Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields
Abstract
1. Introduction
2. Experimental Section
3. Numerical Simulation
4. Results and Discussion
4.1. Experimental Observations
4.2. Numerical Simulation Analysis of Rotating Flow Field Below the Nozzle Exit
4.3. Inlet Velocity and Vortex Intensity
4.4. Flame Length and Diameter
4.5. Lift-Off Height
5. Conclusions
- (1)
- As the nozzle height increases, the interaction between the burning flame and vortex flow reduces in strength, as evidenced by the sequential transition of flame states from SR to USR and ultimately to NR.
- (2)
- The radial distribution of the tangential velocity progressively deviates from the Burgers vortex model as the nozzle height increases, eventually approaching zero mean fluctuations in the NR state. The variation in the tangential velocity distribution at the nozzle height can serve as an effective indicator of the flame state transitions.
- (3)
- The vortex intensity and the flame length decrease monotonically as the nozzle height increases. The maximum flame diameter shows an inverse relationship, increasing with nozzle height. The relative position of maximum flame diameter follows a non-monotonic trend, initially increasing and then decreasing to match free jet fires. The critical flow circulation for the transition from SR to USR, derived from the flame length analysis, increases as the nozzle exit velocity increases.
- (4)
- The lift-off height significantly increases as the nozzle height increases, primarily due to reduced air entrainment near the nozzle exit, particularly when positioned above the ground boundary layer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations/Nomenclature
Abbreviations | |
FDS | Fire dynamics simulator |
JFRFFs | Jet fires in rotating flow fields |
HWA | Hot wire anemometer |
NR | Non-rotation |
SR | Stable rotation |
SMV | Smoke View |
USR | Unstable rotation |
Nomenclature | |
the slope of the correlation in Figure 19 | |
ambient air specific heat at constant pressure (kJ·kg−1·K−1) | |
nozzle exit diameter (m) | |
cylinder diameter (m) | |
characteristic flame diameter (m) | |
gravitational acceleration (m·s−2) | |
lift-off height (m) | |
H | flame length (m) |
dimensionless flame length | |
empirical constant in Equation (2) | |
() | (critical) nozzle height (m) |
exponent in Equation (2) | |
mass flow rate of ambient air (g·s−1) | |
mass flow rate of propane (g·s−1) | |
heat release rate (kW) | |
dimensionless heat release rate | |
radial distance (m) | |
slit width (m) | |
ambient air temperature (K) | |
inlet velocity of air flowing into the slit (m·s−1) | |
velocity at the nozzle exit (m·s−1) | |
(average) tangential velocity (m·s−1) | |
() | (maximum) flame width (m) |
, y, z | spatial position in the three-dimensional coordinate (m) |
effective combustion heat (kJ·kg−1) | |
Greek Symbols | |
() | (critical) flow circulation (m2·s−1) |
mean inlet circulation (m2·s−1) | |
dimensionless circulation | |
computational mesh cell (m) | |
ambient air density (kg·m−3) | |
propane density at the nozzle exit (kg·m−3) | |
kinematic viscosity (m2/s) | |
Superscripts | |
ambient air | |
critical value | |
nozzle exit | |
inlet of air flows to the device | |
maximum value | |
tangential direction |
References
- Vanquickenborne, L.; Tiggelen, A.V. The stabilization mechanism of lifted diffusion flames. Combust. Flame 1966, 10, 59–69. [Google Scholar] [CrossRef]
- Kalghatgi, G.T. Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 1984, 41, 17–29. [Google Scholar] [CrossRef]
- Sonju, O.K.; Hustad, J. An experimental study of turbulent jet diffusion flames. In Dynamics of Flames and Reactive Systems; Progress in Astronautics and Aeronautics; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1985; pp. 320–339. [Google Scholar] [CrossRef]
- Cha, M.S.; Chung, S.H. Characteristics of lifted flames in nonpremixed turbulent confined jets. Proc. Combust. Inst. 1996, 26, 121–128. [Google Scholar] [CrossRef]
- Wang, J.-W.; Fang, J.; Lin, S.-B.; Guan, J.-F.; Zhang, Y.-M.; Wang, J.-J. Tilt angle of turbulent jet diffusion flame in crossflow and a global correlation with momentum flux ratio. Proc. Combust. Inst. 2017, 36, 2979–2986. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, M.; Huang, M.; Wang, Y. An experimental study of jet fires in pits. Process Saf. Environ. 2022, 163, 131–143. [Google Scholar] [CrossRef]
- Zhou, K.; Rui, Z.; Dong, R. Flame geometry and temperature distribution of jet fires in pits. Fire Technol. 2025, 61, 975–997. [Google Scholar] [CrossRef]
- Zhou, K.; Zhou, Q.; Wang, X.; Wang, W.; Rui, Z.; Yang, J. Hydrogen jet fire due to high-pressure pipeline leakages in pits. Process Saf. Environ. 2025, 200, 107362. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, K.; Zhang, L.; Nie, X.; Wu, Y.; Jiang, J.; Dederichs, A.S.; He, L. Flame extension area and temperature profile of horizontal jet fire impinging on a vertical plate. Process Saf. Environ. 2021, 147, 547–558. [Google Scholar] [CrossRef]
- Zhou, K.; Nie, X.; Wang, C.; Wang, Y.; Niu, H. Jet fires involving releases of gas and solid particle. Process Saf. Environ. 2021, 156, 196–208. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, K. Geometrical features and global radiant heat of double turbulent jet flames. Fuel 2023, 350, 128789. [Google Scholar] [CrossRef]
- Chigier, N.; Beer, J.; Grecov, D.; Bassindale, K. Jet flames in rotating flow fields. Combust. Flame 1970, 14, 171–179. [Google Scholar] [CrossRef]
- Beér, J.M.; Chigier, N.A.; Davies, T.W.; Bassindale, K. Laminarization of turbulent flames in rotating environments. Combust. Flame 1971, 16, 39–45. [Google Scholar] [CrossRef]
- Zhou, K.; Qin, X.; Zhang, L.; Wu, Y. An experimental study of jet fires in rotating flow fields. Combust. Flame 2019, 210, 193–203. [Google Scholar] [CrossRef]
- Emmons, H.W.; Ying, S.J. The fire whirl. Proc. Combust. Inst. 1967, 11, 475–488. [Google Scholar] [CrossRef]
- Dobashi, R.; Okura, T.; Nagaoka, R.; Hayashi, Y.; Mogi, T. Experimental study on flame height and radiant heat of fire whirls. Fire Technol. 2016, 52, 1069–1080. [Google Scholar] [CrossRef]
- Hayashi, Y.; Kuwana, K.; Mogi, T.; Dobashi, R. Influence of vortex parameters on the flame height of a weak fire whirl via heat feedback mechanism. J. Chem. Eng. Jpn. 2013, 46, 689–694. [Google Scholar] [CrossRef]
- Wang, P.; Liu, N.; Hartl, K.; Smits, A. Measurement of the flow field of fire whirl. Fire Technol. 2015, 52, 263–272. [Google Scholar] [CrossRef]
- Hartl, K.A.; Smits, A.J. Scaling of a small scale burner fire whirl. Combust. Flame 2016, 163, 202–208. [Google Scholar] [CrossRef]
- Emori, R.I.; Saito, K. Model experiment of hazardous forest fire whirl. Fire Technol. 1982, 18, 319–327. [Google Scholar] [CrossRef]
- Gustenyov, N.; Akafuah, N.K.; Salaimeh, A.; Finney, M.; McAllister, S.; Saito, K. Scaling nonreactive cross flow over a heated plate to simulate forest fires. Combust. Flame 2018, 197, 340–354. [Google Scholar] [CrossRef]
- Kuwana, K.; Sekimoto, K.; Akafuah, N.K.; Chuah, K.H.; Lei, J.; Saito, K.; Williams, F.A. The moving-type fire whirl observed during a recent Brazil bush fire. In Proceedings of the 7th US National Technical Meeting of the Combustion Institute, Atlanta, GA, USA, 20–23 March 2011. [Google Scholar]
- Zhou, K.; Qian, J.; Qin, X.; Wang, Z. Thermally-driven vortex resulting from the linear heat wires of different shapes under cross wind. Appl. Therm. Eng. 2019, 163, 114495. [Google Scholar] [CrossRef]
- Battaglia, F.; Mcgrattan, K.B.; Rehm, R.G.; Baum, H.R. Simulating fire whirls. Combust. Theor. Model. 2000, 4, 123–138. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, Z.N. Fire whirls due to surrounding flame sources and the influence of the rotation speed on the flame height. J. Fluid Mech. 2007, 583, 313–345. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator User’s Guide; NIST Special Publication; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Vanella, M. Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]
- Wasson, R.; Nahid, M.N.; Lattimer, B.Y.; Diller, T.E. Influence of a ceiling on fire plume velocity and temperature. Fire Technol. 2016, 52, 1863–1886. [Google Scholar] [CrossRef]
- Parente, R.; Pereira, J.; Pereira, J. On the influence of circulation on fire whirl height. Fire Saf. J. 2019, 106, 146–154. [Google Scholar] [CrossRef]
- Zhou, K. Combustion characteristics of line fire under cross wind: Effect of flow separation in the boundary layer. Combust. Flame 2023, 255, 112885. [Google Scholar] [CrossRef]
- Kuwana, K.; Morishita, S.; Dobashi, R.; Chuah, K.H.; Saito, K. The burning rate’s effect on the flame length of weak fire whirls. Proc. Combust. Inst. 2011, 33, 2425–2432. [Google Scholar] [CrossRef]
- Lei, J.; Liu, N.; Jiao, Y.; Zhang, S. Experimental investigation on flame patterns of buoyant diffusion flame in a large range of imposed circulations. Proc. Combust. Inst. 2016, 36, 3149–3156. [Google Scholar] [CrossRef]
- Zukoski, E.E.; Kubota, T.; Cetegen, B. Entrainment in fire plumes. Fire Safety J. 1981, 3, 107–121. [Google Scholar] [CrossRef]
- Lei, J.; Liu, N. Flame precession of fire whirls: A further experimental study. Fire Safety J. 2016, 79, 1–9. [Google Scholar] [CrossRef]
- Lei, J.; Liu, N.; Zhang, L.; Satoh, K. Temperature, velocity and air entrainment of fire whirl plume: A comprehensive experimental investigation. Combust. Flame 2015, 162, 745–758. [Google Scholar] [CrossRef]
- Zou, G.; Hung, H.; Chow, W. A study of correlation between flame height and gap width of an internal fire whirl in a vertical shaft with a single corner gap. Indoor Built Environ. 2019, 28, 34–45. [Google Scholar] [CrossRef]
- Lei, J.; Liu, N.; Lozano, J.S.; Zhang, L.; Deng, Z.; Satoh, K. Experimental research on flame revolution and precession of fire whirls. Proc. Combust. Inst. 2013, 34, 2607–2615. [Google Scholar] [CrossRef]
- Lei, J.; Liu, N.; Zhang, L.; Chen, H.; Shu, L.; Chen, P.; Deng, Z.; Zhu, J.; Satoh, K.; de Ris, J.L. Experimental research on combustion dynamics of medium-scale fire whirl. Proc. Combust. Inst. 2011, 33, 2407–2415. [Google Scholar] [CrossRef]
- Wang, P.; Liu, N.; Zhang, L.; Bai, Y.; Satoh, K. Fire whirl experimental facility with no enclosure of solid walls: Design and validation. Fire Technol. 2015, 51, 951–969. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, N.; Lozano, J.S.; Shan, Y.; Yao, B.; Satoh, K. Effect of flow circulation on combustion dynamics of fire whirl. Proc. Combust. Inst. 2013, 34, 2617–2624. [Google Scholar] [CrossRef]
L (cm) | ue (m/s) | Re | Fr | S (cm) | Γ (m2/s) | H (cm) | Wm (cm) | h (cm) | Status |
---|---|---|---|---|---|---|---|---|---|
0 | 8.04–32.14 | 5873–23,491 | 2026–32,409 | 5.5 | 0.79–1.42 | 88–164 | 4.9–1.0 | 0–1.4 | SR |
7.5 | 0.61–1.28 | 81–144 | 5.6–11.4 | 0.1–1.7 | SR | ||||
9.5 | 0.48–1.15 | 62–112 | 5.2–12.2 | 0.4–1.8 | SR | ||||
10 | 8.04–32.14 | 5873–23,491 | 2026–32,409 | 5.5 | 0.69–1.33 | 95–158 | 4.6–10.2 | 0.5–2.2 | SR |
7.5 | 0.67–1.21 | 89–140 | 5.3–10.7 | 0.6–1.9 | SR | ||||
9.5 | 0.43–1.12 | 78–113 | 6.9–12.9 | 0.7–1.9 | SR | ||||
30 | 8.04–32.14 | 5873–23,491 | 2026–32,409 | 5.5 | 0.64–1.28 | 92–146 | 5.7–11.7 | 1.2–2.3 | SR |
7.5 | 0.61–1.18 | 87–129 | 6.4–12.1 | 0.9–1.9 | SR | ||||
9.5 | 0.39–0.95 | 71–104 | 7.0–14.8 | 1.1–2.5 | SR | ||||
70 | 8.04–32.14 | 5873–23,491 | 2026–32,409 | 5.5 | 0.55–1.21 | 87–110 | 5.7–13.8 | 0.7–3.4 | SR |
7.5 | 0.43–1.10 | 74–89 | 5.6–15.0 | 1.5–3.9 | SR | ||||
9.5 | NA | 48–63 | 8.6–18.2 | 2.1–4.6 | USR | ||||
110 | 8.04–32.14 | 5873–23,491 | 2026–32,409 | 5.5 | NA | 48–76 | 7.6–15.9 | 4.3–5.6 | USR |
7.5 | NA | 48–68 | 8.6–16.1 | 2.8–5.2 | USR | ||||
9.5 | NA | 54–75 | 11.4–16.8 | 2.0–6.0 | NR |
S (cm) | (m/s) | ||||||
---|---|---|---|---|---|---|---|
8.04 | 12.05 | 16.07 | 20.09 | 24.11 | 28.13 | 32.14 | |
5.5 | 95 | 100 | 102 | 97 | 93 | 95 | 95 |
7.5 | 88 | 86 | 90 | 88 | 80 | 67 | 67 |
9.5 | 49 | 46 | 49 | 47 | 41 | 44 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wang, J.; Zhang, L.; Chen, P.; Qin, X.; Zhou, K.; Yang, Y.; Shi, J. Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields. Fire 2025, 8, 326. https://doi.org/10.3390/fire8080326
Zhang Q, Wang J, Zhang L, Chen P, Qin X, Zhou K, Yang Y, Shi J. Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields. Fire. 2025; 8(8):326. https://doi.org/10.3390/fire8080326
Chicago/Turabian StyleZhang, Qiang, Jinjiang Wang, Laibin Zhang, Pengchao Chen, Xiaole Qin, Kuibin Zhou, Yufeng Yang, and Jiancheng Shi. 2025. "Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields" Fire 8, no. 8: 326. https://doi.org/10.3390/fire8080326
APA StyleZhang, Q., Wang, J., Zhang, L., Chen, P., Qin, X., Zhou, K., Yang, Y., & Shi, J. (2025). Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields. Fire, 8(8), 326. https://doi.org/10.3390/fire8080326