Numerical Simulation of Downward Flame Propagation in Discontinuous Region of Solid Fuel
Abstract
:1. Introduction
2. Numerical Model
2.1. Solid-Phase Heat Transfer Model
2.2. Gas-Phase Heat Transfer and Component Diffusion Model
2.3. Gas-Phase Flow Model
2.4. Boundary Conditions
2.5. Solving Method and Parameters
3. Results and Discussion
3.1. Temperature Field in Discontinuous Region
3.2. Gas-Phase Reaction during Flame Spread in Discontinuous Region
3.3. Analysis of Flame Spread in Discontinuous Region
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, Z.; Wen, L.; Meng, H.; Wang, W.; Huang, X. The flame spread performance over discrete wooden chips varying wood species. Therm. Sci. Eng. Prog. 2023, 39, 101674. [Google Scholar] [CrossRef]
- Wichman, I.S.; Williams, F.A. Comments on Rates of Creeping Spread of Flames over Thermally Thin Fuels. Combust. Sci. Technol. 1983, 33, 207–214. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.; Ray, S.; Glassman, I. Downward flame spread in an opposed forced flow. Combust. Sci. Technol. 1978, 19, 19–30. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.; Williams, F.A. Laminar flame spread over PMMA surfaces. Symp. Combust. 1975, 15, 217–231. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.C.; Santoro, R.J. On the dominant mode of heat transfer in downward flame spread. Symp. Combust. 1979, 17, 1201–1209. [Google Scholar] [CrossRef]
- Fernández-Tarrazo, E.; Liñán, A. Flame spread over solid fuels in opposite natural convection. Proc. Combust. Inst. 2002, 29, 219–225. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.; Williams, F.A. A theory of laminar flame spread over flat surfaces of solid combustibles. Combust. Flame 1977, 28, 251–277. [Google Scholar] [CrossRef]
- Tolejko, K.; Feier, I.I.; T’ien, J.S. Effects of fuel Lewis number on flame spread over solids. Proc. Combust. Inst. 2005, 30, 2263–2270. [Google Scholar] [CrossRef]
- Johnston, M.C.; T’Ien, J.S.; Muff, D.E.; Zhao, X.; Olson, S.L.; Ferkul, P.V. Self induced buoyant blow off in upward flame spread on thin solid fuels. Fire Saf. J. 2015, 71, 279–286. [Google Scholar] [CrossRef]
- Dl Blasi, C.; Continillo, G.; Crescitelli, S.; Russo, G. Numerical Simulation of Opposed Flow Flame Spread over a Thermally Thick Solid Fuel. Combust. Sci. Technol. 1987, 54, 25–36. [Google Scholar] [CrossRef]
- Blasi, C.D.; Wichman, I.S. Effects of solid-phase properties on flames spreading over composite materials. Combust. Flame 1995, 102, 229–240. [Google Scholar] [CrossRef]
- Rangwala, A.S. Flame Spread Analysis Using a Variable B-Number; University of California: San Diego, CA, USA, 2006. [Google Scholar]
- Jiang, L.; Miller, C.H.; Gollner, M.J.; Sun, J.H. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc. Combust. Inst. 2017, 36, 2987–2994. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Q.; Zhang, Y.; Yin, Y.; Sun, J. Thickness effect on flame spread characteristics of expanded polystyrene in different environments. J. Thermoplast. Compos. Mater. 2012, 25, 427–438. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Tang, K.; Lin, Y. Surface inclination effects on heat transfer during flame spread acceleration based on FireFOAM. Case Stud. Therm. Eng. 2022, 32, 101905. [Google Scholar] [CrossRef]
- You, F.; Hu, Y. Reaction-to-fire properties and fire spread properties of metal-skinned expanded polystyrene foam sandwich panel. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 2012, 18, 228–236. [Google Scholar]
- Moallemi, M.K.; Zhang, H.; Kumar, S. Numerical modeling of two-dimensional smoldering processes. Combust. Flame 1993, 95, 170–182. [Google Scholar] [CrossRef]
- Moallemi, M.K.; Zhang, H. Two-Dimensional Numerical Modeling of Laminar Flame Spread over Porous Solid Fuel; NIST: Gaithersburg, MD, USA, 1993; p. 19. [Google Scholar]
- Gollner, M.J.; Xie, Y.; Lee, M.; Nakamura, Y.; Rangwala, A.S. Burning behavior of vertical matchstick arrays. Combust. Sci. Technol. 2012, 184, 585–607. [Google Scholar] [CrossRef]
- Jiang, L.; Zhao, Z.; Tang, W.; Miller, C.; Sun, J.-H.; Gollner, M.J. Flame spread and burning rates through vertical arrays of wooden dowels. Proc. Combust. Inst. 2019, 37, 3767–3774. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, Y.; Zhang, H. Numerical study on opposed-flow flame spread over discrete fuels—The influence of gap size and opposed-flow velocity. Fuel 2021, 283, 118862. [Google Scholar] [CrossRef]
- Bu, R.; Zhou, Y.; Fan, C.; Wang, Z. Understanding the effects of inclination angle and fuel bed width on concurrent flame spread over discrete fuel arrays. Fuel 2021, 289, 119924. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, K.; Xu, M.; Yang, W.; Zhu, F.; Sun, B.; Wang, X.; Ke, W. Influence of air-gap and thickness on the upward flame spread over discrete wood chips. Therm. Sci. Eng. Prog. 2021, 26, 101106. [Google Scholar] [CrossRef]
- Wu, K.-K.; Chen, C.-H. A numerical analysis of ignition to steady downward flame spread over a thin solid fuel. Combust. Sci. Technol. 2003, 175, 933–964. [Google Scholar] [CrossRef]
- Paolini, C.P.; Udgaonkar, A.; Bhattacharjee, S.; Takahashi, S.; Wakai, K. A numerical investigation of flame geometry in opposed flow flame spread over thin fuels. In Proceedings of the 5th Asia-Pacific Conference on Combustion, Adelaide, SA, Australia, 17–20 July 2005; pp. 273–276. [Google Scholar]
- Yamamoto, K.; Ogata, Y.; Yamashita, H. Flame structure and flame spread rate over a solid fuel in partially premixed atmospheres. Proc. Combust. Inst. 2011, 33, 2441–2448. [Google Scholar] [CrossRef]
- Ananth, R.; Ndubizu, C.C.; Tatem, P.A. Burning rate distributions for boundary layer flow combustion of a PMMA plate in forced flow. Combust. Flame 2003, 135, 35–55. [Google Scholar] [CrossRef]
- Zheng, G.Y.; Wichman, I.S.; Benard, A. Opposed-flow flame spread over polymeric materials: Influence of phase change. Combust. Flame 2001, 124, 387–408. [Google Scholar] [CrossRef]
- Juste, G.L.; Contat-Rodrigo, L. Temperature field reconstruction from phase-map obtained with moiré deflectometry in diffusion flame on solids. Combust. Sci. Technol. 2007, 179, 1287–1302. [Google Scholar] [CrossRef]
- Shaklein, A.A.; Bolkisev, A.A.; Karpov, A.I.; Korobeinichev, O.P.; Trubachev, S.A. Two-step gas-phase reaction model for the combustion of polymeric fuel. Fuel 2019, 255, 115878. [Google Scholar] [CrossRef]
- Ayani, M.B.; Esfahani, J.A.; Sousa, A.C.M. The effect of surface regression on the downward flame spread over a solid fuel in a quiescent ambient. Therm. Sci. 2007, 11, 67–86. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; King, M.D.; Paolini, C. Structure of downward spreading flames: A comparison of numerical simulation, experimental results and a simplified parabolic theory. Combust. Theory Model. 2006, 8, 23–39. [Google Scholar] [CrossRef]
- Singh, A.V.; Gollner, M.J. A methodology for estimation of local heat fluxes in steady laminar boundary layer diffusion flames. Combust. Flame 2015, 162, 2214–2230. [Google Scholar] [CrossRef]
- Diblasi, C. Processes of Flames Spreading over the Surface of Charring Fuels—Effects of the Solid Thickness. Combust. Flame 1994, 97, 225–239. [Google Scholar] [CrossRef]
- Kumar, C.; Kumar, A. Gravity modulation study on opposed flame spread over thin solid fuels. Proc. Combust. Inst. 2013, 34, 2675–2682. [Google Scholar] [CrossRef]
- Sibulkin, M.; Kim, J. The dependence of flame propagation on surface heat transfer I. Downward burning. Combust. Sci. Technol. 1976, 14, 43–56. [Google Scholar] [CrossRef]
- Williams, F. Mechanisms of fire spread. Symp. Combust. 1977, 16, 1281–1294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Luo, S.; Zhao, Y.; Zeng, Y.; Wu, G.; Wei, R.; Sun, S. Numerical Simulation of Downward Flame Propagation in Discontinuous Region of Solid Fuel. Fire 2023, 6, 207. https://doi.org/10.3390/fire6050207
Zhu Y, Luo S, Zhao Y, Zeng Y, Wu G, Wei R, Sun S. Numerical Simulation of Downward Flame Propagation in Discontinuous Region of Solid Fuel. Fire. 2023; 6(5):207. https://doi.org/10.3390/fire6050207
Chicago/Turabian StyleZhu, Yeming, Shengfeng Luo, Yanli Zhao, Yiping Zeng, Guohua Wu, Ruichao Wei, and Shutang Sun. 2023. "Numerical Simulation of Downward Flame Propagation in Discontinuous Region of Solid Fuel" Fire 6, no. 5: 207. https://doi.org/10.3390/fire6050207
APA StyleZhu, Y., Luo, S., Zhao, Y., Zeng, Y., Wu, G., Wei, R., & Sun, S. (2023). Numerical Simulation of Downward Flame Propagation in Discontinuous Region of Solid Fuel. Fire, 6(5), 207. https://doi.org/10.3390/fire6050207