High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought
Abstract
1. Introduction
2. Materials and Methods
2.1. Focal Species
2.2. Study Area and Design
2.3. Treatment Application
2.4. Vegetation Measurements
2.5. Analysis
3. Results
3.1. Huisache Density
3.2. Structure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratajczak, Z.; Nippert, J.B.; Ocheltree, T.W. Abrupt Transition of Mesic Grassland to Shrubland: Evidence for Thresholds, Alternative Attractors, and Regime Shifts. Ecology 2014, 95, 2633–2645. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna Woody Encroachment Is Widespread across Three Continents. Glob. Change Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef]
- Twidwell, D.; Rogers, W.E.; Fuhlendorf, S.D.; Wonkka, C.L.; Engle, D.M.; Weir, J.R.; Kreuter, U.P.; Taylor, C.A. The Rising Great Plains Fire Campaign: Citizens’ Response to Woody Plant Encroachment. Front. Ecol. Environ. 2013, 11, e64–e71. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Nippert, J.B.; Briggs, J.M.; Blair, J.M. Fire Dynamics Distinguish Grasslands, Shrublands and Woodlands as Alternative Attractors in the Central Great Plains of North America. J. Ecol. 2014, 102, 1374–1385. [Google Scholar] [CrossRef]
- D’Odorico, P.; Okin, G.S.; Bestelmeyer, B.T. A Synthetic Review of Feedbacks and Drivers of Shrub Encroachment in Arid Grasslands. Ecohydrology 2012, 5, 520–530. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Nippert, J.B.; Hartman, J.C.; Ocheltree, T.W. Positive Feedbacks Amplify Rates of Woody Encroachment in Mesic Tallgrass Prairie. Ecosphere 2011, 2, art121. [Google Scholar] [CrossRef]
- Angeler, D.G.; Allen, C.R. Quantifying Resilience. J. Appl. Ecol. 2016, 53, 617–624. [Google Scholar] [CrossRef]
- Collins, S.L.; Nippert, J.B.; Blair, J.M.; Briggs, J.M.; Blackmore, P.; Ratajczak, Z. Fire Frequency, State Change and Hysteresis in Tallgrass Prairie. Ecol. Lett. 2021, 24, 636–647. [Google Scholar] [CrossRef]
- Ansley, R.J.; Wiedemann, H.T. Reversing the Woodland Steady State: Vegetation Responses During Restoration of Juniperus-Dominated Grasslands with Chaining and Fire. In Western North American Juniperus Communities: A Dynamic Vegetation Type; Van Auken, O.W., Ed.; Ecological Studies; Springer: New York, NY, USA, 2008; pp. 272–290. ISBN 978-0-387-34003-6. [Google Scholar]
- Briggs, J.M.; Knapp, A.K.; Brock, B.L. Expansion of Woody Plants in Tallgrass Prairie: A Fifteen-Year Study of Fire and Fire-Grazing Interactions. Am. Midl. Nat. 2002, 147, 287–294. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Taylor, J.H.; Nippert, J.B. Browsing and Fire Decreases Dominance of a Resprouting Shrub in Woody Encroached Grassland. Ecology 2020, 101, e02935. [Google Scholar] [CrossRef]
- Clarke, P.J.; Lawes, M.J.; Midgley, J.J.; Lamont, B.B.; Ojeda, F.; Burrows, G.E.; Enright, N.J.; Knox, K.J.E. Resprouting as a Key Functional Trait: How Buds, Protection and Resources Drive Persistence after Fire. New Phytol. 2013, 197, 19–35. [Google Scholar] [CrossRef]
- Briggs, J.M.; Knapp, A.K.; Blair, J.M.; Heisler, J.L.; Hoch, G.A.; Lett, M.S.; McCarron, J.K. An Ecosystem in Transition: Causes and Consequences of the Conversion of Mesic Grassland to Shrubland. BioScience 2005, 55, 243–254. [Google Scholar] [CrossRef]
- Canadell, J.; Lloret, F.; López-Soria, L. Resprouting Vigour of Two Mediterranean Shrub Species after Experimental Fire Treatments. Vegetatio 1991, 95, 119–126. [Google Scholar] [CrossRef]
- Drewa, P.B. Effects of Fire Season and Intensity on Prosopis glandulosa Torr. var. glandulosa. Int. J. Wildland Fire 2003, 12, 147–157. [Google Scholar] [CrossRef]
- Miller, J.E.D.; Damschen, E.I.; Ratajczak, Z.; Özdoğan, M. Holding the Line: Three Decades of Prescribed Fires Halt but Do Not Reverse Woody Encroachment in Grasslands. Landsc. Ecol. 2017, 32, 2297–2310. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Bowker, M.A.; Maestre, F.T.; Roger, E.; Reynolds, J.F.; Whitford, W.G. Impacts of Shrub Encroachment on Ecosystem Structure and Functioning: Towards a Global Synthesis. Ecol. Lett. 2011, 14, 709–722. [Google Scholar] [CrossRef]
- Enslin, B.W.; Potgieter, A.L.F.; Biggs, H.C.; Biggs, R. Long Term Effects of Fire Frequency and Season on the Woody Vegetation Dynamics of the Sclerocarya birrea/Acacia nigrescens Savanna of the Kruger National Park. Koedoe 2000, 43, 27–37. [Google Scholar] [CrossRef]
- Scholtz, R.; Donovan, V.M.; Strydom, T.; Wonkka, C.; Kreuter, U.P.; Rogers, W.E.; Taylor, C.; Smit, I.P.; Govender, N.; Trollope, W.; et al. High-Intensity Fire Experiments to Manage Shrub Encroachment: Lessons Learned in South Africa and the United States. Afr. J. Range Forage Sci. 2022, 39, 148–159. [Google Scholar] [CrossRef]
- Bielski, C.H.; Scholtz, R.; Donovan, V.M.; Allen, C.R.; Twidwell, D. Overcoming an “Irreversible” Threshold: A 15-Year Fire Experiment. J. Environ. Manag. 2021, 291, 112550. [Google Scholar] [CrossRef]
- Twidwell, D.; Rogers, W.E.; Wonkka, C.L.; Taylor, C.A., Jr.; Kreuter, U.P. Extreme Prescribed Fire during Drought Reduces Survival and Density of Woody Resprouters. J. Appl. Ecol. 2016, 53, 1585–1596. [Google Scholar] [CrossRef]
- Fulbright, T.E.; Dacy, E.C.; Drawe, D.L. Does Browsing Reduce Shrub Survival and Vigor Following Summer Fires? Acta Oecologica 2011, 37, 10–15. [Google Scholar] [CrossRef]
- Watson, P.A.; Alexander, H.D.; Moczygemba, J.D. Coastal Prairie Recovery in Response to Shrub Removal Method and Degree of Shrub Encroachment. Rangel. Ecol. Manag. 2019, 72, 275–282. [Google Scholar] [CrossRef]
- Burrows, W.H.; Carter, J.O.; Scanlan, J.C.; Anderson, E.R. Management of Savannas for Livestock Production in North-East Australia: Contrasts Across the Tree-Grass Continuum. J. Biogeogr. 1990, 17, 503–512. [Google Scholar] [CrossRef]
- Erkovan, H.I.; Clarke, P.J.; Whalley, R.D.B.; Erkovan, H.I.; Clarke, P.J.; Whalley, R.D.B. Seed Bank Dynamics of Acacia farnesiana (L.) Willd. and Its Encroachment Potential in Sub-Humid Grasslands of Eastern Australia. Rangel. J. 2013, 35, 427–433. [Google Scholar] [CrossRef]
- Sekar, K.C. Invasive Alien Plants of Indian Himalayan Region—Diversity and Implication. Am. J. Plant Sci. 2012, 3, 177–184. [Google Scholar] [CrossRef]
- Arévalo, J.R.; Afonso, L.; Naranjo, A.; Salas, M. Invasion of the Gran Canaria Ravines Ecosystems (Canary Islands) by the Exotic Species Acacia farnesiana. Plant Ecol. 2009, 206, 185. [Google Scholar] [CrossRef]
- Cheek, M.D.; Boon, R.G.C. Vachellia farnesiana (L.) Wight & Arn., a Potentially Invasive Tree in KwaZulu-Natal, South Africa. S. Afr. J. Bot. 2019, 124, 387–390. [Google Scholar] [CrossRef]
- Smith, H.N.; Rechenthin, C.A. Grassland Restoration Part 1: The Texas Brush Problem; U.S. Department of Agriculture Soil Conservation Service: Temple, TX, USA, 1964. [Google Scholar]
- U.S. Department of Agriculture Soil Conservation Service (USDA). Fact Sheet: Range Management—Brush Management; U.S. Department of Agriculture Soil Conservation Service (USDA): Temple, TX, USA, 1985. [Google Scholar]
- Clayton, M.K.; Lyons, R.K.; McGinty, J.A. Huisache Ecology and Management; Texas A&M Agrilife Extension Bulletin: College Station, TX, USA, 2014. [Google Scholar]
- Scifres, C.J.; Mutz, J.L.; Drawe, D.L. Ecology and Management of Huisache on the Texas Coastal Prairie; Texas FARMER Collection; Texas A&M Agrilife Extension Bulletin: College Station, TX, USA, 1982. [Google Scholar]
- Allred, B.W. Distribution and Control of Several Woody Plants in Texas and Oklahoma. J. Range Manag. 1948, 1, 17–27. [Google Scholar] [CrossRef]
- Box, T.W.; White, R.S. Fall and Winter Burning of South Texas Brush Ranges. J. Range Manag. 1969, 22, 373–376. [Google Scholar] [CrossRef]
- Dacy, E.C.; Fulbright, T.E. Survival of Sprouting Shrubs Following Summer Fire: Effects of Morphological and Spatial Characteristics. Rangel. Ecol. Manag. 2009, 62, 179–185. [Google Scholar] [CrossRef]
- Rasmussen, G.; Scifres, C.; Drawe, D. Huisache Growth, Browse Quality, and Use Following Burning Acacia farnesiana, Texas, Nutritional Status. Rangel. Ecol. Manag./J. Range Manag. Arch. 1983, 36, 337–342. [Google Scholar]
- Scifres, C.J. Salient Aspects of Huisache Seed Germination. Southwest. Nat. 1974, 18, 383–391. [Google Scholar] [CrossRef]
- Twidwell, D.; Rogers, W.E.; McMahon, E.A.; Thomas, B.R.; Kreuter, U.P.; Blankenship, T.L. Prescribed Extreme Fire Effects on Richness and Invasion in Coastal Prairie. Invasive Plant Sci. Manag. 2012, 5, 330–340. [Google Scholar] [CrossRef]
- Donovan, V.M.; Wonkka, C.L.; Twidwell, D. Surging Wildfire Activity in a Grassland Biome. Geophys. Res. Lett. 2017, 44, 5986–5993. [Google Scholar] [CrossRef]
- Rothermel, R.C.; Deeming, J.E. Measuring and Interpreting Fire Behavior for Correlation with Fire Effects; US Department of Agriculture, Forest Service: Washington, DC, USA, 1980; p. 9. [Google Scholar]
- Byram, G.M. Combustion of Forest Fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Alexander, M.E. Calculating and Interpreting Forest Fire Intensities. Can. J. Bot. 1982, 60, 349–357. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2014, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Twidwell, D.; Fuhlendorf, S.D.; Taylor, C.A.; Rogers, W.E. Refining Thresholds in Coupled Fire–Vegetation Models to Improve Management of Encroaching Woody Plants in Grasslands. J. Appl. Ecol. 2013, 50, 603–613. [Google Scholar] [CrossRef]
- Starns, H.D.; Wonkka, C.L.; Dickinson, M.B.; Lodge, A.G.; Treadwell, M.L.; Kavanagh, K.L.; Tolleson, D.R.; Twidwell, D.; Rogers, W.E. Prosopis glandulosa Persistence Is Facilitated by Differential Protection of Buds during Low- and High-Energy Fires. J. Environ. Manag. 2022, 303, 114141. [Google Scholar] [CrossRef]
- Donovan, V.M.; Twidwell, D.; Uden, D.R.; Tadesse, T.; Wardlow, B.D.; Bielski, C.H.; Jones, M.O.; Allred, B.W.; Naugle, D.E.; Allen, C.R. Resilience to Large, “Catastrophic” Wildfires in North America’s Grassland Biome. Earth’s Future 2020, 8, e2020EF001487. [Google Scholar] [CrossRef]
- Johnson, D.M.; Domec, J.-C.; Berry, Z.C.; Schwantes, A.M.; McCulloh, K.A.; Woodruff, D.R.; Polley, H.W.; Wortemann, R.; Swenson, J.J.; Mackay, D.S.; et al. Co-Occurring Woody Species Have Diverse Hydraulic Strategies and Mortality Rates during an Extreme Drought. Plant Cell Environ. 2018, 41, 576–588. [Google Scholar] [CrossRef]
- Odion, D.C.; Davis, F.W. Fire, Soil Heating, and the Formation of Vegetation Patterns in Chaparral. Ecol. Monogr. 2000, 70, 149–169. [Google Scholar] [CrossRef]
- Francis, J.K. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions, Volume 1; General Technical Reports IITF-GTR-26; US Department of Agriculture, Forest Service, International Institute of Tropical Forestry: San Juan, Puerto Rico; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; 830p. [Google Scholar]
- Weir, J.R. Conducting Prescribed Fires: A Comprehensive Manual; Texas A&M University Press: College Station, TX, USA, 2009. [Google Scholar]
- Twidwell, D.; Bielski, C.H.; Scholtz, R.; Fuhlendorf, S.D. Advancing Fire Ecology in 21st Century Rangelands. Rangel. Ecol. Manag. 2021, 78, 201–212. [Google Scholar] [CrossRef]
- Teague, R.; Ansley, J.; Kreuter, U.; McGrann, J.; Pinchak, B. Fire vs. Herbicide? Rangelands 2001, 23, 9–14. [Google Scholar] [CrossRef]
- Van Liew, D.; Richard Conner, J.; Kreuter, U.P.; Teague, R. An Economic Comparison of Prescribed Extreme Fire and Alternative Methods for Managing Invasive Brush Species in Texas: A Modeling Approach. Open Agric. J. 2012, 6, 17–26. [Google Scholar] [CrossRef]
- Fogarty, D.T.; Roberts, C.P.; Uden, D.R.; Donovan, V.M.; Allen, C.R.; Naugle, D.E.; Jones, M.O.; Allred, B.W.; Twidwell, D. Woody Plant Encroachment and the Sustainability of Priority Conservation Areas. Sustainability 2020, 12, 8321. [Google Scholar] [CrossRef]
- Kloesel, K.; Bartush, B.; Banner, J.; Brown, D.; Lemery, J.; Lin, X.; Loeffler, C.; McManus, G.; Mullens, E.; Nielsen-Gammon, J.; et al. Southern Great Plains. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar]
- McGranahan, D.A.; Wonkka, C.L.; Dangi, S.; Spiess, J.W.; Geaumont, B. Mineral Nitrogen and Microbial Responses to Soil Heating in Burned Grassland. Geoderma 2022, 424, 116023. [Google Scholar] [CrossRef]
- Campbell, G.S.; Jungbauer, J., Jr.; Bristow, K.L.; Hungerford, R.D. Soil Temperature and Water Content beneath a Surface Fire. Soil Sci. 1995, 159, 363–374. [Google Scholar] [CrossRef]
Treatment Comparison | Estimate | St. Error | p Value |
---|---|---|---|
Change in density per plot (%) | |||
Extreme + Low-Extreme | −7.37 | 13.12 | 0.84 |
Extreme-Control | 31.54 | 13.12 | 0.07 |
Extreme + Low Control | 38.92 | 13.12 | 0.02 |
Plant mortality (%) | |||
Extreme + Low Extreme | 0.23 | 1.00 | 0.97 |
Extreme-Control | −2.90 | 1.23 | 0.05 |
Extreme + Low Control | −3.14 | 1.20 | 0.02 |
New recruits per plot | |||
Extreme + Low Extreme | −0.67 | 0.69 | 0.61 |
Extreme-Control | 1.16 | 0.69 | 0.24 |
Extreme + Low Control | 1.83 | 0.69 | 0.05 |
Treatment Comparison | Estimate | St. Error | p Value |
---|---|---|---|
Change in number of stems (%) | |||
Extreme + Low Extreme | 43.69 | 66.99 | 0.79 |
Extreme-Control | 167.30 | 61.19 | 0.02 |
Extreme + Low Control | 210.99 | 58.68 | <0.01 |
Change in crown area (%) | |||
Extreme + Low Extreme | −52.66 | 112.61 | 0.89 |
Extreme-Control | −135.16 | 96.92 | 0.34 |
Extreme + Low Control | −187.82 | 93.67 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donovan, V.M.; Schiltmeyer, A.V.; Wonkka, C.L.; Wagner, J.; McGranahan, D.A.; Rogers, W.E.; Kreuter, U.P.; Twidwell, D. High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought. Fire 2025, 8, 242. https://doi.org/10.3390/fire8070242
Donovan VM, Schiltmeyer AV, Wonkka CL, Wagner J, McGranahan DA, Rogers WE, Kreuter UP, Twidwell D. High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought. Fire. 2025; 8(7):242. https://doi.org/10.3390/fire8070242
Chicago/Turabian StyleDonovan, Victoria M., Allie V. Schiltmeyer, Carissa L. Wonkka, Jacob Wagner, Devan A. McGranahan, William E. Rogers, Urs P. Kreuter, and Dirac Twidwell. 2025. "High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought" Fire 8, no. 7: 242. https://doi.org/10.3390/fire8070242
APA StyleDonovan, V. M., Schiltmeyer, A. V., Wonkka, C. L., Wagner, J., McGranahan, D. A., Rogers, W. E., Kreuter, U. P., & Twidwell, D. (2025). High Mortality of Huisache (Vachellia farnesiana) with Extreme Fire During Drought. Fire, 8(7), 242. https://doi.org/10.3390/fire8070242