Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing
Abstract
1. Introduction
2. Experimental Procedure and Numerical Modeling
2.1. Experimental Procedure
2.2. Numerical Models
3. Results and Discussion
3.1. Equivalent Combustion of Standard Combustible Assembly
3.2. Model Verification
3.3. Fire Extinguishing Effectiveness
3.4. Fire Extinguishing Direction
3.5. Fire Extinguishing Location
3.6. Sprinkler Flux
3.7. Sprinkler Response Time Index
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Cristina, G.; Falkenstein-Smith, R.; Kim, I.; Wessies, S.; Bundy, M.; Zammarano, M. Towards fire safe and flame-retardant-free upholstered furniture. Proc. Combust. Inst. 2024, 40, 105399. [Google Scholar] [CrossRef]
- Pitts, W.M.; Werrel, M.; Fernandez, M.; Long, M.A.; Eisenberg, E.A.; Filliben, J.; Runyon, C.D. Effects of upholstery materials on the burning behavior of real-scale residential upholstered furniture mock-ups. Fire Mater. 2020, 45, 127–154. [Google Scholar] [CrossRef]
- Hofmann, A.; Klippel, A.; Gnutzmann, T.; Kaudelka, S.; Rabe, F. Influence of modern plastic furniture on the fire development in fires in homes: Large-scale fire tests in living rooms. Fire Mater. 2020, 45, 155–166. [Google Scholar] [CrossRef]
- Weng, L.; Zhang, X. Fully bio-based fire-safety composite from cotton/viscose wastes and alginate fiber as furniture materials. Waste Manag. 2023, 168, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.A.; Hull, T.R. Variation of flammability and smoke toxicity of upholstered furniture composites with fire retardant treatment. J. Mater. Sci. Technol. 2024, 202, 140–151. [Google Scholar] [CrossRef]
- Hua, J.; Kumar, K.; Khoo, B.C.; Xue, H. A numerical study of the interaction of water spray with a fire plume. Fire Saf. J. 2002, 37, 631–657. [Google Scholar] [CrossRef]
- Kim, S.C.; Ryou, H.S. An experimental and numerical study on fire suppression using a water mist in an enclosure. Build. Environ. 2003, 38, 1309–1316. [Google Scholar] [CrossRef]
- Domgue, K.L.I.; Paes, D.; Feng, Z.; Mander, S.; Datoussaid, S.; Descamps, T.; Rahouti, A.; Lovreglio, R. Video see-through augmented reality fire safety training: A comparison with virtual reality and video training. Saf. Sci. 2025, 184, 106714. [Google Scholar] [CrossRef]
- Ezinwa, J.U.; Robson, L.D.; Obach, M.R.; Torvi, D.A.; Weckman, E.J. Evaluating models for predicting full-scale fire behaviour of polyurethane foam using cone calorimeter data. Fire Technol. 2011, 50, 693–719. [Google Scholar] [CrossRef]
- Sundström, B. Combustion behavior of upholstered furniture. Important findings, practical use, and implications. Fire Mater. 2020, 45, 97–113. [Google Scholar] [CrossRef]
- Krasny, J.F.; Babrauskas, V. Burning behavior of upholstered furniture mockups. J. Fire Sci. 1984, 2, 205–235. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, G.; Yan, B.; Hou, G.; An, C. Analysis of combustion characteristics of wood stack and absolute ethanol in fire extinguishing experiment. Case Stud. Therm. Eng. 2023, 52, 103608. [Google Scholar] [CrossRef]
- Huang, C.; Dai, Z.; Jiang, Z.; Chen, Y.; Zhong, M. Wood stack fire tests to evaluate the influence of extinguishing medium and driving pressure on fire extinguishing efficacy of forest trees. Therm. Sci. Eng. Prog. 2024, 49, 102464. [Google Scholar] [CrossRef]
- Delichatsios, M.A. Fire growth rates in wood cribs. Combust. Flame 1976, 27, 267–278. [Google Scholar] [CrossRef]
- Agarwal, G.; Gupta, A.; Chaos, M.; Meredith, K.V.; Wang, Y. Experimental investigation and inverse modeling of the flammability behavior of cartoned plastic commodity. Proc. Combust. Inst. 2017, 36, 3177–3184. [Google Scholar] [CrossRef]
- Overholt, K.J.; Gollner, M.J.; Perricone, J.; Rangwala, A.S.; Williams, F.A. Warehouse commodity classification from fundamental principles. Part II: Flame heights and flame spread. Fire Saf. J. 2011, 46, 317–329. [Google Scholar] [CrossRef]
- Karunaratne, T.L.W.; Chow, C.L. Fire spread along vertical greenery systems from window ejected flame: A study based on a fire dynamic simulator model. J. Build. Eng. 2022, 62, 105359. [Google Scholar] [CrossRef]
- Yan, X.; Gernay, T. Numerical modeling of localized fire exposures on structures using FDS-FEM and simple models. Eng. Struct. 2021, 246, 112997. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Trouvé, A. Large eddy simulation of the unstable flame structure and gas-to-liquid thermal feedback in a medium-scale methanol pool fire. Combust. Flame 2021, 225, 237–254. [Google Scholar] [CrossRef]
- Parhizi, M.; Jain, A.; Kilaz, G.; Ostanek, J.K. Accelerating the numerical solution of thermal runaway in Li-ion batteries. J. Power Sources 2022, 538, 231531. [Google Scholar] [CrossRef]
- Dasgotra, A.; Rangarajan, G.; Tauseef, S.M. CFD-based study and analysis on the effectiveness of water mist in interacting pool fire suppression. Process Saf. Environ. Prot. 2021, 152, 614–629. [Google Scholar] [CrossRef]
- Bai, Z.P.; Yu, Y.Y.; Zhang, J.Y.; Hu, H.M.; Xing, M.Y.; Yao, H.W. Study on fire characteristics of lithium battery of new energy vehicles in a tunnel. Process Saf. Environ. Prot. 2024, 186, 728–737. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, Y.P.; Han, S.S.; Chow, W.K. A feasible heat release rate estimation approach for fire hazard assessment in green design. J. Build. Eng. 2023, 79, 107907. [Google Scholar] [CrossRef]
- Mishra, D.; Tummala, R.; Brigmon, T.; Jain, A. Simulations-based investigation of the effectiveness of fire suppression techniques for safe, large-scale storage of Li-ion batteries. J. Energy Storage 2024, 84, 110870. [Google Scholar] [CrossRef]
- Bolina, F.L.; Fachinelli, E.G.; Pachla, E.C.; Centeno, F.R. A critical analysis of the influence of architecture on the temperature field of RC structures subjected to fire using CFD and FEA models. Appl. Therm. Eng. 2024, 247, 123086. [Google Scholar] [CrossRef]
- Vinay; Raja, S.; Tauseef, S.M.; Varadharajan, S. Investigating the impact of oxygen concentration on fire dynamics using numerical simulation with FDS. Process Saf. Environ. Prot. 2023, 178, 195–203. [Google Scholar] [CrossRef]
- Moradi Hanifi, S.; Laal, F.; Ghashghaei, M.; Ahmadi, O.; Mandali, H. Providing a model to evaluate the spread of fire in a chemical warehouse using numerical simulation and Bayesian network. Process Saf. Environ. Prot. 2024, 183, 124–137. [Google Scholar] [CrossRef]
Governing Equations |
---|
Continuity equation |
Momentum equation |
Energy equation |
Species equation |
Equation of state of an ideal gas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; He, Q.; Tan, Q.; Zhu, G. Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing. Fire 2025, 8, 327. https://doi.org/10.3390/fire8080327
Song W, He Q, Tan Q, Zhu G. Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing. Fire. 2025; 8(8):327. https://doi.org/10.3390/fire8080327
Chicago/Turabian StyleSong, Wenqi, Qing He, Qingyu Tan, and Guorui Zhu. 2025. "Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing" Fire 8, no. 8: 327. https://doi.org/10.3390/fire8080327
APA StyleSong, W., He, Q., Tan, Q., & Zhu, G. (2025). Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing. Fire, 8(8), 327. https://doi.org/10.3390/fire8080327