Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Procedure
2.2. Thermal Analysis
2.3. Fourier Transform Infrared Spectroscopy
3. Results
3.1. Thermogravimetry
3.2. Differential Scanning Calorimetry
3.3. Fourier Transform Infrared Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czimczik, C.I.; Preston, C.M.; Schmidt, M.W.I.; Schulze, E.-D. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal). Glob. Biogeochem. Cycles 2003, 17, 1020. [Google Scholar] [CrossRef] [Green Version]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Kukavskaya, E.A.; Shvetsov, E.G.; Buryak, L.V.; Tretyakov, P.D.; Groisman, P.Y. Increasing fuel loads, fire hazard, and carbon emissions from fires in Central Siberia. Fire 2023, 6, 63. [Google Scholar] [CrossRef]
- McBeath, A.V.; Smernik, R.J.; Krull, E.S. A demonstration of the high variability of chars produced from wood in bushfires. Org. Geochem. 2013, 55, 38–44. [Google Scholar] [CrossRef]
- Bird, M.I.; Ascough, P.L. Isotopes in pyrogenic carbon: A review. Org. Geochem. 2012, 42, 1529–1539. [Google Scholar] [CrossRef] [Green Version]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Saiz, G.; Goodrick, I.; Wuster, C.M.; Zimmermann, M.; Nelson, P.N.; Bird, M.I. Charcoal re-combustion efficiency in tropical savannas. Geoderma 2014, 219, 40–45. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Preston, C.M.; González-Rodríguez, G. Pyrogenic organic matter production from wildfires: A missing sink in the global carbon cycle. Glob. Chang. Biol. 2015, 21, 1621–1633. [Google Scholar] [CrossRef] [Green Version]
- Santín, C.; Doerr, S.H.; Kane, E.S.; Masiello, C.A.; Ohlson, M.; de la Rosa, J.M.; Preston, C.M.; Dittmar, T. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 2016, 22, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Ascough, P.L.; Brock, F.; Collinson, M.E.; Painter, J.D.; Lane, D.W.; Bird, M.I. Chemical characteristics of macroscopic pyrogenic carbon following millennial-scale environmental exposure. Front. Environ. Sci. 2020, 7, 203. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H.; Jones, M.W.; Merino, A.; Warneke, C.; Roberts, J.M. The relevance of pyrogenic carbon for carbon budgets from fires: Insights from the FIREX experiment. Glob. Biogeochem. Cycles 2020, 34, e2020GB006647. [Google Scholar] [CrossRef]
- Gao, C.; Cong, J.; Sun, Y.; Han, D.; Wang, G. Variability in pyrogenic carbon properties generated by different burning temperatures and peatland plant litters: Implication for identifying fire intensity and fuel types. Int. J. Wildland Fire 2022, 31, 395–408. [Google Scholar] [CrossRef]
- Merino, A.; Chávez-Vergara, B.; Salgado, J.; Fonturbel, M.T.; García-Oliva, F.; Vega, J.A. Variability in the composition of charred litter generated by wildfire in different ecosystems. Catena 2015, 133, 52–63. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Wiedemeier, D.B.; Abiven, S.; Hockaday, W.C.; Keiluweit, M.; Kleber, M.; Masiello, C.A.; McBeath, A.V.; Nico, P.S.; Pyle, L.A.; Schneider, M.P.W.; et al. Aromaticity and degree of aromatic condensation of char. Org. Geochem. 2015, 78, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Knicker, H.; Hilscher, A.; González-Vila, F.J.; Almendros, G. A new conceptual model for the structural properties of char produced during vegetation fires. Org. Geochem. 2008, 39, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Knicker, H. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quat. Int. 2011, 243, 251–263. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effect of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Leifeld, J. Thermal stability of black carbon characterised by oxidative differential scanning calorimetry. Org. Geochem. 2007, 38, 112–127. [Google Scholar] [CrossRef]
- Harvey, O.R.; Kuo, L.-J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert, B.E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (Biochars). Environ. Sci. Technol. 2012, 46, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Santín, C.; Doerr, S.H.; Merino, A.; Bucheli, T.D.; Bryant, R.; Ascough, P.; Gao, X.; Masiello, C.A. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci. Rep. 2017, 7, 11233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, A.; Fonturbel, M.T.; Fernández, C.; Chávez-Vergara, B.; García-Oliva, F.; Vega, J.A. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Sci. Total Environ. 2018, 627, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Krasnoshchekov, Y.N. Soils of ous forests and their transformation under the impact of fires in Baikal region. Eurasian Soil Sci. 2018, 51, 371–384. [Google Scholar] [CrossRef]
- Dymov, A.A.; Startsev, V.V.; Yakovleva, E.V.; Dubrovskiy, Y.A.; Milanovsky, E.Y.; Severgina, D.A.; Panov, A.V.; Prokushkin, A.S. Fire-induced alterations of soil properties in albic podzols developed under pine forests (middle taiga, Krasnoyarsky Kray). Fire 2023, 6, 67. [Google Scholar] [CrossRef]
- Shapchenkova, O.A.; Krasnoshchekov, Y.N.; Loskutov, S.R. Application of the methods of thermal analysis for the assessment of organic matter in postpyrogenic soils. Eurasian Soil Sci. 2011, 44, 677–685. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Natural Resources and Environment of the Russian Federation. On Approval of the List of Forest Zones in the Russian Federation and the List of Forest Regions of the Russian Federation; Decree of the Ministry of Natural Resources and Environment of the Russian Federation No. 367 of 18 August 2014; Revised on 19 February 2019; Ministry of Natural Resources and Environment of the Russian Federation: Moscow, Russia, 2019. (In Russian) [Google Scholar]
- Sofronov, M.A.; Volokitina, A.V.; Sofronova, T.M. Wildfires in Mountain Forests; Russian Academy of Sciences: Krasnoyarsk, Russia, 2008; p. 388. (In Russian) [Google Scholar]
- Furyaev, V.V. Pyrological regimes and dynamics of the southern taiga forests in Siberia. In Fire in Ecosystems of Boreal Eurasia; Goldammer, J.G., Furyaev, V.V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 168–185. Available online: https://link.springer.com/book/10.1007/978-94-015-8737-2 (accessed on 10 July 2023).
- Ivanova, G.A.; Ivanov, A.V. Wildfires in Pine Forests of Central Siberia; Nauka: Novosibirsk, Russia, 2015; p. 240. (In Russian) [Google Scholar]
- Kurbatsky, N.P. Forest Fire Suppression Procedures and Tactics; Goslesbumizdat: Moscow, Russia, 1962; p. 154. (In Russian) [Google Scholar]
- Rosleskhoz Directive. About Approval of Instructions on Estimating Damage Caused by Forest Fires; No. 53 from 03.04.1998. Available online: https://docs.cntd.ru/document/901863083 (accessed on 10 July 2023). (In Russian).
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- Campo, J.; Merino, A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Glob. Chang. Biol. 2016, 22, 1942–1956. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cellul. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Waters, C.L.; Janupala, R.R.; Mallinson, R.G.; Lobban, L.L. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. J. Anal. Appl. Pyrolysis 2017, 126, 380–389. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Sanchez-Monedero, M.A.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef] [Green Version]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural changes of oak wood main components caused by thermal modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach in Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; van Dam, J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. [Google Scholar] [CrossRef]
- Shi, J.; Xing, D.; Lia, J. FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 2012, 16, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Pozo, C.; Díaz-Visurraga, J.; Contreras, D.; Freer, J.; Rodríguez, J. Characterization of temporal biodegradation of radiata pine by Gloeophyllum trabeum through principal component analysis-based two-dimensional correlation. J. Chil. Chem. Soc. 2016, 61, 2878–2883. [Google Scholar] [CrossRef] [Green Version]
- Guizani, C.; Jeguirim, M.; Valin, S.; Limousy, L.; Salvador, S. Biomass Chars: The effects of pyrolysis conditions on their morphology, structure, chemical properties and reactivity. Energies 2017, 10, 796. [Google Scholar] [CrossRef] [Green Version]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas. Cienc. Y Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Y.; Cheng, S.-C.; Li, D.; Wang, S.-N.; Huang, A.-M.; Sun, S.-Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015, 26, 221–225. [Google Scholar] [CrossRef]
- Tomak, E.D.; Topaloglu, E.; Gumuskaya, E.; Yildiz, U.C.; Ay, N. An FTIR study of the changes in chemical composition of bamboo degraded by brown-rot fungi. Int. Biodeterior. Biodegrad. 2013, 85, 131–138. [Google Scholar] [CrossRef]
- Elnour, A.Y.; Alghyamah, A.A.; Shaikh, H.M.; Poulose, A.M.; Al-Zahrani, S.M.; Anis, A.; Al-Wabel, M.I. Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Appl. Sci. 2019, 9, 1149. [Google Scholar] [CrossRef] [Green Version]
- Mastrolonardo, G.; Hudspith, V.A.; Francioso, O.; Rumpel, C.; Montecchio, D.; Doerr, S.H.; Certini, G. Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer. Sci. Total Environ. 2017, 595, 461–471. [Google Scholar] [CrossRef]
- Jozanikohan, G.; Abarghooei, M.N. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. J. Petrol. Explor. Prod. Technol. 2022, 12, 2093–2106. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Merino, A.; Ferreiro, A.; Salgado, J.; Fontúrbel, M.T.; Barros, N.; Fernández, C.; Vega, J.A. Use of thermal analysis and solid-state 13C CP-MAS NMR spectroscopy to diagnose organic matter quality in relation to burn severity in Atlantic soils. Geoderma 2014, 226–227, 376–386. [Google Scholar] [CrossRef]
- Preston, C.; Schmidt, M.W. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 2006, 3, 397–420. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez y Silva, F.; Guijarro, M.; Madrigal, J.; Jiménez, E.; Molina, J.R.; Hernando, C.; Vélez, R.; Vega, J.A. Assessment of crown fire initiation and spread models in Mediterranean conifer forests by using data from field and laboratory experiments. For. Syst. 2017, 26, e02S. [Google Scholar] [CrossRef] [Green Version]
- Valendik, E.N.; Sukhinin, A.I.; Kosov, I.V. Influence of Lowland Fires on the Stability of Conifers; V.N. Sukachev Institute of Forest SB RAS: Krasnoyarsk, Russia, 2006; p. 98. (In Russian) [Google Scholar]
- Ivanova, G.A.; Kukavskaya, E.A.; Bezkorovainaya, I.N.; Bogorodskaya, A.V.; Zhila, S.V.; Ivanov, V.A.; Kovaleva, N.M.; Krasnoshchekova, E.N.; Tarasov, P.A. Impact of Fires on the Light Coniferous Forests of Angara Region; Nauka: Novosibirsk, Russia, 2022; p. 204. (In Russian) [Google Scholar]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef]
Plot | Coordinates | Stand Characteristics | Fire Characteristics | |||||
---|---|---|---|---|---|---|---|---|
Tree Species Composition * | DBH (cm) | Height (m) | Age (Years) | Basal Area (m2/ha) | Fire Type | Fire Severity | ||
1 | 53°32′58″ N 91°50′2″ E | 10P | 27.7 | 28.8 | 55 | 43.7 | crown | high |
2 | 53°16′51″ N 90°0′30″ E | 10L | 23.3 | 13.4 | 40 | 13.2 | surface | high |
3 | 56°19′6″ N 89°45′13″ E | 8S2B | 32.7 | 27.2 | 70 | 40.2 | surface | moderate |
4 | 55°51′32″ N 94°15′58″ E | 10B | 27.4 | 24.1 | 70 | 35.4 | surface | high |
Components | Unburned Samples at Control Plots | PyOM Samples at Burned Plots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mass Loss (%) | Residual Mass (%) | T50 (°C) | R50 | Mass Loss (%) | Residual Mass (%) | T50 (°C) | R50 | |||
Ther- molabile | Ther- mostable | Ther- molabile | Ther- mostable | |||||||
Plot 1. Scots pine forest | ||||||||||
Tree bark | 44.09 (1.45) | 43.07 (1.63) | 4.96 (1.66) | 357 (10) | 0.43 (0.01) | 12.96 (1.81) | 79.05 (3.11) | 4.31 (1.51) | 446 (5) | 0.54 (0.01) |
Down wood | 58.56 (2.14) | 31.22 (3.02) | 4.13 (0.98) | 328 (1) | 0.40 (0.001) | 15.40 (6.79) | 73.72 (5.86) | 7.39 (1.70) | 420 (12) | 0.51 (0.01) |
Cone | 48.57 (2.96) | 42.11 (2.80) | 1.56 (0.46) | 351 (11) | 0.43 (0.01) | (20.67) (8.26) | 70.23 (7.85) | 4.56 (1.54) | 424 (13) | 0.51 (0.02) |
Forest floor | 54.32 (1.28) | 32.38 (1.35) | 6.59 (1.30) | 335 (1) | 0.41 (0.002) | 24.56 (7.99) | 50.97 (12.41) | 17.65 (5.21) | 403 (22) | 0.49 (0.03) |
Plot 2. Larch forest | ||||||||||
Tree bark | 49.75 (1.40) | 38.54 (1.18) | 3.50 (0.66) | 348 (4) | 0.42 (0.005) | 20.80 (4.50) | 70.06 (5.62) | 3.94 (0.58) | 433 (16) | 0.53 (0.02) |
Down wood | 57.61 (1.30) | 32.18 (0.82) | 3.49 (0.29) | 335 (3) | 0.41 (0.003) | 12.77 (7.23) | 74.15 (12.58) | 8.19 (3.02) | 433 (28) | 0.53 (0.03) |
Cone | 50.33 (0.85) | 39.76 (0.86) | 1.45 (0.15) | 346 (3) | 0.42 (0.003) | 24.96 (9.98) | 64.35 (10.41) | 4.64 (0.42) | 410 (13) | 0.50 (0.02) |
Forest floor | 57.82 (2.98) | 26.72 (1.22) | 6.37 (1.70) | 330 (2) | 0.40 (0.002) | 30.83 (4.19) | 41.89 (6.06) | 19.79 (2.42) | 385 (12) | 0.47 (0.02) |
Plot 3. Spruce forest | ||||||||||
Tree bark | 49.52 (2.57) | 37.29 (2.21) | 4.73 (1.17) | 344 (4) | 0.42 (0.01) | 17.43 (6.21) | 70.05 (6.50) | 6.64 (1.38) | 427 (15) | 0.52 (0.02) |
Down wood | 56.53 (2.42) | 33.75 (1.69) | 3.39 (0.63) | 335 (2) | 0.41 (0.002) | 28.34 (6.16) | 57.41 (8.24) | 8.83 (2.20) | 404 (10) | 0.49 (0.01) |
Cone | 41.41 (3.80) | 43.50 (3.13) | 2.97 (0.61) | 365 (7) | 0.44 (0.01) | 32.87 (4.19) | 53.63 (3.34) | 5.51 (1.63) | 396 (7) | 0.48 (0.01) |
Forest floor | 51.17 (1.25) | 29.71 (0.58) | 8.66 (0.73) | 339 (8) | 0.41 (0.01) | 35.75 (4.84) | 37.70 (9.51) | 17.25 (7.62) | 367 (15) | 0.45 (0.02) |
Plot 4. Birch forest | ||||||||||
Tree bark | 48.62 (3.47) | 39.16 (1.99) | 4.89 (2.04) | 360 (5) | 0.44 (0.01) | 22.86 (5.97) | 67.78 (5.18) | 4.62 (0.32) | 427 (8) | 0.52 (0.01) |
Forest floor | 52.92 (1.70) | 26.89 (0.89) | 9.14 (1.21) | 332 (2) | 0.40 (0.002) | 23.56 (4.45) | 37.17 (1.27) | 30.42 (6.19) | 399 (9) | 0.48 (0.01) |
Components | Unburned Samples at Control Plots | PyOM Samples at Burned Plots | ||||||
---|---|---|---|---|---|---|---|---|
Q (kJ/g) | Q1 (%) | Q2 (%) | Q3 (%) | Q (kJ/g) | Q1 (%) | Q2 (%) | Q3 (%) | |
Plot 1. Scots pine forest | ||||||||
Tree bark | 11.3 (0.7) | 33.9 (3.9) | 51.3 (4.8) | 14.8 (8.6) | 22.8 (2.9) | 20.9 (1.2) | 43.8 (1.9) | 35.3 (2.4) |
Down wood | 11.0 (0.6) | 32.2 (1.4) | 53.4 (1.0) | 14.3 (1.7) | 24.2 (3.5) | 23.7 (6.0) | 62.9 (6.0) | 13.4 (6.2) |
Cone | 12.2 (1.3) | 26.2 (2.9) | 47.5 (1.3) | 26.3 (3.2) | 21.3 (2.0) | 21.9 (3.5) | 52.7 (5.0) | 25.4 (7.2) |
Forest floor | 11.5 (0.6) | 37.5 (1.1) | 53.8 (0.8) | 8.7 (1.1) | 16.6 (2.5) | 26.2 (6.4) | 51.5 (2.0) | 22.4 (2.0) |
Plot 2. Larch forest | ||||||||
Tree bark | 12.6 (1.0) | 34.2 (1.2) | 49.3 (3.0) | 16.5 (4.1) | 20.9 (1.8) | 23.3 (2.5) | 39.5 (2.5) | 37.1 (4.9) |
Down wood | 11.9 (0.9) | 34.0 (0.4) | 59.0 (1.2) | 7.1 (1.3) | 24.4 (2.4) | 21.8 (8.0) | 52.7 (8.3) | 25.5 (15.9) |
Cone | 11.4 (1.2) | 29.2 (0.9) | 52.4 (5.8) | 18.4 (5.3) | 21.0 (5.5) | 26.7 (4.2) | 60.3 (6.4) | 13.0 (5.7) |
Forest floor | 11.7 (0.5) | 38.7 (1.7) | 50.5 (0.7) | 10.8 (1.3) | 16.4 (2.0) | 32.1 (3.9) | 50.0 (1.5) | 17.8 (4.8) |
Plot 3. Spruce forest | ||||||||
Tree bark | 13.1 (0.9) | 35.6 (1.8) | 54.7 (2.6) | 9.7 (2.5) | 20.0 (2.1) | 21.7 (4.3) | 53.7 (3.4) | 24.6 (7.2) |
Down wood | 12.1 (0.7) | 36.1 (1.2) | 52.7 (1.1) | 11.2 (0.4) | 18.8 (2.0) | 31.5 (4.8) | 56.2 (11.3) | 14.3 (6.4) |
Cone | 13.8 (1.0) | 27.2 (3.0) | 61.5 (5.3) | 11.3 (2.7) | 18.0 (1.9) | 29.4 (2.2) | 57.0 (1.3) | 13.6 (1.9) |
Forest floor | 12.8 (0.5) | 38.8 (0.4) | 51.4 (0.1) | 9.8 (0.4) | 12.9 (1.0) | 38.2 (2.1) | 46.6 (2.3) | 15.2 (0.9) |
Plot 4. Birch forest | ||||||||
Tree bark | 14.1 (1.1) | 31.4 (4.5) | 42.2 (4.2) | 26.4 (8.6) | 22.8 (1.6) | 20.7 (3.0) | 54.1 (5.2) | 25.1 (7.1) |
Forest floor | 11.8 (1.2) | 40.3 (1.5) | 45.0 (2.4) | 14.7 (3.8) | 13.2 (2.2) | 33.7 (1.3) | 46.3 (1.5) | 20.0 (1.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapchenkova, O.A.; Loskutov, S.R.; Kukavskaya, E.A. Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia. Fire 2023, 6, 304. https://doi.org/10.3390/fire6080304
Shapchenkova OA, Loskutov SR, Kukavskaya EA. Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia. Fire. 2023; 6(8):304. https://doi.org/10.3390/fire6080304
Chicago/Turabian StyleShapchenkova, Olga A., Sergei R. Loskutov, and Elena A. Kukavskaya. 2023. "Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia" Fire 6, no. 8: 304. https://doi.org/10.3390/fire6080304
APA StyleShapchenkova, O. A., Loskutov, S. R., & Kukavskaya, E. A. (2023). Alteration of Organic Matter during Wildfires in the Forests of Southern Siberia. Fire, 6(8), 304. https://doi.org/10.3390/fire6080304