Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network
Abstract
:1. Introduction
2. Data and Materials
2.1. Input Variables
2.1.1. Burned Area Perimeters
2.1.2. ERA5-Land—Historic Weather Data
2.1.3. Fire Weather Index
2.1.4. Active Fire Data
2.1.5. Fuel Type
2.1.6. CORINE Land Cover
2.1.7. Digital Elevation Model
2.2. Feature Engineering and Construction of Wildfire Time Series
3. Methodology
3.1. Experimental Setup
3.2. Pre-Processing and Reference Data Sampling
3.3. Model Architecture and Training
3.4. Model Testing and Evaluation
4. Results
4.1. Overall Model Performance
4.2. Model Performances Based on Spatial and Temporal Wildfire Dimensions
5. Discussion
5.1. Performance of the Spatiotemporal Graph Neural Network
5.2. Influence of Dimensions of a Wildfire
5.3. Transferability
5.4. Dataset Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Waugh, C.; Peng, W.; Sonne, C. Wildfire Puts Koalas at Risk of Extinction. Science 2020, 367, 750. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic Footprint of California Wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Haque, M.K.; Azad, M.A.K.; Hossain, M.Y.; Ahmed, T.; Uddin, M.; Hossain, M.M. Wildfire in Australia during 2019-2020, Its Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. J. Environ. Prot. 2021, 12, 391–414. [Google Scholar] [CrossRef]
- Haynes, K.; Short, K.; Xanthopoulos, G.; Viegas, D.; Ribeiro, L.M.; Blanchi, R. Wildfires and WUI Fire Fatalities. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Manzello, S.L., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 1–16. [Google Scholar]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; Werf, G.R.v.d.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.L.; et al. Increased Likelihood of Heat-Induced Large Wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Llasat, M.C.; von Hardenberg, J.; Provenzale, A. Climate Change Impacts on Wildfires in a Mediterranean Environment. Clim. Chang. 2014, 125, 369–380. [Google Scholar] [CrossRef]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Solomun, M.K.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Perry, G.L.W. Current Approaches to Modelling the Spread of Wildland Fire: A Review. Prog. Phys. Geogr. Earth Environ. 1998, 22, 222–245. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Schag, G.; de-Miguel, S.; Tapia, M.; Stoof, C.R.; Silva, C.A.; Mohan, M.; Cardil, A.; Ramirez, J. Fire Behavior Modeling for Operational Decision-Making. Curr. Opin. Environ. Sci. Health 2021, 23, 100291. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 1: Combustion Chemistry and Heat Release. Curr. For. Rep. 2017, 3, 132–149. [Google Scholar] [CrossRef]
- Sullivan, A.L. Inside the Inferno: Fundamental Processes of Wildland Fire Behaviour: Part 2: Heat Transfer and Interactions. Curr. For. Rep. 2017, 3, 150–171. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 1: Physical and Quasi-Physical Models. Int. J. Wildland Fire 2009, 18, 349. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 2: Empirical and Quasi-Empirical Models. Int. J. Wildland Fire 2009, 18, 369. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland Surface Fire Spread Modelling, 1990–2007. 3: Simulation and Mathematical Analogue Models. Int. J. Wildland Fire 2009, 18, 387. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972.
- Alexander, M.E.; Cruz, M.G. Limitations on the Accuracy of Model Predictions of Wildland Fire Behaviour: A State-of-the-Knowledge Overview. For. Chron. 2013, 89, 370–381. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Sullivan, A.L.; Gould, J.S.; Kilinc, M. Assessing Improvements in Models Used to Operationally Predict Wildland Fire Rate of Spread. Environ. Model. Softw. 2018, 105, 54–63. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiang, W.; Su, G.; Jiang, J.; Li, X.; Wang, F. A Transformer-Based Neural Network for Ignition Location Prediction from the Final Wildfire Perimeter. Environ. Model. Softw. 2024, 172, 105915. [Google Scholar] [CrossRef]
- Hodges, J.L.; Lattimer, B.Y. Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technol. 2019, 55, 2115–2142. [Google Scholar] [CrossRef]
- Radke, D.; Hessler, A.; Ellsworth, D. FireCast: Leveraging Deep Learning to Predict Wildfire Spread. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, Macao, 10–16 August 2019; pp. 4575–4581. [Google Scholar]
- Huot, F.; Hu, R.L.; Goyal, N.; Sankar, T.; Ihme, M.; Chen, Y.F. Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading from Remote-Sensing Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412513. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, M.; Wang, H. A Neural Network Model for Wildfire Scale Prediction Using Meteorological Factors. IEEE Access 2019, 7, 176746–176755. [Google Scholar] [CrossRef]
- Perumal, R.; Zyl, T.L.V. Comparison of Recurrent Neural Network Architectures for Wildfire Spread Modelling. In Proceedings of the 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa, 29–31 January 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020. [Google Scholar]
- Li, X.; Zhang, M.; Zhang, S.; Liu, J.; Sun, S.; Hu, T.; Sun, L. Simulating Forest Fire Spread with Cellular Automation Driven by a LSTM Based Speed Model. Fire 2022, 5, 13. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Li, X.; Xu, L. Wildland Fire Burned Areas Prediction Using Long Short-Term Memory Neural Network with Attention Mechanism. Fire Technol. 2021, 57, 1–23. [Google Scholar] [CrossRef]
- Burge, J.; Bonanni, M.R.; Hu, R.L.; Ihme, M. Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved Wildfire Spread Behavior. Fire Technol. 2023, 59, 3327–3354. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, F.; Su, G.; Li, X.; Wang, G.; Zheng, X.; Wang, T.; Meng, Q. Modeling Wildfire Spread with an Irregular Graph Network. Fire 2022, 5, 185. [Google Scholar] [CrossRef]
- Yemshanov, D.; Liu, N.; Thompson, D.K.; Parisien, M.A.; Barber, Q.E.; Koch, F.H.; Reimer, J. Detecting Critical Nodes in Forest Landscape Networks to Reduce Wildfire Spread. PLoS ONE 2021, 16, e0258060. [Google Scholar] [CrossRef]
- Ge, X.; Yang, Y.; Peng, L.; Chen, L.; Li, W.; Zhang, W.; Chen, J. Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data. Remote Sens. 2022, 14, 3496. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Peng, L.; Chen, L.; Ge, X. Knowledge Graph Representation Learning-Based Forest Fire Prediction. Remote Sens. 2022, 14, 4391. [Google Scholar] [CrossRef]
- Bui, K.H.N.; Cho, J.; Yi, H. Spatial-Temporal Graph Neural Network for Traffic Forecasting: An Overview and Open Research Issues. Appl. Intell. 2022, 52, 2763–2774. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Dou, X.; Wang, X.; Guo, M.; Zhang, R.; Li, H. Advances in Spatiotemporal Graph Neural Network Prediction Research. Int. J. Digit. Earth 2023, 16, 2034–2066. [Google Scholar] [CrossRef]
- Farahmand, H.; Xu, Y.; Mostafavi, A. A Spatial–Temporal Graph Deep Learning Model for Urban Flood Nowcasting Leveraging Heterogeneous Community Features. Sci. Rep. 2023, 13, 6768. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xiang, J.; Huang, S. Classification and Prediction of Typhoon Levels by Satellite Cloud Pictures through GC–LSTM Deep Learning Model. Sensors 2020, 20, 5132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Reichard-Flynn, W.; Zhang, M.; Hirn, M.; Lin, Y. Spatiotemporal Graph Convolutional Networks for Earthquake Source Characterization. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024401. [Google Scholar] [CrossRef] [PubMed]
- Nolde, M.; Plank, S.; Riedlinger, T. An Adaptive and Extensible System for Satellite-Based, Large Scale Burnt Area Monitoring in Near-Real Time. Remote Sens. 2020, 12, 2162. [Google Scholar] [CrossRef]
- Brodsky and Contributors H3—Hexagonal Hierarchical Geospatial Indexing System 2018. Available online: https://h3geo.org/ (accessed on 12 June 2024).
- Sahr, K. Hexagonal Discrete Global Grid Systems for Geospatial Computing. Arch. Photogramm. Cartogr. Remote Sens. 2011, 22, 363–376. [Google Scholar]
- Hernández Encinas, L.; Hoya White, S.; Martín del Rey, A.; Rodríguez Sánchez, G. Modelling Forest Fire Spread Using Hexagonal Cellular Automata. Appl. Math. Model. 2007, 31, 1213–1227. [Google Scholar] [CrossRef]
- Flannigan, M.; Stocks, B.; Weber, M. Fire Regimes and Climatic Change in Canadian Forests. In Fire and Climatic Change in Temperate Ecosystems of the Western Americas; Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 160, pp. 97–119. [Google Scholar]
- Hernandez, C.; Drobinski, P.; Turquety, S.; Dupuy, J.L. Size of Wildfires in the Euro-Mediterranean Region: Observations and Theoretical Analysis. Nat. Hazards Earth Syst. Sci. 2015, 15, 1331–1341. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and Regional Analysis of Climate and Human Drivers of Wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Vitolo, C.; Giuseppe, F.D.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-Based Global Meteorological Wildfire Danger Maps. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stocks, B.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Lynham, T.J.; Dubé, D.E. The Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 450–457. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Generation of a Global Fuel Data Set Using the Fuel Characteristic Classification System. Biogeosciences 2016, 13, 2061–2076. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire Interactions in Southern Europe: Implications for Landscape Management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed]
- European Environmental Agency (EEA) CORINE Land Cover (CLC) 2018. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 12 June 2024). [CrossRef]
- European Space Agency (ESA) Copernicus DEM—Global and European Digital Elevation Model (COP-DEM) 2023. Available online: https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model (accessed on 12 June 2024). [CrossRef]
- Cruz, M.G.; Alexander, M.E. Modelling the Rate of Fire Spread and Uncertainty Associated with the Onset and Propagation of Crown Fires in Conifer Forest Stands. Int. J. Wildland Fire 2017, 26, 413–426. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta, G.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Suarez-Moreno, M.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2022; EU Publications: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3848–3858. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks 2017. Preprint. arXiv 2017, arXiv:1609.02907. [Google Scholar] [CrossRef]
- Cho, K.; Merriënboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the EMNLP 2014—2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Rozemberczki, B.; Scherer, P.; He, Y.; Panagopoulos, G.; Riedel, A.; Astefanoaei, M.; Kiss, O.; Beres, F.; López, G.; Collignon, N.; et al. PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural Machine Learning Models. In Proceedings of the International Conference on Information and Knowledge Management, Proceedings, Online, 1–5 November 2021; pp. 4564–4573. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. Uncertainty Associated with Model Predictions of Surface and Crown Fire Rates of Spread. Environ. Model. Softw. 2013, 47, 16–28. [Google Scholar] [CrossRef]
- Podur, J.; Wotton, B.M. Defining Fire Spread Event Days for Fire-Growth Modelling. Int. J. Wildland Fire 2011, 20, 497–507. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; Rigo, D.d.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In Proceedings of the Fuels Management—How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006. [Google Scholar]
- Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal: Present and Future Challenges; Reboredo, F., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 97–115. [Google Scholar]
- Rodrigues, M.; Jiménez-Ruano, A.; Riva, J. de la Fire Regime Dynamics in Mainland Spain. Part 1: Drivers of Change. Sci. Total Environ. 2020, 721, 135841. [Google Scholar] [CrossRef]
Feature Class | Feature Name | Feature Description | Unit |
---|---|---|---|
Burned area | burned_new | (target) | Binary |
burned | Binary | ||
no_observation | if no wildfire activity was detected in fire AOI | Binary | |
Meteorological | t2m_min | Daily minimum air temperature at 2 m above the land surface | K |
t2m_max | Daily maximum air temperature at 2 m above the land surface | K | |
t2m_mean | Daily mean air temperature at 2 m above the land surface | K | |
t2m_std | Daily standard deviation air temperature at 2 m above the land surface | K | |
tp_min | Daily minimum precipitation | m | |
tp_max | Daily maximum precipitation | m | |
tp_mean | Daily mean precipitation | m | |
tp_std | Daily standard deviation precipitation | m | |
tp_sum | Daily sum of precipitation | m | |
rh_min | Daily minimum relative humidity | % | |
rh_max | Daily maximum relative humidity | % | |
rh_mean | Daily mean relative humidity | % | |
rh_std | Daily standard deviation relative humidity | % | |
ws10_min | Daily minimum wind speed at 10 m above the land surface | ms−1 | |
ws10_max | Daily maximum wind speed at 10 m above the land surface | ms−1 | |
ws10_mean | Daily mean wind speed at 10 m above the land surface | ms−1 | |
ws10_std | Daily standard deviation wind speed at 10 m above the land surface | ms−1 | |
wd10_mode | Daily mode wind direction at 10 m above the land surface | ° | |
Fire Danger Index | FWI | Daily FWI | Unitless |
Hotspots | n_hotspots | Total number of hotspots | Count |
frp_min | Daily minimum FRP | MW | |
frp_max | Daily maximum FRP | MW | |
frp_mean | Daily mean FRP | MW | |
frp_std | Daily standard deviation FRP | MW | |
frp_sum | Daily sum of FRP | MW | |
Fuel | fuel_type | Mode of fuel type class | Integer |
Land Use/Land Cover | clc | Mode of CLC class | Integer |
Topography | elevation | Mean elevation | m |
slope | Mean slope | ° | |
aspect | Mean aspect | ° |
Portugal | Mediterranean | |
---|---|---|
Training (70 %) | 821 | 7686 |
Validation (15 %) | 183 | 1736 |
Testing (15 %) | 177 | 1660 |
∑ | 1181 | 11,082 |
Name | Level | Scale | Formula | Description |
---|---|---|---|---|
Daily macro mean | Level-1 | Day | Accuracy on each prediction day of a fire | |
Fire-weighted macro mean | Level-2 | Fire | Accuracy of a predicted fire time series | |
Overall weighted macro mean | Level-3 | Test dataset | Accuracy of the test dataset |
Portugal Model | Mediterranean Model | |
---|---|---|
Overall weig. macro mean precision | 0.59 | 0.59 |
Overall weig. macro mean recall | 0.69 | 0.67 |
Overall weig. macro mean F1-score | 0.57 | 0.55 |
Overall weig. macro mean IoU | 0.37 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rösch, M.; Nolde, M.; Ullmann, T.; Riedlinger, T. Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network. Fire 2024, 7, 207. https://doi.org/10.3390/fire7060207
Rösch M, Nolde M, Ullmann T, Riedlinger T. Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network. Fire. 2024; 7(6):207. https://doi.org/10.3390/fire7060207
Chicago/Turabian StyleRösch, Moritz, Michael Nolde, Tobias Ullmann, and Torsten Riedlinger. 2024. "Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network" Fire 7, no. 6: 207. https://doi.org/10.3390/fire7060207
APA StyleRösch, M., Nolde, M., Ullmann, T., & Riedlinger, T. (2024). Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network. Fire, 7(6), 207. https://doi.org/10.3390/fire7060207