Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Study Area
2.2. Fire Point
2.3. Land Cover
2.4. DEM
2.5. Remote Sensing Image
2.6. Meteorological
2.7. Methodology
3. Research Results
3.1. Spatial Distribution
3.1.1. Total Distribution
3.1.2. Density Distribution
3.2. Temporal Variation
3.2.1. Inter-Annual Variation
3.2.2. Inter-Month Variation
3.3. Spatial and Temporal Variations of Driving Forces
3.3.1. Natural Factors
- (1)
- Topography
- (2)
- Climate
- (3)
- Planting schedule
3.3.2. Policy Factors
3.3.3. Social Factors
- (1)
- Crop production
- (2)
- Cultural customs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Streets, D.G.; Yarber, K.F.; Woo, J.H. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 2003, 17, 1–20. [Google Scholar] [CrossRef]
- Levine, J.S.; Cofer, W.R.; Cahoon, D.R. A driver for global change. Environ. Sci. Technol. 1995, 29, 120–125. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2016, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Singh, T.; Singh, V. Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study. Sci. Total Environ. 2023, 861, 160361. [Google Scholar] [CrossRef]
- Wang, L.; Xin, J.; Li, X. The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China. Atmos. Res. 2015, 157, 153–163. [Google Scholar] [CrossRef]
- Krecl, P.; Targino, A.C.; Lara, C. Detecting local and regional air pollution from biomass burning at a suburban site. Atmos. Environ. 2023, 297, 119591. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. Perspective on particulate matter: From biomass burning to the health crisis in mainland southeast Asia. Toxics 2023, 11, 553. [Google Scholar] [CrossRef]
- Li, C.; Hu, Y.; Zhang, F. Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. Atmos. Chem. Phys. 2017, 17, 4957–4988. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Liu, H. Assessing the contribution of open crop straw burning to ground-level ozone and associated health impacts in China and the effectiveness of straw burning bans. Environ. Int. 2023, 171, 107710. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Yang, Z.; Chen, Z. Crop residue burning in China (2019–2021): Spatiotemporal patterns, environmental impact, and emission dynamics. Environ. Sci. Ecotechnol. 2024, 21, 100394. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ge, Y.; Zhang, X. Total atmospheric carbon detection by LIBS with multivariate physicochemical model based on transition and collision mechanism. Spectrochim. Acta Part B At. Spectrosc. 2024, 220, 107018. [Google Scholar] [CrossRef]
- Griffin, D.; Chen, J.; Anderson, K. Biomass burning CO emissions: Exploring insights through TROPOMI-derived emissions and emission coefficients. Atmos. Chem. Phys. 2024, 24, 10159–10186. [Google Scholar] [CrossRef]
- Koppmann, R.; Von Czapiewski, K.; Reid, J.S. A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmos. Chem. Phys. 2005, 5, 10455–10516. [Google Scholar]
- Jiang, K.; Xing, R.; Luo, Z. Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives. Particuology 2024, 85, 296–309. [Google Scholar] [CrossRef]
- Andreae, M.O. Biomass burning–its history, use, and distribution and its impact on environmental-quality and global climate. In Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications; MIT Press: Cambridge, MA, USA, 1991; Volume 1, pp. 3–21. [Google Scholar]
- Xiao, Y.N.; Xiao, H.W.; Sun, Q.B. Enhanced aerosols over the southeastern Tibetan Plateau induced by open biomass burning in spring 2020. Sci. Total Environ. 2023, 867, 161509. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, H.; Zhao, G. Carbonaceous gas and aerosol emissions from biomass burning in China from 2012 to 2021. J. Clean. Prod. 2022, 362, 132–199. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Q.; Zhang, J. Bottom-up emission inventories of multiple air pollutants from open straw burning: A case study of Jiangsu province, Eastern China. Atmos. Pollut. Res. 2019, 10, 501–507. [Google Scholar] [CrossRef]
- Prins, E.M.; Menzel, W.P. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. J. Geophys. Res. Atmos. 1994, 99, 16719–16735. [Google Scholar]
- Pu, R.; Li, Z.Q.; Gong, P. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data. Remote Sens. Environ. 2007, 2, 198–208. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Giglio, L. MODIS Collection 6 Active Fire Product User’s Guide, Revision A. Univ. Md. 2015, 9, 1–63. [Google Scholar]
- Molinario, G.; Davies, D.K.; Schroeder, W. Characterizing the spatio-temporal fire regime in Ethiopia using the MODIS-active fire product: A replicable methodology for country-level fire reporting. Afr. Geogr. Rev. 2014, 33, 99–123. [Google Scholar] [CrossRef]
- Cui, S.; Song, Z.; Zhang, L. Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ. 2021, 244, 117962. [Google Scholar] [CrossRef]
- Yin, S.; Guo, M.; Wang, X. Spatiotemporal variation and distribution characteristics of crop residue burning in China from 2001 to 2018. Environ. Pollut. 2021, 268, 115849. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Xu, W. LSA SAF Meteosat FRP products—Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys. 2015, 15, 15000–15976. [Google Scholar] [CrossRef]
- Zhang, T.R.; Wooster, M.J.; Xu, W. Approaches for synergistically exploiting VIIRS I-and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote Sens. Environ. 2017, 198, 407–424. [Google Scholar] [CrossRef]
- Pan, R.X.; Huang, Y.Y.; He, L.H. Evaluation of Emissions from Open Crop Residue Burning in Guangxi (2017-2021) Based on Fire Radiative Energy Data. Environ. Monit. China 2023, 39, 227–235. (In Chinese) [Google Scholar]
- Xu, Y.; Huang, Z.; Jia, G. Regional discrepancies in spatiotemporal variations and driving forces of open crop residue burning emissions in China. Sci. Total Environ. 2019, 671, 536–547. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, L.; Xu, W. Influence of meteorological factors on open biomass burning at a background site in Northeast China. J. Environ. Sci. 2024, 138, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.; Oliva, P.; Giglio, L. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Guo, J.L.; Chen, W.R.; Wang, Z.G. China’s Environment-1A and 1B satellites were successfully launched. Space Int. 2008, 10, 1–7. (In Chinese) [Google Scholar]
- Chen, J.; Ban, Y.F.; Li, S. Open access to Earth land-cover map. Nature 2015, 514, 434. [Google Scholar]
- Liu, H.L.; Mo, Z.Y.; Qin, W. Emission inventory and the spatio-temporal distribution of pollutant from open field straw burning in Guangxi. Environ. Pollut. Control 2022, 44, 631–638. (In Chinese) [Google Scholar]
- Wei, X.; Wang, G.; Chen, T. A spatio-temporal analysis of active fires over China during 2003–2016. Remote Sens. 2020, 12, 1787. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, Z.; Bian, S. Study on spatial-distribution characteristics based on fire-spot data in northern China. Sustainability 2022, 14, 6872. [Google Scholar] [CrossRef]
- Lian, C.; Xiao, C.; Feng, Z. Spatiotemporal characteristics and regional variations of active fires in China since 2001. Remote Sens. 2022, 15, 54. [Google Scholar] [CrossRef]
- Dong, B.; Li, H.; Xu, J. Spatiotemporal Analysis of Forest Fires in China from 2012 to 2021 Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires. Sustainability 2023, 15, 9532. [Google Scholar] [CrossRef]
- Luo, Y.R.; Wei, J.Y.; Guo, S.J. Emission of air pollutants from straw burning and estimation of carbon sequestration from biochar transformation in Guangxi. Environ. Pollut. Control 2022, 44, 993–1000. (In Chinese) [Google Scholar]
- Qin, C.; Bi, Y.Y.; Gao, C.Y. Management and effect of straw burning prohibition in China. J. China Agric. Univ. 2019, 24, 181–189. (In Chinese) [Google Scholar]
- Su, Y.Y.; Lan, H.Y.; Wu, Z.B. Current situation and countermeasures of comprehensive utilization of crop straw in Guangxi. Agric. Technol. Serv. 2024, 41, 98–102. (In Chinese) [Google Scholar]
- He, Y. Analysis on temporal and spatial distribution of forest fire causes in Guangxi. South China Agric. 2022, 16, 207–209. (In Chinese) [Google Scholar]
Region | Fire Points |
---|---|
Baise | 22,526 |
Beihai | 2692 |
Chongzuo | 6208 |
Fangchenggang | 2907 |
Guigang | 6887 |
Guilin | 9498 |
Hechi | 9358 |
Hezhou | 7428 |
Laibin | 7478 |
Liuzhou | 8204 |
Nanning | 11,728 |
Qinzhou | 5438 |
Wuzhou | 12,227 |
Yulin | 12,531 |
Total | 125,110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Huang, Q.; Yang, D.; Yang, Y.; Xie, G.; Yang, S.; Liang, C.; Qin, Z. Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS. Fire 2024, 7, 370. https://doi.org/10.3390/fire7100370
He X, Huang Q, Yang D, Yang Y, Xie G, Yang S, Liang C, Qin Z. Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS. Fire. 2024; 7(10):370. https://doi.org/10.3390/fire7100370
Chicago/Turabian StyleHe, Xinjie, Qiting Huang, Dewei Yang, Yingpin Yang, Guoxue Xie, Shaoe Yang, Cunsui Liang, and Zelin Qin. 2024. "Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS" Fire 7, no. 10: 370. https://doi.org/10.3390/fire7100370
APA StyleHe, X., Huang, Q., Yang, D., Yang, Y., Xie, G., Yang, S., Liang, C., & Qin, Z. (2024). Spatiotemporal Analysis of Open Biomass Burning in Guangxi Province, China, from 2012 to 2023 Based on VIIRS. Fire, 7(10), 370. https://doi.org/10.3390/fire7100370