The Effects of Whole-Body Vibration on Fatigue in Vertical Jump Performance and Isometric Mid-Thigh Pull Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loturco, I.; Pereira, L.; Cal Abad, C.; D’Angelo, R.; Fernandes, V.; Kitamura, K.; Kobal, R.; Nakamura, F. Vertical and Horizontal Jump Tests Are Strongly Associated with Competitive Performance in 100-M Dash Events. J. Strength Cond. Res. 2015, 29, 1966–1971. [Google Scholar] [CrossRef]
- Sands, W.; McNeal, J.; Ochi, M.; Urbanek, T.; Jemni, M.; Stone, M. Comparison of the Wingate and Bosco Protocol. J. Strength Cond. Res. 2004, 18, 810–815. [Google Scholar]
- Rodriguez-Rosell, D.; Mora-Custodio, R.; Franco-Marquez, F.; Yaez-Garcia, J.; Gonzalez-Badillo, J. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship with the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players. J. Strength Cond. Res. 2016, 31, 196–206. [Google Scholar] [CrossRef]
- Barker, L.; Harry, J.; Mercer, J. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time. J. Strength Cond. Res. 2015, 32, 248–254. [Google Scholar] [CrossRef]
- Cooper, C.N.; Dabbs, N.C.; Davis, J.; Sauls, N.M. Effects of Lower-Body Muscular Fatigue on Vertical Jump and Balance Performance. J. Strength Cond. Res. 2020, 34, 2903–2910. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J. Effect of Lower-Extremity Muscle Fatigue on Postural Control. Arch. Phys. Med. Rehabiliation 2004, 85, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Venckunas, T.; Krusnauskas, R.; Snieckus, A.; Eimantas, N.; Baranauskiene, N.; Skurvydas, A.; Brazaitis, M.; Kamandulis, S. Acute Effects of Very Low-Volume High-Intensity Interval Training on Muscular Fatigue and Serum Testosterone Level Vary According to Age and Training Status. Eur. J. Appl. Physiol. 2019, 119, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Dennison, K.J.; Mullineaux, D.R.; Yates, J.W.; Abel, M.G. The Effect of Fatigue and Training Status on Firefighter Performance. J. Strength Cond. Res. 2012, 26, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.D.; Brown, L.E.; Wong, M.A.; Leyva, W.D.; Pinto, R.S.; Cadore, E.L.; Ruas, C.V. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women. J. Strength Cond. Res. 2016, 30, 3220–3227. [Google Scholar] [CrossRef]
- Edge, J.; Mündel, T.; Weir, K.; Cochrane, D.J. The Effects of Acute Whole Body Vibration as a Recovery Modality Following High-Intensity Interval Training in Well-Trained, Middle-Aged Runners. Eur. J. Appl. Physiol. 2009, 105, 421–428. [Google Scholar] [CrossRef]
- Dabbs, N.C.; Brown, L.; Garner, J.C. Effects of Whole Body Vibration on Vertical Jump Performance Following Exercise Induced Muscle Damage. Int. J. Kinesiol. Sports Sci. 2014, 2, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.D.; Servedio, F.J.; Woodall, W.R. The Effects of Three Modalities on Delayed Onset Muscle Soreness. J. Orthop. Sports Phys. 1994, 20, 236–242. [Google Scholar] [CrossRef]
- Webb, N.P.; Harris, N.K.; Cronin, J.B.; Walker, C. The Relative Efficacy of Three Recovery Modalities After Professional Rugby League Matches. J. Strength Cond. Res. 2013, 27, 2449–2455. [Google Scholar] [CrossRef]
- Adams, J.B.; Edwards, D.; Serviette, D.; Bedient, A.M.; Huntsman, E.; Jacobs, K.A.; Del Rossi, G.; Roos, B.A.; Signorile, J.F. Optimal Frequency, Displacement, Duration, and Recovery Patterns to Maximize Power Output Following Acute Whole-Body Vibration. J. Strength Cond. Res. 2009, 23, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, M.J.; Norris, S.R.; Smith, D.J.; Herzog, W. Vibration Training: An Overview of the Area, Training Consequences, and Future Considerations. J. Strength Cond. Res. 2005, 19, 459–466. [Google Scholar] [CrossRef]
- Wilcock, I.M.; Whatman, C.; Harris, N.; Keogh, J.W.L. Vibration Training: Could It Enhance the Strength, Power, or Speed of Athletes? J. Strength Cond. Res. 2009, 23, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.J.; Park, H.S. Analysis of the Tonic Vibration Reflex: Influence of Vibration Variables on Motor Unit Synchronization and Fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.S.; Martin, B.J. Contribution of the Tonic Vibration Reflex to Muscle Stress and Muscle Fatigue. Scand. J. Work Environ. Health 1993, 19, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Dabbs, N.C.; Lundahl, J.A.; Garner, J.C. Effectiveness of Different Rest Intervals Following Whole-Body Vibration on Vertical Jump Performance Between College Athletes and Recreationally Trained Females. Sports 2015, 3, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Torvinen, S.; Kannu, P.; Sievänen, H.; Järvinen, T.A.H.; Pasanen, M.; Kontulainen, S.; Järvinen, T.L.N.; Järvinen, M.; Oja, P.; Vuori, I. Effect of a Vibration Exposure on Muscular Performance and Body Balance. Randomized Cross-over Study. Clin. Physiol. Funct. Imaging 2002, 22, 145–152. [Google Scholar] [CrossRef]
- Pojskic, H.; Pagaduan, J.; Uzicanin, E.; Babajic, F.; Muratovic, M.; Tomljanovic, M. Acute Effects of Loaded Whole Body Vibration Training on Performance. Asian J. Sports Med. 2015, 6, e24054. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; Deane, R.S.; Triplett, N.T.; McBride, J.M. Acute Effects of Whole-Body Vibration on Muscle Activity, Strength, and Power. J. Strength Cond. Res. 2006, 20, 257–261. [Google Scholar] [CrossRef]
- Dabbs, N.C.; Muñoz, C.X.; Tran, T.T.; Brown, L.E.; Bottaro, M. Effect of Different Rest Intervals After Whole-Body Vibration on Vertical Jump Performance. J. Strength Cond. Res. 2011, 25, 662–667. [Google Scholar] [CrossRef]
- Bosco, C.; Colli, R.; Introini, E.; Cardinale, M.; Tsarpela, O.; Madella, A.; Tihanyi, J.; Viru, A. Adaptive Responses of Human Skeletal Muscle to Vibration Exposure. Clin. Physiol. 1999, 19, 183–187. [Google Scholar] [CrossRef]
- McBride, J.M.; Nuzzo, J.L.; Dayne, A.M.; Israetel, M.A.; Nieman, D.C.; Triplett, N.T. Effect of an Acute Bout of Whole Body Vibration Exercise on Muscle Force Output and Motor Neuron Excitability. J. Strength Cond. Res. 2009, 24, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronnestad, B.R. Acute Effects of Various Whole-Body Vibration Frequencies on Lower-Body Power in Trained and Untrained Subjects. J. Strength Cond. Res. 2009, 23, 1309–1315. [Google Scholar] [CrossRef]
- Eklund, G.; Hagbarth, K.E. Normal Variability of Tonic Vibration Reflexes in Man. Exp. Neurol. 1966, 16, 80–92. [Google Scholar] [CrossRef]
- Desmedt, J.E.; Godaux, E. Mechanism of the Vibration Paradox: Excitatory and Inhibitory Effects of Tendon Vibration on Single Soleus Muscle Motor Units in Man. J. Physiol. 1978, 285, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, C.; Bellon, C.; Abbott, H.; Bingham, G. Roles of Maximal Strength and Rate of Force Development in Maximizing Muscular Power. J. Strength Cond. Res. 2016, 38, 71–78. [Google Scholar] [CrossRef]
- Young, W.B. Transfer of Strength and Power Training to Sports Performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Cormie, P.; McCaulley, G.O.; McBride, J.M. Power versus Strength-Power Jump Squat Training: Influence on the Load-Power Relationship. Med. Sci. Sports Exerc. 2007, 39, 996–1003. [Google Scholar] [CrossRef] [Green Version]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-Time Curve Characteristics of Dynamic and Isometric Muscle Actions of Elite Women Olympic Weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckham, G.K.; Lamont, H.S.; Sato, K.; Ramsey, M.W.; Stone, M.H. Isometric Strength of Powerlifters in Key Positions of the Conventional Deadlift. J. Trainology 2012, 1, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of Isometric Mid-Thigh Pull Variables to Weightlifting Performance. J. Sports Med. Phys. Fit. 2013, 53, 573–581. [Google Scholar]
- Slawinski, J.; Bonnefoy, A.; Levêque, J.-M.; Ontanon, G.; Riquet, A.; Dumas, R.; Chèze, L. Kinematic and Kinetic Comparisons of Elite and Well-Trained Sprinters during Sprint Start. J. Strength Cond. Res. 2010, 24, 896–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazás-Moreno, V.L.; Gdovin, J.R.; Williams, C.C.; Allen, C.R.; Fu, Y.-C.; Brown, L.E.; Iii, J.C.G. Influence of Whole Body Vibration and Specific Warm-Ups on Force during an Isometric Mid-Thigh Pull. Int. J. Kinesiol. Sports Sci. 2015, 3, 31–39. [Google Scholar]
- Hornsby, W.G.; South, M.A.; Stone, J.D.; Lamont, H.S.; Haff, G.G.; Stone, M.H. The Acute Effects of Whole Body Vibration on Isometric Mid-Thigh Pull Performance. Vibration 2020, 3, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Merrigan, J.J.; Dabbs, N.C.; Jones, M.T. Isometric Mid-Thigh Pull Kinetics: Sex Differences and Response to Whole-Body Vibration. J. Strength Cond. Res. 2020, 34, 2407–2411. [Google Scholar] [CrossRef]
- Comfort, P.; Sweart, A.; Bloom, L.; Clarkson, B. Relationships Between Strength, Sprint, and Jump Performance in Well-Trained Youth Soccer Players. J. Strength Cond. Res. 2017, 28, 173–177. [Google Scholar] [CrossRef]
- Cronin, J.; Hansen, K. Strength and Power Predictors of Sports Speed. J. Strength Cond. Res. 2005, 19, 349–357. [Google Scholar] [PubMed]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between Countermovement Jump Performance and Multijoint Isometric and Dynamic Tests of Strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P. A Simple Method for Measurement of Mechanical Power in Jumping. Eur. J. Appl. Physiol. 1983, 50, 273–301. [Google Scholar] [CrossRef] [PubMed]
- Benjaminse, A.; Habu, A.; Sell, T.; Abt, J.; Fu, F.; Myers, J.; Lephart, S. Fatigue Alters Lower Extremity Kinematics During A Single-Leg Stop-Jump Task. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Smilios, I. Effects of Varying Levels of Muscular Fatigue on Vertical Jump Performance. J. Strength Cond. Res. 1998, 12, 204–208. [Google Scholar]
- Wong, T.L.; Huang, C.F.; Chen, P.C. Effects of Lower Extremity Muscle Fatigue on Knee Loading During a Forward Drop Jump to a Vertical Jump in Female Athletes. J. Hum. Kinet 2020, 72, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colson, S.S.; Petit, P.-D.; Hébreard, L.; Tessaro, J.; Pensini, M. Whole Body Vibration Does Not Enhance Muscle Activation. Int. J. Sports Med. 2009, 30, 841–844. [Google Scholar] [CrossRef]
- Jordan, M.; Norris, S.; Smith, D.; Herzog, W. Acute Effects of Whole-Body Vibration on Peak Isometric Torque, Muscle Twitch Torque and Voluntary Muscle Activation of the Knee Extensors. Scand. J. Med. Sci. Sports 2010, 20, 535–540. [Google Scholar] [CrossRef]
- Bullock, N.; Martin, D.T.; Ross, A.; Rosemond, C.D.; Jordan, M.J.; Marino, F.E. Acute Effect of Whole-Body Vibration on Sprint and Jumping Performance in Elite Skeleton Athletes. J. Strength Cond. Res. 2008, 22, 1371–1374. [Google Scholar] [CrossRef]
- Cochrane, D.; Stannard, S. Acute Whole Body Vibration Training Increases Vertical Jump and Flexibility Performance in Elite Female Field Hockey Players. Br. J. Sports Med. 2005, 39, 860–865. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.-W.; Chou, L.-W.; Chen, W.-H.; Shiang, T.-Y.; Liu, C. Dual-Frequency Whole Body Vibration Enhances Vertical Jumping and Change-of-Direction Ability in Rugby Players. J. Sport Health Sci. 2017, 6, 346–351. [Google Scholar] [CrossRef] [Green Version]
WBV + FAT | WBV | FAT | CON | |
---|---|---|---|---|
Countermovement Vertical Jump | ||||
Height (cm) | 49.16 ± 13.51 | 54.83 ± 14.68 | 48.84 ± 14.41 | 54.25 ± 13.17 |
pGRF (N) | 1796.46 ± 498.62 | 1841.75 ± 531.81 | 1792.42 ± 470.61 | 1893.81 ± 530.85 |
pGRF/BM (N/kg−1) | 22.13 ± 5.34 | 23.61 ± 3.49 | 22.92 ± 2.82 | 23.33 ± 5.86 |
PP (W) | 4219.03 ± 1830.28 | 4363.07 ± 1641.37 | 3992.95 ± 1408.50 | 4314.74 ± 1520.11 |
PP/BM (W/kg−1) | 51.61 ± 22.16 | 54.31 ± 13.34 | 49.88 ± 11.45 | 51.68 ± 15.60 |
PV (m/s) | 2.65 ± 0.40 | 2.81 ± 0.42 | 2.64 ± 0.37 | 2.81 ± 0.40 |
PV/BM (m/s/kg−1) | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.01 |
Isometric Mid-Thigh Pull | ||||
pGRF (N) | 2125.62 ± 602.06 | 2019.06 ± 688.32 | 2123.92 ± 572.84 | 2140.19 ± 575.87 |
pGRF/BM (N/kg−1) | 26.70 ± 4.70 | 25.60 ± 6.92 | 26.80 ± 4.83 | 26.95 ± 4.54 |
WBV | FAT | WBV × FAT | |
---|---|---|---|
Countermovement Vertical Jump | |||
Height (cm) | p = 0.63; F = 0.23; ηp2 = 0.01 | * p< 0.01; F = 30.09; ηp2 = 0.52 | p = 0.89; F = 0.02; ηp2 = 0.001 |
pGRF (N) | p = 0.42; F = 0.67; ηp2 = 0.03 | * p = 0.04; F = 4.85; ηp2 = 0.16 | p = 0.29; F = 1.17; ηp2 = 0.05 |
pGRF/BM (N/kg−1) | p = 0.71; F = 0.14; ηp2 = 0.01 | p = 0.22; F = 1.60; ηp2 = 0.06 | p = 0.45; F = 0.59; ηp2 = 0.02 |
PP (W) | p = 0.30; F = 1.14; ηp2 = 0.04 | p = 0.11; F = 2.74; ηp2 = 0.10 | p = 0.52; F = 0.42; ηp2 = 0.02 |
PP/BM (W/kg−1) | p = 0.28; F = 1.23; ηp2 = 0.04 | p = 0.28; F = 1.19; ηp2 = 0.04 | p = 0.84; F = 0.04; ηp2 = 0.002 |
PV (m/s) | p = 0.32; F = 1.02; ηp2 = 0.04 | p = 0.54; F = 0.39; ηp2 = 0.02 | p = 0.32; F = 1.02; ηp2 = 0.04 |
PV/BM (m/s/kg−1) | p = 0.29; F = 1.17; ηp2 = 0.04 | p = 0.74; F = 0.11; ηp2 = 0.004 | p = 0.79; F = 0.07; ηp2 = 0.07 |
Isometric Mid-Thigh Pull | |||
pGRF (N) | p = 0.21; F = 1.66; ηp2 = 0.06 | p = 0.35; F = 0.91; ηp2 = 0.03 | p = 0.20; F = 1.70; ηp2 = 0.06 |
pGRF/BM (N/kg−1) | p = 0.17; F = 1.97; ηp2 = 0.07 | p = 0.37; F = 0.82; ηp2 = 0.03 | p = 0.24; F = 1.42; ηp2 = 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabbs, N.C.; Espericueta, S.; Bonilla, S.; Jones, M.T. The Effects of Whole-Body Vibration on Fatigue in Vertical Jump Performance and Isometric Mid-Thigh Pull Measures. Vibration 2021, 4, 759-767. https://doi.org/10.3390/vibration4040042
Dabbs NC, Espericueta S, Bonilla S, Jones MT. The Effects of Whole-Body Vibration on Fatigue in Vertical Jump Performance and Isometric Mid-Thigh Pull Measures. Vibration. 2021; 4(4):759-767. https://doi.org/10.3390/vibration4040042
Chicago/Turabian StyleDabbs, Nicole C., Sergio Espericueta, Sean Bonilla, and Margaret T. Jones. 2021. "The Effects of Whole-Body Vibration on Fatigue in Vertical Jump Performance and Isometric Mid-Thigh Pull Measures" Vibration 4, no. 4: 759-767. https://doi.org/10.3390/vibration4040042
APA StyleDabbs, N. C., Espericueta, S., Bonilla, S., & Jones, M. T. (2021). The Effects of Whole-Body Vibration on Fatigue in Vertical Jump Performance and Isometric Mid-Thigh Pull Measures. Vibration, 4(4), 759-767. https://doi.org/10.3390/vibration4040042