Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China?
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Methods
2.3.1. Preprocessing of Fire Data
2.3.2. Calculation of Fire Variables
2.3.3. Cluster Analysis of FR
3. Results
3.1. Characterization of Fire Variables
3.1.1. Occurrence of Fires
3.1.2. Inter-Annual Variability of Fires
3.1.3. Seasonality of Fires
3.1.4. Intensity of Fires
3.1.5. Spatial Distribution of Fires
3.1.6. Vegetation Distribution Types
3.2. Clusters and Zones of FR
3.2.1. Results of Clustering
3.2.2. Zones of FR
3.2.3. Impacts of Variables on FR Zoning
4. Discussion
4.1. Importance of FST in the FR Zones
4.2. Drivers of FR Zones
4.3. Limitations and Prospect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate-fire relationships. Glob. Chang. Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Mouillot, F.; Werf, G.R.V.D.; Miguel, J.S.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef]
- Barros, A.M.G.; Pereira, J.M.C. Wildfire selectivity for land cover type: Does size matter? PLoS ONE 2018, 9, e84760. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Reyes, W.J.W.; Bieng, M.A.N.; Souza-Alonso, P. Assessing fire regimes in the Paraguayan Chaco: Implications for ecological and fire management. Fire 2024, 7, 347. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 2018, 49, 256–269. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Ribeiro, N.S.; Cangela, A.; Chauque, A.; Bandeira, R.R.; Ribeiro-Barros, A.I. Characterisation of spatial and temporal distribution of the fire regime in Niassa National Reserve, northern Mozambique. Int. J. Wildland Fire 2017, 26, 1021–1029. [Google Scholar] [CrossRef]
- Majdalani, G.; Koutsias, N.; Faour, G.; Adjizian-Gerard, J.; Mouillot, F. Fire regime analysis in Lebanon (2001–2020): Combining remote sensing data in a scarcely documented area. Fire 2022, 5, 141. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Wang, X.; Niu, Y. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China. Acta Ecol. Sin. 2021, 41, 4213–4225. [Google Scholar]
- Yu, Y.; Xie, Z. A simulation study on climatic effects of land cover change in China. Adv. Clim. Change Res. 2013, 4, 117–126. [Google Scholar]
- Wu, Z.; He, S.H.; Yang, J.; Liang, Y. Defining fire environment zones in the boreal forests of northeastern China. Sci. Total Environ. 2015, 518–519, 106–116. [Google Scholar] [CrossRef]
- Zong, X.; Tian, X.; Liu, J. A fire regime zoning system for China. Front. For. Glob. Change 2021, 4, 717499. [Google Scholar] [CrossRef]
- Chen, D.; Pereira, J.M.C.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and burned area data. Appl. Geogr. 2017, 85, 14–26. [Google Scholar] [CrossRef]
- Wotton, B.M.; Flannigan, M.D. Length of the fire season in a changing climate. For. Chron. 1993, 69, 187–192. [Google Scholar] [CrossRef]
- Miller, R.G.; Tangney, R.; Enright, N.J.; Fontaine, J.B.; Merritt, D.J.; Ooi, M.K.J.; Ruthrof, K.X.; Miller, B.P. Mechanisms of fire seasonality effects on plant populations. Trends Ecol. Evol. 2019, 34, 1104–1117. [Google Scholar] [CrossRef]
- Koutsias, N.; Pleniou, M. A rule-based semi-automatic method to map burned areas in Mediterranean using Landsat images-revisited and improved. Int. J. Digital Earth 2021, 14, 1602–1623. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Global Change Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Santos, S.M.B.D.; Bento-Gonçalves, A.; Vieira, A. Research on wildfires and remote sensing in the last three decades: A bibliometric analysis. Forests 2021, 12, 604. [Google Scholar] [CrossRef]
- Jiao, M.; Quan, X.; He, B.; Yao, J. Remote sensing-based spatial-temporal characteristics of forest grassland fires in Sichuan Province from 2001 to 2021. Remote Sens. 2024, 28, 2984–3001. [Google Scholar] [CrossRef]
- Li, M.; Li, N.; Na, R.; Yin, S.; Xu, Z.; Bi, L. Temporal and spatial pattern evolution and influencing factors of wildfire in the Da Hinggan Mountains from 2001 to 2021. Sci. Geogr. Sin. 2025, 45, 1355–1368. [Google Scholar] [CrossRef]
- Liu, H.; Qian, Y.; Kong, J.; Zhang, C.; Liu, W. Temporal and spatial variations of vegetation fires in Inner Mongolia from 2003 to 2019 based on FIRMS_MODIS. For. Sci. Technol. Inf. 2023, 55, 1–8. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2009, 114, 168–182. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global validation of the collection 6 MODIS burned area product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Chen, Y.; Guo, M. Comparative analysis of forest fire driving in different forest regions of China based on the geographical detector approach. Acta Ecol. Sin. 2025, 45, 227–238. [Google Scholar]
- Li, X.; Liu, Q.; Qin, X.; Liu, S.; Wang, C. Method for national fuel types classification based on multi-source data. Remote Sens. 2022, 26, 480–492. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Z.; Zhang, Y.; Yan, S.; Fu, J. Analysis on temporal and spatial characteristics of forest fires in Jiangxi province based on MODIS Data from 2001 to 2015. Guangdong Agric. Sci. 2018, 45, 129–134. [Google Scholar]
- Steinley, D. K-means clustering: A half-century synthesis. Br. J. Math. Stat. Psychol. 2006, 59, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, M.; Zhang, Y. Improved k-means clustering algorithm for adaptive k value in machine learning. Comput. Eng. Des. 2021, 42, 136–141. [Google Scholar]
- Lai, H.; Huang, T.; Lu, B.L.; Zhang, S.; Xiaog, R. Silhouette coefficient-based weighting k-means algorithm. Neural Comput. Appl. 2025, 37, 3061–3075. [Google Scholar] [CrossRef]
- Steinley, D. Stability analysis in K-means clustering. Br. J. Math. Stat. Psychol. 2008, 61, 255–273. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, R.; Yao, Q.; Zong, X.; Tian, X.; Zheng, B.; Trouet, V. Strong winds drive grassland fires in China. Environ. Res. Lett. 2023, 18, 015005. [Google Scholar] [CrossRef]
- Hua, W.; Zhou, L.; Jiang, Y.; Zhou, L.; Xu, X.; Chen, H. Changes in fire-season burned area in northeastern China regulated by tropical North Atlantic variability. Environ. Res. Lett. 2024, 19, 124086. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, R.; He, J.; Liu, Y.; Wu, C. Global fire season types and their characteristics based on MODIS burned area data. Chin. Geogr. Sci. 2025, 35, 374–383. [Google Scholar] [CrossRef]
- Whitlock, C.; Higuera, P.E.; McWethy, D.B.; Briles, C.E. Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. Open Ecol. J. 2010, 3, 6–23. [Google Scholar] [CrossRef]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Tigabu, M.; Yang, X.; Hu, H. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Sci. Total Environ. 2017, 605, 411–425. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci. Total Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Li, J.; Song, Y. A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. Atmos. Environ. 2012, 50, 9–15. [Google Scholar] [CrossRef]
- Gao, J.; Huang, J.; Li, S.; Cai, Y. The new progresses and development trends in the research of physio-geographical regionalization in China. Prog. Phys. Geog. 2010, 29, 1400–1407. [Google Scholar]
- Pang, Y.; Li, Y.; Feng, Z.; Feng, Z.; Zhao, Z.; Chen, S.; Zhang, H. Forest fire occurrence prediction in China based on machine learning methods. Remote Sens. 2022, 14, 5546. [Google Scholar] [CrossRef]
- Coffield, S.R.; Graff, C.A.; Chen, Y.; Smyth, P.; Foufoula-Georgiou, E.; Randerson, J.T. Machine learning to predict final fire size at the time of ignition. Int. J. Wildland Fire 2019, 28, 861–873. [Google Scholar] [CrossRef]
Data Product | Satellite Platform | Spatial Resolution | Temporal Resolution | Time Span | Data Source |
---|---|---|---|---|---|
MCD64A1 | Terra/Aqua | 500 m | Monthly | 2001–2023 | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 31 July 2024) |
MODIS C6 | 1 km | Daily | https://firms.modaps.eosdis.nasa.gov/active_fire/ (accessed on 31 July 2024) | ||
MCD12Q1 | 500 m | Annual | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 31 July 2024) |
No. | Category | Abbr. | Variable | Unit |
---|---|---|---|---|
1 | Occurrence of fires | MAAB | Mean Annual Area Burned | ha yr−1 |
2 | MAFD | Mean Annual Active Fire Density | counts yr−1 | |
3 | Inter-annual variability of fires | CVAB | Inter-annual CoV * in Annual Area Burned | |
4 | CVFD | Inter-annual CoV * in Annual Active Fire Density | ||
5 | Seasonality of fires | FSD | Fire Season Duration | days |
6 | FPM | Fire Peak Month | ||
7 | FST | Fire Season Type | ||
8 | Intensity of fires | FRP | Fire Radiative Power | mW m−2 |
9 | Spatial distribution of fires | GI | Gini Index | |
10 | Vegetation distribution types | PFA | Percentage of Forests Affected by Fire | % |
11 | PSA | Percentage of Savannas Affected by Fire | % | |
12 | PGA | Percentage of Grasslands Affected by Fire | % | |
13 | PCA | Percentage of Croplands Affected by Fire | % |
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
MAAB (ha yr−1) | High (2408) | High (420) | Low (26) | Medium (103) | Low (10) |
MAFD (counts yr−1) | High (10.2) | High (10.3) | Low (1.6) | Medium (5.6) | Low (0.5) |
CVAB | Low (1.8) | Low (1.9) | High (3.1) | Medium (2.6) | High (3.8) |
CVFD | Low (1.4) | Low (1.2) | High (2.6) | High (2.3) | Low (1.2) |
FSD (days) | 7 | 41 | 2 | 3 | 1 |
FPM | 6 | 3 | 4 | 10 | NA * |
FST | Bimodal | Unimodal | NA * | NA * | NA * |
FRP (mW m−2) | Medium (16.4) | High (19.7) | High (21.3) | Medium (17.7) | Low (9.8) |
GI | High (0.81) | Medium (0.65) | Medium (0.47) | Medium (0.59) | Low (0.28) |
Main vegetation type | Croplands | Forests | Grasslands | Forests | Grasslands |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, S.; Lian, X.; Zhang, Y.; Zhao, F. Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China? Fire 2025, 8, 254. https://doi.org/10.3390/fire8070254
Li H, Zhang S, Lian X, Zhang Y, Zhao F. Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China? Fire. 2025; 8(7):254. https://doi.org/10.3390/fire8070254
Chicago/Turabian StyleLi, Huijuan, Sumei Zhang, Xugang Lian, Yuan Zhang, and Fengfeng Zhao. 2025. "Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China?" Fire 8, no. 7: 254. https://doi.org/10.3390/fire8070254
APA StyleLi, H., Zhang, S., Lian, X., Zhang, Y., & Zhao, F. (2025). Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China? Fire, 8(7), 254. https://doi.org/10.3390/fire8070254