Study on Fire Prevention in Dong Traditional Villages in the Western Hunan Region: A Case Study of Gaotuan Village
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Sample Village Case Studies
2.2.1. Analysis of Sample Villages
- 1.
- Village Layout
- 2.
- Street Layout
- 3.
- Architectural Form
2.2.2. Fire House Risk Assessment
- 1.
- Building Materials
- 2.
- Daily and Ceremonial Fire Behavior
2.3. Monitors
2.3.1. Village Wind Speed
2.3.2. Street Wind Speed
2.3.3. Building Wind Speed
2.4. Simulation
2.4.1. Village Fire Simulation
- 1.
- Simulation Model
- 2.
- Grid Settings
- 3.
- Parameter Settings
2.4.2. Street Fire Simulation
- 1.
- Simulation Model
- 2.
- Grid Settings
- 3.
- Parameter Settings
2.4.3. Building Fire Simulation
- 1.
- Simulation Model
- 2.
- Grid Settings
- 3.
- Parameter Settings
3. Results
3.1. Measurement Results
3.1.1. Village Measurement Results
3.1.2. Street Measurement Results
3.1.3. Building Measurement Results
3.2. Monitoring Results
3.2.1. Village Wind Speed
3.2.2. Street Wind Speed
3.2.3. Building Wind Speed
3.3. Simulation Results
3.3.1. Village Fire Simulation Results
3.3.2. Street Fire Simulation Results
3.3.3. Building Fire Simulation Results
- 4.
- Discussion
4. Questions and Suggestions
- 1.
- The site of the village is a remote mountainous area
- 2.
- Small street width and small building spacing
- 3.
- The construction material is wood
- 4.
- The use of fire
- 1.
- Increase fire awareness
- 2.
- Adding basic firefighting facilities
- 3.
- Automatic fire alarm system and automatic sprinkler system
- 4.
- Modernization of fire pits
- 5.
- The use of new materials
5. Conclusions
- 1.
- The investigative results show the following:
- 2.
- The simulation results show the following:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romão, X.; Bertolin, C. Risk protection for cultural heritage and historic centres: Current knowledge and further research needs. Int. J. Disaster Risk Reduct. 2022, 67, 102652. [Google Scholar] [CrossRef]
- Kobes, M.; Helsloot, I.; de Vries, B.; Post, J.G. Building Safety and Human Behaviour in Fire: A Literature Review. Fire Saf. J. 2010, 45, 1–11. [Google Scholar] [CrossRef]
- Liu, T.; Jiao, H. How Does Information Affect Fire Risk Reduction Behaviors? Mediating Effects of Cognitive Processes and Subjective Knowledge. Nat. Hazards 2018, 90, 1461–1483. [Google Scholar] [CrossRef]
- Kim, D.H.; Na, I.Y.; Jang, H.K.; Kim, H.D.; Kim, G.T. Anisotropic Electrical and Thermal Characteristics of Carbon Nanotube-Embedded Wood. Cellulose 2019, 26, 5719–5730. [Google Scholar] [CrossRef]
- Marrion, C.E. More Effectively Addressing Fire/Disaster Challenges to Protect Our Cultural Heritage. J. Cult. Herit. 2016, 20, 746–749. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Vicente, R.; Raimundo Mendes da Silva, J.A.; Varum, H.; Costa, A.; Maio, R. Urban Fire Risk: Evaluation and Emergency Planning. J. Cult. Herit. 2016, 20, 739–745. [Google Scholar] [CrossRef]
- Tozo Neto, J.; Ferreira, T.M. Assessing and Mitigating Vulnerability and Fire Risk in Historic Centres: A Cost-Benefit Analysis. J. Cult. Herit. 2020, 45, 279–290. [Google Scholar] [CrossRef]
- Manuello Bertetto, A.; D’Angella, P.; Fronterre’, M. Residual Strength Evaluation of Notre Dame Surviving Masonry after the Fire. Eng. Fail. Anal. 2021, 122, 105183. [Google Scholar] [CrossRef]
- Chorlton, B.; Gales, J. Fire Performance of Heritage and Contemporary Timber Encapsulation Materials. J. Build. Eng. 2020, 29, 101181. [Google Scholar] [CrossRef]
- Shabani, A.; Kioumarsi, M.; Plevris, V.; Stamatopoulos, H. Structural Vulnerability Assessment of Heritage Timber Buildings: A Methodological Proposal. Forests 2020, 11, 881. [Google Scholar] [CrossRef]
- Okubo, T. Traditional Wisdom for Disaster Mitigation in History of Japanese Architectures and Historic Cities. J. Cult. Herit. 2016, 20, 715–724. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, C. Large-Scale Fire Spread Model for Traditional Chinese Building Communities. J. Build. Eng. 2023, 67, 105899. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F.; Zheng, X.; Sun, Z. Spatial Configuration of Fire Protection for Historical Streets in China Using Space Syntax. J. Cult. Herit. 2023, 59, 140–150. [Google Scholar] [CrossRef]
- An, Z.Y.; Liu, B. Chinese Historic Buildings Fire Safety and Countermeasure. Procedia Eng. 2013, 52, 23–26. [Google Scholar] [CrossRef]
- Du, F.; Okazaki, K.; Ochiai, C. Disaster Coping Capacity of a Fire-Prone Historical Dong Village in China: A Case Study in Dali Village, Guizhou. Int. J. Disaster Risk Reduct. 2017, 21, 85–98. [Google Scholar] [CrossRef]
- Hegazi, Y.S.; Tahoon, D.; Abdel-Fattah, N.A.; El-Alfi, M.F. Socio-Spatial Vulnerability Assessment of Heritage Buildings through Using Space Syntax. Heliyon 2022, 8, e09133. [Google Scholar] [CrossRef]
- Huang, H.; Li, L.; Gu, Y. Assessing the Accessibility to Fire Hazards in Preserving Historical Towns: Case Studies in Suburban Shanghai, China. Front. Archit. Res. 2022, 11, 731–746. [Google Scholar] [CrossRef]
- Granda, S.; Ferreira, T.M. Assessing Vulnerability and Fire Risk in Old Urban Areas: Application to the Historical Centre of Guimarães. Fire Technol. 2019, 55, 105–127. [Google Scholar] [CrossRef]
- Clementi, F.; Gazzani, V.; Poiani, M.; Lenci, S. Assessment of Seismic Behaviour of Heritage Masonry Buildings Using Numerical Modelling. J. Build. Eng. 2016, 8, 29–47. [Google Scholar] [CrossRef]
- Copping, A.G. The Development of a Fire Safety Evaluation Procedure for the Property Protection of Parish Churches. Fire Technol. 2002, 38, 319–334. [Google Scholar] [CrossRef]
- Liu, T.; Jiao, H. Insights into the Effects of Cognitive Factors and Risk Attitudes on Fire Risk Mitigation Behavior. Comput. Econ. 2018, 52, 1213–1232. [Google Scholar] [CrossRef]
- Palazzi, N.C.; Juliá, P.B.; Ferreira, T.M.; Rosas, J.; Monsalve, M.; de la Llera, J.C. Fire Risk Assessment of Historic Urban Aggregates:An Application to the Yungay Neighborhood in Santiago, Chile. Int. J. Disaster Risk Reduct. 2023, 86, 105899. [Google Scholar] [CrossRef]
- Akinciturk, N.; Kilic, M. A Study on the Fire Protection of Historic Cumalikizik Village. J. Cult. Herit. 2004, 5, 213–219. [Google Scholar] [CrossRef]
- Li, X.; Qin, R. Performance-Based Firefighting in Dense Historic Settlements: An Exploration of a Firefighting Approach Combining Value and Risk Assessment with Numerical Simulation. Front. Archit. Res. 2022, 11, 1134–1150. [Google Scholar] [CrossRef]
- Choi, M.Y.; Jun, S. Fire Risk Assessment Models Using Statistical Machine Learning and Optimized Risk Indexing. Appl. Sci. 2020, 10, 4199. [Google Scholar] [CrossRef]
- Salazar, L.G.F.; Romão, X.; Paupério, E. Review of Vulnerability Indicators for Fire Risk Assessment in Cultural Heritage. Int. J. Disaster Risk Reduct. 2021, 60, 102286. [Google Scholar] [CrossRef]
- Yuan, C.; He, Y.; Feng, Y.; Wang, P. Fire Hazards in Heritage Villages: A Case Study on Dangjia Village in China. Int. J. Disaster Risk Reduct. 2018, 28, 748–757. [Google Scholar] [CrossRef]
- Ibrahim, M.N.; Abdul-Hamid, K.; Ibrahim, M.S.; Mohd-Din, A.; Yunus, R.M.; Yahya, M.R. The Development of Fire Risk Assessment Method for Heritage Building. Procedia Eng. 2011, 20, 317–324. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, S.; Wang, D.; Zhang, Q. Fire Risk Assessment of Heritage Villages: A Case Study on Chengkan Village in China. Fire 2023, 6, 47. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, L.; Liu, S.; Shi, J.; Zhang, J. CFD-Based Framework for Fire Risk Assessment of Contiguous Wood-Frame Villages in the Western Hunan Region. J. Build. Eng. 2022, 54, 104607. [Google Scholar] [CrossRef]
- Biao, Z.; Xiao-meng, Z.; Ming-yong, C. Fire Protection of Historic Buildings: A Case Study of Group-Living Yard in Tianjin. J. Cult. Herit. 2012, 13, 389–396. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Zhou, H.; Qi, F. Burning Characteristics of Ancient Wood from Traditional Buildings in Shanxi Province, China. Forests 2022, 13, 190. [Google Scholar] [CrossRef]
- Wang, K.; Wang, D.; Zhou, B.; Yang, W.; Wang, J.; Wang, W.; Wang, X. Influence of Air Gap Ratio of the Chinese Historical Wooden Window on the Vertical Flame Spread Performance. Therm. Sci. Eng. Prog. 2022, 32, 101308. [Google Scholar] [CrossRef]
- Panno, C.; Gonçalves, J.; Prager, G.; Bolina, F.L.; Tutikian, B.F. Analysis of the Fire Resistance of Normal Wooden Doors Exposed to Fire Conditions. Rev. Constr. 2020, 19, 359–369. [Google Scholar]
- Ohashi, H.; Igarashi, S.; Nagaoka, T. Development of Wood Structural Elements for Fire Resistant Buildings. J. Struct. Fire Eng. 2018, 9, 126–137. [Google Scholar] [CrossRef]
- Fan, C.; Wall, G.; Mitchell, C.J.A. Creative Destruction and the Water Town of Luzhi, China. Tour. Manag. 2008, 29, 648–660. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, J. Recognition of Values of Traditional Villages in Southwest China for Sustainable Development: A Case Study of Liufang Village. Sustain. 2021, 13, 7569. [Google Scholar] [CrossRef]
- Zhang, J.; Long, B.; Zhao, Y. Creative Destruction and Commercialization of Traditional Villages: Likeng, Wangkou, and Jiangwan in Wuyuan, China. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592, 012109. [Google Scholar] [CrossRef]
- Lei, Y.; Shen, Z.; Tian, F.; Yang, X.; Wang, F.; Pan, R.; Wang, H.; Jiao, S.; Kou, W. Fire Risk Level Prediction of Timber Heritage Buildings Based on Entropy and XGBoost. J. Cult. Herit. 2023, 63, 11–22. [Google Scholar] [CrossRef]
- Liu, S. Western Hunan Houses; China Construction Industry Press: Beijing, China, 2008. [Google Scholar]
- Liu, Z.; Li, Z.; Zhang, F.; Yang, G.; Xie, L. Correlation Analysis of Health Factors of Elderly People in Traditional Miao Dwellings in Western Hunan. Buildings 2023, 13, 1459. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, J.; Deng, Y. Heritage Values of Ancient Vernacular Residences in Traditional Villages in Western Hunan, China: Spatial Patterns and Influencing Factors. Build. Environ. 2021, 188, 107473. [Google Scholar] [CrossRef]
- Wen, B.; Burley, J.B. Expert Opinion Dimensions of Rural Landscape Quality in Xiangxi, Hunan, China: Principal Component Analysis and Factor Analysis. Sustainability 2020, 12, 1316. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, L.; Liu, S.; Zhang, C.; Xiang, T. The Traditional Wisdom in Fire Prevention Embodied in the Layout of Ancient Villages: A Case Study of High Chair Village in Western Hunan, China. Buildings 2022, 12, 1885. [Google Scholar] [CrossRef]
- Hui, C.; Xiao, Z. Fire Spreading Hazard Analysis of Traditional Village Houses. Build. Sci. 2016, 32, 125–130. [Google Scholar] [CrossRef]
- Shi, M. Simulation Study on Fire Boom Ignition and Group Fire Spreading in Wooden Structured Hammock Buildings. Master’s Thesis, Guizhou University, Guiyang, China, 2022. [Google Scholar]
- Hu, L.H.; Huo, R.; Yang, D. Large Eddy Simulation of Fire-Induced Buoyancy Driven Plume Dispersion in an Urban Street Canyon under Perpendicular Wind Flow. J. Hazard. Mater. 2009, 166, 394–406. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, H.; Xu, T.; Wang, F.; Li, C.; Xu, L. Effects of Ambient Pressure on Fire-Induced Buoyancy Driven Plume Dispersion and Re-Entrainment Behavior in a Street Canyon. Atmos. Pollut. Res. 2023, 14, 101733. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; Tang, F.; Wang, Q. Large Eddy Simulation of Fire Smoke Re-Circulation in Urban Street Canyons of Different Aspect Ratios. Procedia Eng. 2013, 62, 1007–1014. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, K.; Feng, L.; Tao, Y.; Wang, J.; Ding, Y.; Shi, C. Simulation on Smoke Re-Circulation Transition in an Urban Street Canyon for Different Fire Source Locations with Cross Wind. Saf. Sci. 2020, 127, 104716. [Google Scholar] [CrossRef]
- Tao, C.; Wang, K.; Liu, Q.; He, P.; Liu, Q. Simulation Investigation of Fire Smoke Behavior above Simulation Investigation of Fire Smoke Behavior above Simulation Investigation of Fire Smoke Behavior above Simulation Investigation of Fire Smoke Behavior above Simulation Investigation of Fire Smoke. Procedia Eng. 2018, 211, 681–688. [Google Scholar] [CrossRef]
- Yu, G.; Deng, L. Fire Risk Assessment; Machinery Industry Press: Beijing, China, 2012. [Google Scholar]
- Lu, Y. Fifty Years of Chinese Folk House Research. J. Archit. 2007, 11, 66–69. [Google Scholar]
- Cvetković, V.M.; Dragašević, A.; Protić, D.; Janković, B.; Nikolić, N.; Milošević, P. Fire Safety Behavior Model for Residential Buildings: Implications for Disaster Risk Reduction. Int. J. Disaster Risk Reduct. 2022, 76, 102981. [Google Scholar] [CrossRef]
- Li, M.; Hasemi, Y.; Nozoe, Y.; Nagasawa, M. Study on Strategy for Fire Safety Planning Based on Local Resident Cooperation in a Preserved Historical Mountain Village in Japan. Int. J. Disaster Risk Reduct. 2021, 56, 102081. [Google Scholar] [CrossRef]
- Hsiao, C.-J.; Hsieh, S.-H. Real-Time Fire Protection System Architecture for Building Safety. J. Build. Eng. 2023, 67, 105913. [Google Scholar] [CrossRef]
- Chang, W.Y.; Tang, C.H.; Lin, C.Y. Estimation of Magnitude and Heat Release Rate of Fires Occurring in Historic Buildings-Taking Churches as an Example. Sustainability 2021, 13, 9193. [Google Scholar] [CrossRef]
- Yi, L.; Yang, Q.; Yan, L.; Wang, N. Facile Fabrication of Multifunctional Transparent Fire-Retardant Coatings with Excellent Fire Resistance, Antibacterial and Anti-Aging Properties. Prog. Org. Coat. 2022, 169, 106925. [Google Scholar] [CrossRef]
- Lin, S.; Qin, Y.; Huang, X.; Gollner, M. Use of Pre-Charred Surfaces to Improve Fire Performance of Wood. Fire Saf. J. 2023, 136, 103745. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Li, Y.; Liang, C.; Zhang, J. Novel Ti3C2Tx MXene/Epoxy Intumescent Fire-Retardant Coatings for Ancient Wooden Architectures. J. Appl. Polym. Sci. 2021, 138, 50649. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Guo, H. Synergistic Flame Retardant Effects of Different Zeolites on Intumescent Fire Retardant Coating for Wood. BioResources 2017, 12, 5369–5382. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Sun, P.; Hai, Y.; Jiang, S. A Self-Healing, Recyclable, and Degradable Fire-Retardant Gelatin-Based Biogel Coating for Green Buildings. Soft Matter 2021, 17, 5231–5239. [Google Scholar] [CrossRef]
- Liu, J.; Kutty, R.G.; Zheng, Q.; Eswariah, V.; Sreejith, S.; Liu, Z. Hexagonal Boron Nitride Nanosheets as High-Performance Binder-Free Fire-Resistant Wood Coatings. Small 2017, 13, 1602456. [Google Scholar] [CrossRef]
Scenario | Fire Power | Grid Size | Number of Grids | Simulated Wind Direction | Simulated Wind Speed | Simulated Burning Time |
---|---|---|---|---|---|---|
1 | 6 MW | 0.25 m × 0.25 m × 0.25 m | 20,000 | Positive north wind | 2.17 m/s | 3600 s |
2 | 6 MW | 0.25 m × 0.25 m × 0.25 m | 20,000 | Positive north wind | 1.14 m/s | 3600 s |
Object | Surface Material | Density (kg/m3) | Specific Heat Capacity (kJ/kg-K) | Thermal Conductivity (W/m-K) | Thermal Storage Coefficient (W/m2-K) | Heat Emission (kJ/kg) |
---|---|---|---|---|---|---|
Roof | Tile material | 313 | 0.75 | 0.43 | 6.23 | — |
Wall | Yellow pine | 570 | 2.85 | 0.12 | 3.56 | 18,000 |
Scenario | Street Width | Fire Power | Grid Size | Number of Grids | Simulated Wind Direction | Simulated Wind Speed | Simulated Burning Time |
---|---|---|---|---|---|---|---|
3 | 1000 mm | 6 MW | 1.0 m × 1.0 m × 1.0 m | 45,630 | Positive north wind | 1.14 m/s | 3600 s |
4 | 2000 mm | 6 MW | 1.0 m × 1.0 m × 1.0 m | 45,630 | Positive north wind | 1.14 m/s | 3600 s |
5 | 4000 mm | 6 MW | 1.0 m × 1.0 m × 1.0 m | 45,630 | Positive north wind | 1.14 m/s | 3600 s |
6 | 8000 mm | 6 MW | 1.0 m × 1.0 m × 1.0 m | 45,630 | Positive north wind | 1.14 m/s | 3600 s |
Scenario | Fire Power | Grid Size | Number of Grids | Simulated Wind Direction | Simulated Wind Speed | Simulated Burning Time |
---|---|---|---|---|---|---|
7 | 6 MW | 1.0 m × 1.0 m × 1.0 m | 35,360 | Positive north wind | 0.17 m/s | 960 s |
Object | Surface Material | Density (kg/m3) | Specific Heat Capacity (kJ/kg-K) | Thermal Conductivity (W/m-K) | Thermal Storage Coefficient (W/m2-K) | Heat Emission (kJ/kg) |
---|---|---|---|---|---|---|
Beds | Foam | 40 | 1.04 | 0.05 | 0.54 | 29,400 |
Framing | Yellow pine | 570 | 2.85 | 0.12 | 3.56 | 19,400 |
Internal partitions | Yellow pine | 550 | 2.6 | 0.10 | 3.60 | 18,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, Z.; Lin, X.; Xie, L.; Jiang, J. Study on Fire Prevention in Dong Traditional Villages in the Western Hunan Region: A Case Study of Gaotuan Village. Fire 2023, 6, 334. https://doi.org/10.3390/fire6090334
Liu Z, Li Z, Lin X, Xie L, Jiang J. Study on Fire Prevention in Dong Traditional Villages in the Western Hunan Region: A Case Study of Gaotuan Village. Fire. 2023; 6(9):334. https://doi.org/10.3390/fire6090334
Chicago/Turabian StyleLiu, Zhezheng, Zhe Li, Xiang Lin, Liang Xie, and Jishui Jiang. 2023. "Study on Fire Prevention in Dong Traditional Villages in the Western Hunan Region: A Case Study of Gaotuan Village" Fire 6, no. 9: 334. https://doi.org/10.3390/fire6090334
APA StyleLiu, Z., Li, Z., Lin, X., Xie, L., & Jiang, J. (2023). Study on Fire Prevention in Dong Traditional Villages in the Western Hunan Region: A Case Study of Gaotuan Village. Fire, 6(9), 334. https://doi.org/10.3390/fire6090334