Investigating FWI Moisture Codes in Relation to Satellite-Derived Soil Moisture Data across Varied Resolutions
Abstract
:1. Introduction
- What is the strength of the correlation between FMCs and satellite-derived soil moisture data, and which FMC component performs best?
- How accurately can soil moisture be predicted using statistical models based on conventional regression applied to each EFFIS FWI fuel moisture code?
- How do soil moisture dynamics vary across forest fires occurring in different seasons and within diverse land use and land cover (LULC) types in our study area?
2. Materials and Methods
2.1. Study Area
Selected Forest Fires in Antalya Region between 2019–2021
2.2. Data
2.2.1. FWI Data
- Canadian FWI system
- 2.
- EFFIS FWI
- 3.
- ERA5 FWI
2.2.2. Soil Moisture Data
- In situ soil moisture data
- Satellite-derived soil moisture data
2.2.3. Meteorological Data
2.2.4. Satellite-Derived Land Surface Temperature (LST) Data
- MODIS Daily LST: The MOD11A1 V6.1 product, accessible through NASA LP DAAC at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and via the GEE platform, provides daily global LST and emissivity values at a spatial resolution of 1 km within a 1200 by 1200 km grid [88]. LST pixel values are derived from GEE using the Generalized Split-Window algorithm under clear-sky conditions, with a confidence level of at least 95% over land at an elevation of up to 2000 m or at least 66% over land at an elevation greater than 2000 m, and with a confidence level of at least 66% over lakes [89]. For more detailed information, please refer to the MOD11 User Guide V6 at [90].
- Landsat 8 LST: Landsat 8 Thermal Infrared Sensor (TIRS) data, with a spatial resolution of 100 m, are utilized for deriving LST. For Landsat 8, band 10 (B10) is employed as the thermal band, while the red (B4) and near-infrared (NIR) bands (B5) are used to calculate Normalized Difference Vegetation Index (NDVI) in LST data retrieval based on the Mono Window algorithm. Similar to MODIS LST data, Landsat 8 LST data were obtained through the GEE platform [91].
2.2.5. ESA World Cover Data
2.3. Methodology
2.3.1. FWI Fire Danger Classes
2.3.2. Correlation Analysis and Model Establishment
2.3.3. Validation
3. Results
3.1. Fire Danger Classes
3.2. Anaylsis
3.3. Model Establishment and Validation
4. Discussion
- Data availability and resolution issues
- 2.
- FWI system and fuel types
- Future trends
5. Conclusions
- High negative correlations (−0.80 to −0.97) were observed between EFFIS FWI fuel moisture codes and in situ soil moisture; the Canadian FWI system and ERA5 FWI showed comparatively lower correlations.
- Satisfactory correlations were found between FWI fuel moisture codes and satellite-derived soil moisture datasets, with SMAP outperforming others.
- There was a positive correlation between LSTs and FWIs, a negative correlation with soil moisture, and higher correlations (0.61 to 0.89) with MODIS LST compared to Landsat 8 LST due to compatible spatial resolution with the FWI dataset.
- The findings are region-specific and may not generalize to areas with different soil and vegetation characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Rigo, D.; Libertà, G.; Durrant, T.H.; Vivancos, T.A.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty. Ph.D. Thesis, Publications Office of the European Union, Luxembourg, 2017. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C.M.; Páscoa, P.; DaCamara, C.C.; Sousa, P.M.; Trigo, R.M. Assessing the Role of Drought Events on Wildfires in the Iberian Peninsula. Agric. For. Meteorol. 2017, 237, 50–59. [Google Scholar] [CrossRef]
- Acar, Z.; Gonencgil, B. Forest Fires in Southern Turkey July-August 2021. Rev. Climatol. 2023, 23, 46–57. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Evaluation of Fire Severity in Fire Prone-Ecosystems of Spain under Two Different Environmental Conditions. J. Environ. Manag. 2020, 271, 110706. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, F.; Altieri, S.; Kabala, J.P.; Battipaglia, G. Fire Affects Tree Growth, Water Use Efficiency and Carbon Sequestration Ecosystem Service of Pinus Nigra Arnold: A Combined Satellite and Ground-Based Study in Central Italy. Forests 2023, 14, 2033. [Google Scholar] [CrossRef]
- Atalay, H.; Dervisoglu, A.; Sunar, F. Fire Weather Index and Forest Fire Danger Mapping: Insights from a Case Study in Antalya-Manavgat Forest, Turkiye. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 53–59. [Google Scholar] [CrossRef]
- G20 Climate Risk Atlas. 2021. Available online: https://www.g20climaterisks.org/ (accessed on 28 July 2024).
- Meira Castro, A.C.; Nunes, A.; Sousa, A.; Lourenço, L. Mapping the Causes of Forest Fires in Portugal by Clustering Analysis. Geosciences 2020, 10, 53. [Google Scholar] [CrossRef]
- Garrido-Perez, J.M.; García-Herrera, R.; Barriopedro, D.; Ordóñez, C. Shifting Summer Holidays in Spain as an Adaptation Measure to Climate Change. Sci. Total Environ. 2023, 904, 166879. [Google Scholar] [CrossRef] [PubMed]
- Moshou, H.; Drinia, H. Climate Change Education and Preparedness of Future Teachers—A Review: The Case of Greece. Sustainability 2023, 15, 1177. [Google Scholar] [CrossRef]
- 2021 Climate Assessment. Available online: https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2021-iklim-raporu.pdf (accessed on 13 May 2024).
- 2022 Climate Assessment. Available online: https://mgm.gov.tr/FILES/iklim/yillikiklim/2022-iklim-raporu.pdf (accessed on 13 May 2024).
- de Groot, W.J.; Wotton, B.M.; Flannigan, M.D. Wildland Fire Danger Rating and Early Warning Systems. In Wildfire Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 207–228. [Google Scholar] [CrossRef]
- Zacharakis, I.; Tsihrintzis, V.A. Environmental Forest Fire Danger Rating Systems and Indices around the Globe: A Review. Land 2023, 12, 194. [Google Scholar] [CrossRef]
- Kumar, V.; Dharssi, I. Sources of Soil Dryness Measures and Forecasts for Fire Danger Rating; Bureau of Meteorology: Melbourne, VIC, Australia, 1987; Volume 15, pp. 2729–2746. ISBN 978-0-642-70672-0.
- Atalay, H.; Dervisoglu, A.; Sunar, A.F. Exploring Forest Fire Dynamics: Fire Danger Mapping in Antalya Region, Türkiye. ISPRS Int. J. Geo-Inf. 2024, 13, 74. [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Pappenberger, F.; Wetterhall, F.; Krzeminski, B.; Camia, A.; Libertá, G.; San Miguel, J. The Potential Predictability of Fire Danger Provided by Numerical Weather Prediction. J. Appl. Meteorol. Climatol. 2016, 55, 2469–2491. [Google Scholar] [CrossRef]
- Gallo, C.; Eden, J.M.; Dieppois, B.; Drobyshev, I.; Fulé, P.Z.; San-Miguel-Ayanz, J.; Blackett, M. Evaluation of CMIP6 Model Performances in Simulating Fire Weather Spatiotemporal Variability on Global and Regional Scales. Geosci. Model Dev. Discuss. 2022, 2022, 3103–3122. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Moustakas, A.; Davlias, O. Minimal Effect of Prescribed Burning on Fire Spread Rate and Intensity in Savanna Ecosystems. Stoch Environ. Res. Risk Assess 2021, 35, 849–860. [Google Scholar] [CrossRef]
- Masinda, M.M.; Li, F.; Liu, Q.; Sun, L.; Hu, T. Prediction Model of Moisture Content of Dead Fine Fuel in Forest Plantations on Maoer Mountain, Northeast China. J. For. Res. 2021, 32, 2023–2035. [Google Scholar] [CrossRef]
- Sharma, S.; Dhakal, K. Boots on the Ground and Eyes in the Sky: A Perspective on Estimating Fire Danger from Soil Moisture Content. Fire 2021, 4, 45. [Google Scholar] [CrossRef]
- Nelson, R.M., Jr. Water Relations of Forest Fuels. In Forest Fires; Academic Press: Cambridge, MA, USA, 2001; pp. 79–149. [Google Scholar] [CrossRef]
- Masinda, M.M.; Li, F.; Qi, L.; Sun, L.; Hu, T. Forest Fire Risk Estimation in a Typical Temperate Forest in Northeastern China Using the Canadian Forest Fire Weather Index: Case Study in Autumn 2019 and 2020. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 2022, 111, 1085–1101. [Google Scholar] [CrossRef] [PubMed]
- Van Wagtendonk, J. Fire as a Physical Process. In Fire in California’s Ecosystems; University of California Press: Berkeley, CA, USA, 2006; pp. 38–57. ISBN 978-0-520-24605-8. [Google Scholar]
- Talucci, A.C.; Meigs, G.W.; Knudby, A.; Krawchuk, M.A. Fire Severity and the Legacy of Mountain Pine Beetle Outbreak: High-Severity Fire Peaks with Mixed Live and Dead Vegetation. Environ. Res. Lett. 2022, 17, 124010. [Google Scholar] [CrossRef]
- Jurdao, S.; Chuvieco, E.; Arevalillo, J.M. Modelling Fire Ignition Probability from Satellite Estimates of Live Fuel Moisture Content. Fire Ecol. 2012, 8, 77–97. [Google Scholar] [CrossRef]
- De Groot, W.J. Interpreting the Canadian Forest Fire Weather Index (FWI) System. In Proceedings of the Fourth Central Region Fire Weather Committee Scientific and Technical Seminar, Winnipeg, MB, Canada, 4 April 1998; p. 8. [Google Scholar]
- Krueger, E.S.; Levi, M.R.; Achieng, K.O.; Bolten, J.D.; Carlson, J.D.; Coops, N.C.; Holden, Z.A.; Magi, B.I.; Rigden, A.J.; Ochsner, T.E. Using Soil Moisture Information to Better Understand and Predict Wildfire Danger: A Review of Recent Developments and Outstanding Questions. Int. J. Wildland Fire 2022, 32, 111–132. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between Seasonal Patterns of Live Fuel Moisture and Meteorological Drought Indices for Mediterranean Shrubland Species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Houle, D.; Duchesne, L.; Côté, B. Can the Canadian Drought Code Predict Low Soil Moisture Anomalies in the Mineral Soil? An Analysis of 15 Years of Soil Moisture Data from Three Forest Ecosystems in Eastern Canada. Ecohydrology 2016, 9, 238–247. [Google Scholar] [CrossRef]
- Miller, E.A. A Conceptual Interpretation of The Drought Code of The Canadian Forest Fire Weather Index System. Fire 2020, 3, 23. [Google Scholar] [CrossRef]
- Forkel, M.; Beer, C.; Thonicke, K.; Cramer, W.; Bartalev, S.; Schmullius, C. Extreme Fire Events Are Related to Previous-Year Surface Moisture Conditions in Permafrost-Underlain Larch Forests of Siberia. Environ. Res. Lett. 2012, 7, 044021. [Google Scholar] [CrossRef]
- Kussul, N.; Fedorov, O.; Yailymov, B.; Pidgorodetska, L.; Kolos, L.; Yailymova, H.; Shelestov, A. Fire Danger Assessment Using Moderate-Spatial Resolution Satellite Data. Fire 2023, 6, 72. [Google Scholar] [CrossRef]
- Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil Moisture Influences on Sierra Nevada Dead Fuel Moisture Content and Fire Risks, 2021. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar] [CrossRef]
- Kumar, V.; Dharssi, I. Evaluation and Calibration of a High-Resolution Soil Moisture Product for Wildfire Prediction and Management. Agric. For. Meteorol. 2019, 264, 27–39. [Google Scholar] [CrossRef]
- Bartsch, A.; Balzter, H.; George, C. The Influence of Regional Surface Soil Moisture Anomalies on Forest Fires in Siberia Observed from Satellites. Environ. Res. Lett. 2009, 4, 045021. [Google Scholar] [CrossRef]
- Jensen, D.; Reager, J.T.; Zajic, B.; Rousseau, N.; Rodell, M.; Hinkley, E. The Sensitivity of US Wildfire Occurrence to Pre-Season Soil Moisture Conditions across Ecosystems. Environ. Res. Lett. 2018, 13, 014021. [Google Scholar] [CrossRef] [PubMed]
- Sungmin, O.; Hou, X.; Orth, R. Observational Evidence of Wildfire-Promoting Soil Moisture Anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Quiring, S.M.; Engle, D.M.; Carlson, J.D.; Twidwell, D.; Fuhlendorf, S.D. Measured Soil Moisture Is a Better Predictor of Large Growing-Season Wildfires than the Keetch–Byram Drought Index. Soil Sci. Soc. Am. J. 2017, 81, 490–502. [Google Scholar] [CrossRef]
- Burapapol, K.; Nagasawa, R. Mapping Soil Moisture as an Indicator of Wildfire Risk Using Landsat 8 Images in Sri Lanna National Park, Northern Thailand. J. Agric. Sci. 2016, 8, 107–119. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P. The International Soil Moisture Network: A Data Hosting Facility for Global in Situ Soil Moisture Measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing Coarse-Scale Representativeness of in Situ Soil Moisture Measurements from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Lakhankar, T.; Krakauer, N.; Khanbilvardi, R. Applications of Microwave Remote Sensing of Soil Moisture for Agricultural Applications. Int. J. Terraspace Sci. Eng. 2009, 2, 81–91. [Google Scholar]
- Periasamy, S.; Shanmugam, R.S. Multispectral and Microwave Remote Sensing Models to Survey Soil Moisture and Salinity. Land Degrad. Dev. 2017, 28, 1412–1425. [Google Scholar] [CrossRef]
- Konings, A.G.; Rao, K.; Steele-Dunne, S.C. Macro to Micro: Microwave Remote Sensing of Plant Water Content for Physiology and Ecology. New Phytol. 2019, 223, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C. The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Chaparro, D.; Vayreda, J.; Martinez-Vilalta, J.; Vall-llossera, M.; Banque, M.; Camps, A.; Piles, M. SMOS and Climate Data Applicability for Analyzing Forest Decline and Forest Fires. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1069–1072. [Google Scholar] [CrossRef]
- Chaparro, D.; Piles, M.; Vall-llossera, M. Remotely Sensed Soil Moisture as a Key Variable in Wildfires Prevention Services: Towards New Prediction Tools Using SMOS and SMAP Data. In Satell. Soil Moisture Retrieval: Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2016; p. 249. [Google Scholar] [CrossRef]
- Chaparro, D.; Vall-llossera, M.; Piles, M. A Review on European Remote Sensing Activities in Wildland Fires Prevention. Remote Sensing of Hydrometeorological Hazards; CRC Press: Boca Raton, FL, USA, 2017; pp. 237–260. ISBN 9781315154947. [Google Scholar]
- Thomas Ambadan, J.; Oja, M.; Gedalof, Z.; Berg, A.A. Satellite-Observed Soil Moisture as an Indicator of Wildfire Risk. Remote Sens. 2020, 12, 1543. [Google Scholar] [CrossRef]
- Chaparro, D.; Vall-Llossera, M.; Piles, M.; Camps, A.; Rüdiger, C.; Riera-Tatché, R. Predicting the Extent of Wildfires Using Remotely Sensed Soil Moisture and Temperature Trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2818–2829. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Gavahi, K.; Kumar, S.; Hain, C.; Zhan, X.; Duan, Q.; Peters-Lidard, C.; Karimiziarani, S. High-Resolution SMAP Satellite Soil Moisture Product: Exploring the Opportunities. Bull. Am. Meteorol. Soc. 2021, 102, 309–315. [Google Scholar] [CrossRef]
- Djamai, N.; Magagi, R.; Goïta, K.; Hosseini, M.; Cosh, M.H.; Berg, A.; Toth, B. Evaluation of SMOS Soil Moisture Products over the CanEx-SM10 Area. J. Hydrol. 2015, 520, 254–267. [Google Scholar] [CrossRef]
- Colliander, A.; Cosh, M.H.; Kelly, V.R.; Kraatz, S.; Bourgeau-Chavez, L.; Siqueira, P.; Roy, A.; Konings, A.G.; Holtzman, N.; Misra, S.; et al. SMAP Detects Soil Moisture Under Temperate Forest Canopies. Geophys. Res. Lett. 2020, 47, e2020GL089697. [Google Scholar] [CrossRef]
- Ayres, E.; Colliander, A.; Cosh, M.H.; Roberti, J.A.; Simkin, S.; Genazzio, M.A. Validation of SMAP Soil Moisture at Terrestrial National Ecological Observatory Network (NEON) Sites Show Potential for Soil Moisture Retrieval in Forested Areas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10903–10918. [Google Scholar] [CrossRef]
- Pablos, M.; González-Haro, C.; Piles, M.; Portal, G.; Team, B.E.C. BEC SMOS Soil Moisture Products Description (V.1.0): PD-SM-L3v4-L4v6; CSIC-Instituto de Ciencias del Mar (ICM): Barcelona, Spain, 2022. [Google Scholar] [CrossRef]
- Matin, M.A.; Chitale, V.S.; Murthy, M.S.; Uddin, K.; Bajracharya, B.; Pradhan, S. Understanding Forest Fire Patterns and Risk in Nepal Using Remote Sensing, Geographic Information System and Historical Fire Data. Int. J. Wildland Fire 2017, 26, 276–286. [Google Scholar] [CrossRef]
- Pan, J.; Wang, W.; Li, J. Building Probabilistic Models of Fire Occurrence and Fire Risk Zoning Using Logistic Regression in Shanxi Province, China. Nat. Hazards 2016, 81, 1879–1899. [Google Scholar] [CrossRef]
- Wang, W.; Quan, X. Estimation of Live Fuel Moisture Content from Multiple Sources of Remotely Sensed Data. IEEE Geosci. Remote Sens. Lett. 2023, 20. [Google Scholar] [CrossRef]
- Sharma, S.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D.; Patrignani, A.; Feng, L.; Ochsner, T.E. Soil Moisture as an Indicator of Growing-Season Herbaceous Fuel Moisture and Curing Rate in Grasslands. Int. J. Wildland Fire 2020, 30, 57–69. [Google Scholar] [CrossRef]
- Calda, B.; An, N.; Turp, M.T.; Kurnaz, M.L. Effects of Climate Change on the Wildfires in the Mediterranean Basin. Int. J. Adv. Eng. Pure Sci. 2020, 32, 15–32. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Turunçoğlu, U.U.; Türkeş, M.; Bozkurt, D.; Önol, B.; Şen, Ö.L.; Dalfes, H.N. Climate. In The Soils of Turkey; Kapur, S., Akça, E., Günal, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–44. ISBN 978-3-319-64392-2. [Google Scholar]
- Çolak, E.; Sunar, F. Evaluation of Forest Fire Risk in the Mediterranean Turkish Forests: A Case Study of Menderes Region, Izmir. Int. J. Disaster Risk Reduct. 2020, 45, 101479. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; De Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel Moisture Sensitivity to Temperature and Precipitation: Climate Change Implications. Clim. Change 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 312. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M. Consistency of Spatiotemporal Variability of MODIS and ERA5-Land Surface Warming Trends over Complex Topography. Environ. Sci. Pollut. Res. 2023, 30, 94414–94435. [Google Scholar] [CrossRef]
- T.C. Ministry of Environment, Urbanisation and Climate Change Eighth National Communication and Fifth Biennial Report of Türkiye Under the UNFCCC. Available online: https://iklim.gov.tr/db/english/dokumanlar/eight-national--8230-1105-20230601110557.pdf (accessed on 13 May 2024).
- Meteoroloji Genel Müdürlüğü. Available online: https://mevbis.mgm.gov.tr/mevbis/ui/index.html#/Login (accessed on 28 June 2024).
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field Observations of Soil Moisture Variability across Scales. Water Resour. Res. 2008, 44, 2006WR005804. [Google Scholar] [CrossRef]
- Naseri, S.; Farhadi Bansouleh, B.; Hassanpour, B.; Azari, A. Field-Scale Evaluation of Remote Sensing Soil Moisture Retrievals Using a Multi-Satellite Approach. J. Spat. Sci. 2024, 69, 181–202. [Google Scholar] [CrossRef]
- EFFIS-Welcome to EFFIS. Available online: https://effis.jrc.ec.europa.eu/ (accessed on 20 February 2024).
- Bektaş, A.; Yılmaz, M.T.; Şimşek, O. İstasyonlarda Ölçülen Toprak Nemi Değerlerinin Hidrolojik Model ve Uydu Verileri Yardımıyla Değerlendirilmesi. TÜBİTAK CAYDAG project (No: 114Y676). 2018. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/7/4/044021 (accessed on 30 July 2024).
- Barratt, M. NWP-Driven Fire Danger Forecasting for Copernicus. Available online: https://www.ecmwf.int/en/newsletter/147/meteorology/nwp-driven-fire-danger-forecasting-copernicus (accessed on 6 January 2024).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Vitolo, C.; Di Giuseppe, F.; Krzeminski, B.; San-Miguel-Ayanz, J. A 1980–2018 Global Fire Danger Re-Analysis Dataset for the Canadian Fire Weather Indices. Sci. Data 2019, 6, 190032. [Google Scholar] [CrossRef]
- Vitolo, C.; Di Giuseppe, F.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-Based Global Meteorological Wildfire Danger Maps. Sci. Data 2020, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Kleijnen, J.P.C.; Beers, W.C.M.V. Application-Driven Sequential Designs for Simulation Experiments: Kriging Metamodelling. J. Oper. Res. Soc. 2004, 55, 876–883. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, K. Observation-Corrected Precipitation Estimates in GEOS-5; Global Modeling and Assimilation Office, Goddard Space Flight Center: Greenbelt, MD, USA, 2014; No. GSFC-E-DAA-TN19768.
- SMAP L4 9 Km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants, Version 3: 3-Hourly Analysis Update, 3-Hourly Geophysical Data, and Land Model Constants. Available online: https://nsidc.org/sites/default/files/multi_spl4smau-v003-userguide_1.pdf (accessed on 13 May 2024).
- Marigo, O.; Faye, G.; Manuela, G.; Pellarin, T.; Mbaye, M.; Tine, D.; Mougin, E.; Mbengue, F.; Thiam, A.; Diop, B.; et al. Spatio-Temporal Analysis of Surface and Root Zone Soil Moisture Derived from SMAP and SMOS Microwave Satellite Data Using in-Situ Measurements in Senegal. Am. J. Environ. Prot. 2022, 10, 8–21. [Google Scholar] [CrossRef]
- NASA Data Products|Data. Available online: https://smap.jpl.nasa.gov/data (accessed on 13 May 2024).
- Google Earth Engine Data Catalog SPL4SMGP.007 SMAP L4 Global 3-Hourly 9-Km Surface and Root Zone Soil Moisture|Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_SMAP_SPL4SMGP_007 (accessed on 13 May 2024).
- Google Earth Engine Data Catalog MOD11A1.061 Terra Land Surface Temperature and Emissivity Daily Global 1 km|Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD11A1 (accessed on 13 May 2024).
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide. Available online: https://lpdaac.usgs.gov/documents/715/MOD11_User_Guide_V61.pdf (accessed on 13 May 2024).
- Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens. 2016, 2016, 1480307. [Google Scholar] [CrossRef]
- ESA WorldCover 10m V200|Earth Engine Data Catalog. Available online: https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v200 (accessed on 16 January 2024).
- Fire Danger Forecast. Available online: https://effis.jrc.ec.europa.eu/about-effis/technical-background/fire-danger-forecast (accessed on 13 May 2024).
- Fire Danger Forecast GWIS. Available online: https://gwis.jrc.ec.europa.eu/about-gwis/technical-background/fire-danger-forecast (accessed on 14 May 2024).
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar]
- Christias, P.; Mocanu, M. A Machine Learning Framework for Olive Farms Profit Prediction. Water 2021, 13, 3461. [Google Scholar] [CrossRef]
- Yang, S.; Zeng, A.; Tigabu, M.; Wang, G.; Zhang, Z.; Zhu, H.; Guo, F. Investigating Drought Events and Their Consequences in Wildfires: An Application in China. Fire 2023, 6, 223. [Google Scholar] [CrossRef]
- Cheng, H.; Garrick, D.J.; Fernando, R.L. Efficient Strategies for Leave-One-out Cross Validation for Genomic Best Linear Unbiased Prediction. J. Anim. Sci. Biotechnol. 2017, 8, 38. [Google Scholar] [CrossRef]
- Shi, M.; Li, H.; Zhang, Z.; Lee, E.W.M. Development and Application of an Intelligent Approach to Reconstruct the Location of Fire Sources from Soot Patterns Deposited on Walls. Fire 2023, 6, 303. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive Microwave Remote Sensing of Soil Moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Bircher, S.; Skou, N.; Jensen, K.H.; Walker, J.P.; Rasmussen, L. A Soil Moisture and Temperature Network for SMOS Validation in Western Denmark. Hydrol. Earth Syst. Sci. 2012, 16, 1445–1463. [Google Scholar] [CrossRef]
- Field, R.D.; Spessa, A.C.; Aziz, N.A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W.J.; Dowdy, A.J.; Flannigan, M.D.; Manomaiphiboon, K. Development of a Global Fire Weather Database. Nat. Hazards Earth Syst. Sci. 2015, 15, 1407–1423. [Google Scholar] [CrossRef]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.; Yebra, M. Untangling Fuel, Weather and Management Effects on Fire Severity: Insights from Large-Sample LiDAR Remote Sensing Analysis of Conditions Preceding the 2019-20 Australian Wildfires. J. Environ. Manag. 2023, 348, 119474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 Soil Moisture Retrievals against Observations from Two Networks on the Tibetan Plateau. JGR Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.-S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil Moisture Mapping from Satellites: An Intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over Two Dense Network Regions at Different Spatial Scales. Remote Sens. 2017, 10, 33. [Google Scholar] [CrossRef]
- Zhao, L.; Yebra, M.; van Dijk, A.I.J.M.; Cary, G.J.; Hughes, D. Controlled Field Experiment Clarifies the Influence of Soil Moisture on Litter Moisture Content. Agric. For. Meteorol. 2022, 314, 108782. [Google Scholar] [CrossRef]
- Hu, F.; Wei, Z.; Yang, X.; Xie, W.; Li, Y.; Cui, C.; Yang, B.; Tao, C.; Zhang, W.; Meng, L. Assessment of SMAP and SMOS Soil Moisture Products Using Triple Collocation Method over Inner Mongolia. J. Hydrol. Reg. Stud. 2022, 40, 101027. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Ireland, G.; Srivastava, P.K.; Ioannou-Katidis, P. An Appraisal of the Accuracy of Operational Soil Moisture Estimates from SMOS MIRAS Using Validated in Situ Observations Acquired in a Mediterranean Environment. Int. J. Remote Sens. 2014, 35, 5239–5250. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of in Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, vzj2012-0097. [Google Scholar] [CrossRef]
- Adelabu, S.A.; Adepoju, K.A.; Mofokeng, O.D. Estimation of Fire Potential Index in Mountainous Protected Region Using Remote Sensing. Geocarto Int. 2020, 35, 29–46. [Google Scholar] [CrossRef]
- Moran, M.S.; Peters-Lidard, C.D.; Watts, J.M.; McElroy, S. Estimating Soil Moisture at the Watershed Scale with Satellite-Based Radar and Land Surface Models. Can. J. Remote Sens. 2004, 30, 805–826. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.-P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.-L.; Pimont, F.; Al Bitar, A.; Fernandez-Moran, R. Evaluation of Microwave Remote Sensing for Monitoring Live Fuel Moisture Content in the Mediterranean Region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Xu, J.; Su, Q.; Li, X.; Ma, J.; Song, W.; Zhang, L.; Su, X. A Spatial Downscaling Framework for SMAP Soil Moisture Based on Stacking Strategy. Remote Sens. 2024, 16, 200. [Google Scholar] [CrossRef]
- Pook, E.W.; Gill, A.M. Variation of Live and Dead Fine Fuel Moisture in Pinus Radiata Plantations of the Australian Capital Territory. Int. J. Wildland Fire 1993, 3, 155–168. [Google Scholar] [CrossRef]
- Resco De Dios, V. Environmental Plant Responses and Wildland Fire Danger. In Plant-Fire Interactions; Managing Forest Ecosystems; Springer International Publishing: Cham, Switzerland, 2020; Volume 36, pp. 75–92. ISBN 978-3-030-41191-6. [Google Scholar]
#ID | Start (d/m/y) | Finish (d/m/y) | Burned Area (ha) | Burned Area over the Total Burned Area (%) |
---|---|---|---|---|
1 | 7 August 2019 | 7 August 2019 | 63 | 0.0877 |
2 | 2 September 2019 | 2 September 2019 | 56 | 0.0778 |
3 | 20 January 2020 | 20 January 2020 | 55 | 0.0764 |
4 | 22 August 2020 | 22 August 2020 | 142 | 0.1973 |
5 | 18 September 2020 | 18 September 2020 | 78 | 0.1084 |
6 | 17 February 2021 | 17 February 2021 | 266 | 0.3694 |
7 | 26 June 2021 | 26 June 2021 | 121 | 0.1681 |
8 | 28 July 2021 | 6 August 2021 | 54,769 | 76.0389 |
9 | 29 July 2021 (1) | 10 August 2021 | 15,860 | 22.0277 |
10 | 29 July 2021 (2) | 30 July 2021 | 266 | 0.3694 |
Features | Fuel Moisture Codes | ||
---|---|---|---|
FFMC | DMC | DC | |
Fuel association | Litter and other dried fine fuels | Moderately deep, loosely compacted organic layers | Deep, compact organic layers |
Fire potential indicator | Easy ignition | Probability of lightning fires; fuel consumption in moderate duff | Mop-up difficulty; fuel consumption of deep organic material |
Depth (cm) | 0–2 | 5–10 | 10–20 |
Fuel loading (t/ha) | 5 | 50 | 440 |
24 h rainfall threshold (mm) | 0.5 | 1.4 | 2.8 |
Time-lag constant | 16 h | 12 days | 52 days |
Required Weather Inputs | |||
Temperature | ✓ | ✓ | ✓ |
Relative Humidity | ✓ | ✓ | |
Windspeed | ✓ | ||
Rain | ✓ | ✓ | ✓ |
FWI Fire Danger Classes | FFMC | DMC | DC |
---|---|---|---|
Low | <82.7 | <15.7 | <256.1 |
Moderate | 82.7–86.1 | 15.7–27.9 | 256.1–334.1 |
High | 86.1–89.2 | 27.9–53.1 | 334.1–450.6 |
Very High | 89.2–93.0 | 53.1–83.6 | 450.6–600.0 |
Extreme | 93.0–96.0 | 83.6–160.7 | 600.0–749.4 |
Very Extreme | >96.0 | >160.7 | >749.4 |
#ID | Fire Danger Class | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Canadian FWI System | EFFIS FWI | ERA5 FWI | ||||||||||
FWI | Fuel Moisture Codes | FWI | Fuel Moisture Codes | FWI | Fuel Moisture Codes | |||||||
FFMC | DMC | DC | FFMC | DMC | DC | FFMC | DMC | DC | ||||
1 | E | VE | VE | E | E | VE | E | E | VH | VH | VE | VE |
2 | VH | VH | VE | VE | VH | VH | E | VE | VH | E | VE | VE |
3 | M | VH | L | L | M | H | L | L | M | H | L | L |
4 | E | VE | VE | VE | E | VE | VE | VE | E | E | VE | VE |
5 | E | VH | VE | VE | H | H | VE | VE | VH | VH | VE | VE |
6 | L | M | L | L | L | L | L | L | L | L | L | L |
7 | E | E | VE | VE | H | VH | E | VH | VH | VH | E | VH |
8 | VE | VE | VE | VE | VE | VE | VE | E | E | E | VE | VE |
9 | E | VE | VE | VE | E | VE | VE | E | E | E | E | E |
10 | VH | VH | VE | VE | VH | E | VE | VE | VH | E | VE | VE |
ERA5 FWI | EFFIS FWI | Canadian FWI System | SMOS L4 0–5 cm | SMAP L4 0–5 cm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | |||
SMOS L4 0–5 cm | −0.87 | −0.45 | −0.65 | −0.85 | −0.70 | −0.68 | −0.79 | −0.68 | −0.70 | 1 | 0.79 |
SMAP L4 0–5 cm | −0.86 | −0.64 | −0.81 | −0.86 | −0.84 | −0.83 | −0.84 | −0.81 | −0.85 | 0.79 | 1 |
In situ soil moisture 0–20 cm (%) | −0.85 | −0.66 | −0.84 | −0.80 | −0.97 | −0.88 | −0.64 | −0.76 | −0.77 | 0.71 | 0.87 |
ERA5 FWI | EFFIS FWI | Canadian FWI System | SMOSL4 0–5 cm | SMAP L4 0–5 cm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | FFMC 0–2 cm | DMC 5–10 cm | DC 10–20 cm | |||
Soil Temperature 5 cm | 0.86 | 0.48 | 0.77 | 0.81 | 0.98 | 0.82 | 0.68 | 0.81 | 0.79 | −0.70 | −0.87 |
Air Temperature | 0.85 | 0.45 | 0.66 | 0.82 | 0.84 | 0.68 | 0.79 | 0.87 | 0.84 | −0.73 | −0.90 |
MODIS LST | 0.86 | 0.61 | 0.82 | 0.82 | 0.89 | 0.84 | 0.76 | 0.88 | 0.89 | −0.78 | −0.94 |
Landsat 8 LST | 0.77 | 0.43 | 0.72 | 0.80 | 0.85 | 0.77 | 0.73 | 0.78 | 0.80 | −0.71 | −0.90 |
Dependent Variable | Independent Variable | Linear Regression Models | r | Scatterplots |
---|---|---|---|---|
In Situ Soil moisture | EFFIS FFMC | −0.6467 × FFMC + 69.403 | −0.80 | |
EFFIS DMC | −0.0501 × DMC + 18.704 | −0.97 | ||
EFFIS DC | −0.0131 × DC + 18.042 | −0.88 | ||
SMAP Soil Moisture | 65.035 × SMAP + 3.1826 | 0.87 | ||
SMOS Soil Moisture | 13.179 × SMOS + 8.2203 | 0.71 |
Fire # | Dates | Nearest Station | Distance to the Fire Zone (km) | In Situ Soil Moisture (%) | RMSE (%) |
---|---|---|---|---|---|
EFFIS FWI FFMC | |||||
# 8 | 29 July 2021–6 August 2021 | 17,954 | 13 | 7 | 1.40 |
# 9 | 30 July 2021–6 August 2021 | 17,310 | 23 | 5 | 1.53 |
EFFIS FWI DMC | |||||
# 8 | 29 July 2021–6 August 2021 | 17,954 | 13 | 7 | 1.85 |
# 9 | 30 July 2021–6 August 2021 | 17,310 | 23 | 5 | 0.79 |
EFFIS FWI DC | |||||
# 8 | 29 July 2021–6 August 2021 | 17,954 | 13 | 7 | 1.41 |
# 9 | 30 July 2021–6 August 2021 | 17,310 | 23 | 5 | 2.77 |
SMAP Surface Zone | |||||
# 8 | 29 July 2021–6 August 2021 | 17,954 | 13 | 7 | 0.60 |
# 9 | 30 July 2021–6 August 2021 | 17,310 | 23 | 5 | 2.08 |
SMOS Surface Zone | |||||
# 8 | 29 July 2021–6 August 2021 | 17,954 | 13 | 7 | 1.80 |
# 9 | 30 July 2021–6 August 2021 | 17,310 | 23 | 5 | 3.64 |
Leave-One-Out Cross-Validation | ||
---|---|---|
Data | RMSE | Correlation |
FFMC | 3.61 | 0.72 |
DMC | 1.37 | 0.96 |
DC | 3.35 | 0.77 |
SMAP | 3.06 | 0.80 |
SMOS | 24.6 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atalay, H.; Sunar, A.F.; Dervisoglu, A. Investigating FWI Moisture Codes in Relation to Satellite-Derived Soil Moisture Data across Varied Resolutions. Fire 2024, 7, 272. https://doi.org/10.3390/fire7080272
Atalay H, Sunar AF, Dervisoglu A. Investigating FWI Moisture Codes in Relation to Satellite-Derived Soil Moisture Data across Varied Resolutions. Fire. 2024; 7(8):272. https://doi.org/10.3390/fire7080272
Chicago/Turabian StyleAtalay, Hatice, Ayse Filiz Sunar, and Adalet Dervisoglu. 2024. "Investigating FWI Moisture Codes in Relation to Satellite-Derived Soil Moisture Data across Varied Resolutions" Fire 7, no. 8: 272. https://doi.org/10.3390/fire7080272
APA StyleAtalay, H., Sunar, A. F., & Dervisoglu, A. (2024). Investigating FWI Moisture Codes in Relation to Satellite-Derived Soil Moisture Data across Varied Resolutions. Fire, 7(8), 272. https://doi.org/10.3390/fire7080272