of ASL-1 is low or even detrimental.
3. Stone Pebble Layer with Sliding Geogrid and Geomembrane Layers as GSI Layer—ASL-2
3.1. Optimal Aseismic Layer ASL-2
3.2. Behavior of the Deformable Building Models M1–M4 on the Optimal Aseismic Layer ASL-2
4. Most Important Research Results and Discussion
4.1. Results for the Rigid Structural Model—M0
4.2. Research Results for the Structural Models M1 and M2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dilsiz, A.; Günay, S.; Mosalam, K.M.; Miranda, E.; Arteta, C.; Sezen, H.; Fischer, E.; Hakhamaneshi, M.; Hassan Wael, M.; Alhawamdeh, B.; et al. StEER-EERI: Mw 7.8 Kahramanmaras, Türkiye Earthquake Sequence Preliminary Virtual Reconnaissance Report (PVRR); StEER: Kahramanmaras, Türkiye, 2023. [Google Scholar]
- Tsang, H.H. Seismic isolation by rubber-soil mixtures for developing countries. Earthq. Eng. Struct. Dyn. 2008, 37, 283–303. [Google Scholar] [CrossRef]
- Kelly, J. Aseismic base isolation: Review and bibliography. Soil Dyn. Earthq. Eng. 1986, 5, 202–216. [Google Scholar] [CrossRef]
- Furinghetti, M. Definition and Validation of Fast Design Procedures for Seismic Isolation Systems. Vibration 2022, 5, 290–305. [Google Scholar] [CrossRef]
- Solaiachari, D.; Jayakumar, L. Experimental Investigation of Nonlinear Vibration Isolator with Fluidic Actuators (NLVIFA). Sound Vib. 2019, 53, 277–296. [Google Scholar]
- Prost, C.; Abdelnour, B. Tuned mass dampers using wire rope isolators. Sound Vib. 2017, 51, 15–17. [Google Scholar]
- Yenidogan, C. Earthquake-Resilient Design of Seismically Isolated Buildings: A Review of Technology. Vibration 2021, 4, 602–647. [Google Scholar] [CrossRef]
- Fraternali, F.; Amendola, A.; Benzoni, G. Innovative seismic isolation devices based on lattice materials: A review. Ing. Sismica. 2018, 4, 93–113. [Google Scholar]
- Prost, C.; Abdelnour, B. Wire rope isolators for seismic base isolation. Sound Vib. 2018, 52, 2–5. [Google Scholar] [CrossRef]
- Rieß, S.; Kaal, W.; Herath, K. Frequency-Adaptable Tuned Mass Damper Using Metal Cushions. Vibration 2021, 4, 77–90. [Google Scholar] [CrossRef]
- Yuan, M.; Jin, Y.; Liu, K.; Sadhu, A. Optimization of a Non-Traditional Vibration Absorber for Vibration Suppression and Energy Harvesting. Vibration 2022, 5, 383–407. [Google Scholar] [CrossRef]
- Prost, C.; Abdelnour, B. Influence and Enhancement of Damping Properties of Wire Rope Isolators for Naval Applications. Sound Vib. 2018, 52, 1–4. [Google Scholar] [CrossRef]
- De Domenico, D.; Losanno, D.; Vaiana, N. Experimental tests and numerical modeling of full-scale unbonded fiber reinforced elastomeric isolators (UFREIs) under bidirectional excitation. Eng. Struct. 2023, 274, 115118. [Google Scholar] [CrossRef]
- Losanno, D.; Palumbo, F.; Calabrese, A.; Barrasso, T.; Vaiana, N. Preliminary Investigation of Aging Effects on Recycled Rubber Fiber Reinforced Bearings (RR-FRBs). J. Earthq. Eng. 2022, 26, 5407–5424. [Google Scholar] [CrossRef]
- Anastasopoulos, I.; Kourkoulis, R.; Gelagoti, F.; Papadopoulos, E. Rocking response of SDOF systems on shallow improved sand: An experimental study. Soil Dyn. Earthq. Eng. 2012, 40, 15–33. [Google Scholar] [CrossRef]
- Zhang, H.; Song, C.; Wang, M.; Cheng, Y.; Yue, S.; Wu, C. A geotechnical seismic isolation system based on marine sand cushion for attenuating ground shock effect: Experimental investigation. Soil Dyn. Earthq. Eng. 2023, 168, 107854. [Google Scholar] [CrossRef]
- Radnić, J.; Grgić, N.; Matešan, D.; Baloević, G. Shake table testing of reinforced concrete columns with different layout size of foundation. Materwiss Werksttech. 2015, 46, 348–367. [Google Scholar] [CrossRef]
- Banović, I.; Radnić, J.; Grgić, N.; Matešan, D. The use of limestone sand for the seismic base isolation of structures. Adv. Civ. Eng. 2018, 2018, 9734283. [Google Scholar] [CrossRef]
- Tsiavos, A.; Sextos, A.; Stavridis, A.; Dietz, M.; Dihoru, L.; Alexander, N.A. Large-scale experimental investigation of a low-cost PVC ‘sand-wich’ (PVC-s) seismic isolation for developing countries. Earthq. Spectra 2020, 36, 1886–1911. [Google Scholar] [CrossRef]
- Tsiavos, A.; Sextos, A.; Stavridis, A.; Dietz, M.; Dihoru, L.; Alexander, N.A. Experimental investigation of a highly efficient, low-cost PVC-Rollers Sandwich (PVC-RS) seismic isolation. Structures 2021, 33, 1590–1602. [Google Scholar] [CrossRef]
- Tsiavos, A.; Kolyfetis, D.; Panzarasa, G.; Burgert, I.; Stojadinovic, B. Shaking table investigation of a low-cost and sustainable timber-based energy dissipation system with recentering ability. Bull. Earthq. Eng. 2022, 21, 3949–3968. [Google Scholar] [CrossRef]
- Somma, F.; Flora, A. SAP-sand mixtures as a geotechnical seismic isolation technology: From the dynamic characterization to a simple analytical design approach. Bull. Earthq. Eng. 2023, 21, 4065–4089. [Google Scholar] [CrossRef]
- Kuvat, A.; Sadoglu, E. Dynamic properties of sand-bitumen mixtures as a geotechnical seismic isolation material. Soil Dyn. Earthq. Eng. 2020, 132, 106043. [Google Scholar]
- Edinçliler, A.; Yildiz, Ö. Shaking table tests on geotechnical seismic isolation for medium-rise buildings using EPS beads-sand mixtures. Bull. Earthq. Eng. 2023, 21, 3851–3877. [Google Scholar] [CrossRef]
- Tsang, H.H. Geotechnical seismic isolation. In Earthquake Engineering: New Research; Nova Science Publishers Inc.: New York, NY, USA, 2009; pp. 55–87. [Google Scholar]
- Forcellini, D. Assessment on geotechnical seismic isolation (GSI) on bridge configurations. Innov. Infrastruct. Solut. 2017, 2, 9. [Google Scholar] [CrossRef]
- Forcellini, D. Assessment of Geotechnical Seismic Isolation (GSI) as a Mitigation Technique for Seismic Hazard Events. Geosciences 2020, 10, 222. [Google Scholar] [CrossRef]
- Forcellini, D. Seismic resilience of bridges isolated with traditional and geotechnical seismic isolation (GSI). Bull. Earthq. Eng. 2023, 21, 3521–3535. [Google Scholar] [CrossRef]
- Forcellini, D.; Alzabeebee, S. Seismic fragility assessment of geotechnical seismic isolation (GSI) for bridge configuration. Bull. Earthq. Eng. 2023, 21, 3969–3990. [Google Scholar] [CrossRef]
- Tsang, H.H.; Pitilakis, K. Mechanism of geotechnical seismic isolation system: Analytical modeling. Soil Dyn. Earthq. Eng. 2019, 122, 171–184. [Google Scholar] [CrossRef]
- Tsiavos, A.; Alexander, N.A.; Diambra, A.; Ibraim, E.; Vardanega, P.J.; Gonzalez-Buelga, A.; Sextos, A. A sand-rubber deformable granular layer as a low-cost seismic isolation strategy in developing countries: Experimental investigation. Soil Dyn. Earthq. Eng. 2019, 125, 105731. [Google Scholar] [CrossRef]
- Tsiavos, A.; Haladij, P.; Sextos, A.; Alexander, N.A. Analytical investigation of the effect of a deformable sliding layer on the dynamic response of seismically isolated structures. Structures 2020, 27, 2426–2436. [Google Scholar] [CrossRef]
- Pitilakis, D.; Anastasiadis, A.; Vratsikidis, A.; Kapouniaris, A.; Massimino, M.R.; Abate, G.; Corsico, S. Large-scale field testing of geotechnical seismic isolation of structures using gravel-rubber mixtures. Earthq. Eng. Struct. Dyn. 2021, 50, 2712–2731. [Google Scholar] [CrossRef]
- Tsang, H.H.; Lo, S.H.; Xu, X.; Neaz Sheikh, M. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: Numerical study. Earthq. Eng. Struct. Dyn. 2012, 41, 2009–2024. [Google Scholar] [CrossRef]
- Tsang, H.H.; Tran, D.P.; Hung, W.Y.; Pitilakis, K.; Gad, E.F. Performance of geotechnical seismic isolation system using rubber-soil mixtures in centrifuge testing. Earthq. Eng. Struct. Dyn. 2021, 50, 1271–1289. [Google Scholar] [CrossRef]
- Tsang, H.H. Analytical design models for geotechnical seismic isolation systems. Bull. Earthq. Eng. 2022, 21, 3881–3904. [Google Scholar] [CrossRef]
- Tsiavos, A.; Sextos, A.; Stavridis, A.; Dietz, M.; Dihoru, L.; Di Michele, F.; Nicholas, A. Low-cost hybrid design of masonry structures for developing countries: Shaking table tests. Soil Dyn. Earthq. Eng. 2021, 146, 106675. [Google Scholar] [CrossRef]
- Vratsikidis, A.; Pitilakis, D. Field testing of gravel-rubber mixtures as geotechnical seismic isolation. Bull. Earthq. Eng. 2022, 21, 3905–3922. [Google Scholar] [CrossRef]
- Wu, M.; Tian, W.; He, J.; Liu, F.; Yang, J. Seismic isolation effect of rubber-sand mixture cushion under different site classes based on a simplified analysis model. Soil Dyn. Earthq. Eng. 2023, 166, 107738. [Google Scholar] [CrossRef]
- Nikitas, G.; Bhattacharya, S. Experimental study on sand-tire chip mixture foundations acting as a soil liquefaction countermeasure. Bull. Earthq. Eng. 2023, 21, 4037–4063. [Google Scholar] [CrossRef]
- Hazarika, H.; Kuribayashi, K.; Kuroda, S.; Hu, Y. Performance evaluation of waste tires in protecting embankment against earthquake loading. Bull. Earthq. Eng. 2023, 21, 4019–4035. [Google Scholar] [CrossRef]
- Dhanya, J.S.; Fouzul, M.A.; Banerjee, S.; Boominathan, A.; Zhussupbekov, A. Shaking table experiments on framed structure resting on geogrid reinforced geotechnical seismic isolation system. Bull. Earthq. Eng. 2023, 21, 3823–3849. [Google Scholar] [CrossRef]
- Bernal-Sanchez, J.; Leak, J.; Barreto, D. Rubber-soil mixtures: Use of grading entropy theory to evaluate stiffness and liquefaction susceptibility. Bull. Earthq. Eng. 2023, 21, 3777–3796. [Google Scholar] [CrossRef]
- Chiaro, G.; Palermo, A.; Banasiak, L.; Tasalloti, A.; Granello, G.; Hernandez, E. Seismic response of low-rise buildings with eco-rubber geotechnical seismic isolation (ERGSI) foundation system: Numerical investigation. Bull. Earthq. Eng. 2023, 21, 3797–3821. [Google Scholar] [CrossRef]
- Murillo, C.; Thorel, L.; Caicedo, B. Ground vibration isolation with geofoam barriers: Centrifuge modelling. Geotext. Geomembr. 2009, 27, 423–434. [Google Scholar] [CrossRef]
- Nappa, V.; Bilotta, E.; Flora, A. Soft Barriers for the Mitigation of Seismic Risk. Procedia Eng. 2016, 158, 404–409. [Google Scholar] [CrossRef]
- Kalpakcı, V.; Bonab, A.T.; Özkan, M.Y.; Gülerce, Z. Experimental evaluation of geomembrane/geotextile interface as base isolating system. Geosynth. Int. 2018, 25, 1–11. [Google Scholar] [CrossRef]
- Edinçliler, A.; Calikoglu, M. Shaking table experiments on geotechnical seismic isolation for low-rise buildings using geosynthetics. ICG 2018, 2018, 2809–2816. [Google Scholar]
- Aloisio, A.; Contento, A.; Xue, J.; Fu, R.; Fragiacomo, M.; Briseghella, B. Probabilistic formulation for the q-factor of piles with damping pre-hole. Bull. Earthq. Eng. 2023, 21, 3749–3775. [Google Scholar] [CrossRef]
- Azinović, B.; Kilar, V.; Koren, D. The seismic response of low-energy buildings founded on a thermal insulation layer –a parametric study. Eng. Struct. 2014, 81, 398–411. [Google Scholar] [CrossRef]
- Azinović, B.; Kilar, V.; Koren, D. Energy-efficient solution for the foundation of passive houses in earthquake-prone regions. Eng. Struct. 2015, 112, 133–145. [Google Scholar] [CrossRef]
- Gatto, M.P.A.; Lentini, V.; Castelli, F.; Montrasio, L.; Grassi, D. The use of polyurethane injection as a geotechnical seismic isolation method in large-scale applications: A numerical study. Geosciences 2021, 11, 201. [Google Scholar] [CrossRef]
- Gatto, M.P.A.; Lentini, V.; Montrasio, L. Dynamic properties of polyurethane from resonant column tests for numerical GSI study. Bull. Earthq. Eng. 2023, 21, 3991–4017. [Google Scholar] [CrossRef]
- Gatto, M.P.A.; Montrasio, L.; Zavatto, L. Experimental Analysis and Theoretical Modelling of Polyurethane Effects on 1D Wave Propagation through Sand-Polyurethane Specimens. J. Earthq. Eng. 2022, 26, 7170–7193. [Google Scholar] [CrossRef]
- Tsang, H.H.; Akhtar, A.Y. Dynamic properties of recycled polyurethane-coated rubber-soil mixtures. Case Stud. Constr. Mater. 2023, 18, e01859. [Google Scholar]
- Yegian, M.K.; Kadakal, U. Foundation isolation for seismic protection using a smooth synthetic liner. J. Geotech. Geoenviron. 2004, 130, 1121–1130. [Google Scholar] [CrossRef]
- Yegian, M.K.; Lahlaf, A.M. Geomembranes as base isolation. Geotech. Fabr. Rep. 1992, 10, 17–21. [Google Scholar]
- Banović, I.; Radnić, J.; Grgić, N. Shake table study on the efficiency of seismic base isolation using natural stone pebbles. Adv. Mater. Sci. Eng. 2018, 2018, 1012527. [Google Scholar] [CrossRef]
- Banović, I.; Radnić, J.; Grgić, N. Geotechnical seismic isolation system based on sliding mechanism using stone pebble layer: Shake-table experiments. Shock Vib. 2019, 2019, 9346232. [Google Scholar] [CrossRef]
- Banović, I.; Radnić, J.; Grgić, N. Effect of structural stiffness on the efficiency of seismic base isolation using layers of stone pebbles. Ing. Sismica 2020, 37, 66–91. [Google Scholar]
- Banović, I.; Radnić, J.; Grgić, N. Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles. Earthq. Struct. 2020, 19, 103–117. [Google Scholar]
- Banović, I.; Radnić, J.; Grgić, N. Numerical model for dynamic analysis of structures with seismic base isolation using a layer of stone pebbles. Ing. Sismica 2021, 38, 37–65. [Google Scholar]
- Banović, I.; Radnić, J.; Grgić, N.; Semren, K. Effectiveness of several low-cost geotechnical seismic isolation methods: A shake-table study. Bull. Earthq. Eng. 2023, 21, 3923–3947. [Google Scholar] [CrossRef]
- Banović, I.; Radnić, J.; Grgić, N.; Buzov, A. Performance of geotechnical seismic isolation using stone pebble—Geogrid layer: Experimental investigation. Soil Dyn. Earthq. Eng. 2023, 171, 107941. [Google Scholar] [CrossRef]
- Banović, I. Seismic Base Isolation Using Natural Materials—Experimental and Numerical Verification. Ph.D. Thesis, University of Split, Split, Croatia, 2021. [Google Scholar]
- EN 1998-1:2004 Eurocode 8; Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings. CEN: Brussels, Belgium, 2004.
- SIMQKE (SIMulation of EarthQuaKE Ground Motions). Available online: https://gelfi.unibs.it/software/simqke/simqke_gr.htm (accessed on 15 January 2019).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banović, I.; Radnić, J.; Grgić, N.; Galić, M. Application of Pebbles for Geotechnical Seismic Isolation (GSI): Experimental Parametric Study. Vibration 2024, 7, 64-82. https://doi.org/10.3390/vibration7010004
Banović I, Radnić J, Grgić N, Galić M. Application of Pebbles for Geotechnical Seismic Isolation (GSI): Experimental Parametric Study. Vibration. 2024; 7(1):64-82. https://doi.org/10.3390/vibration7010004
Chicago/Turabian StyleBanović, Ivan, Jure Radnić, Nikola Grgić, and Marko Galić. 2024. "Application of Pebbles for Geotechnical Seismic Isolation (GSI): Experimental Parametric Study" Vibration 7, no. 1: 64-82. https://doi.org/10.3390/vibration7010004
APA StyleBanović, I., Radnić, J., Grgić, N., & Galić, M. (2024). Application of Pebbles for Geotechnical Seismic Isolation (GSI): Experimental Parametric Study. Vibration, 7(1), 64-82. https://doi.org/10.3390/vibration7010004