Intense Wildfires in Russia over a 22-Year Period According to Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
- Surface air temperature;
- Relative humidity;
- Geopotential height at 500 hPa.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bondur, V.G. Satellite monitoring of wildfires during the anomalous heat wave of 2010 in Russia. Izv. Atmos. Ocean. Phys. 2011, 47, 1039–1048. [Google Scholar] [CrossRef]
- Bondur, V.G. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia. Izv. Atmos. Ocean. Phys. 2016, 52, 1078–1091. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gordo, K.A.; Kladov, V.L. Spacetime distributions of wildfire areas and emissions of carboncontaining gases and aerosols in northern Eurasia according to satellite-monitoring data. Izv. Atmos. Ocean. Phys. 2017, 53, 859–874. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Shchepashchenko, D.G.; Vaganov, E.A.; Sukhinin, A.I.; Maksyutov, S.S.; McCallum, I.; Lakyda, I.P. Impact of Wildfire in Russia between 1998–2010 on Ecosystems and the Global Carbon Budget. Dokl. Earth Sci. 2011, 441, 1678–1682. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Egorov, V.A.; Efremov, V.Y.; Loupian, E.A.; Stytsenko, F.V.; Flitman, E.V. Integrated burnt area assessment based on combine use of multi-resolution MODIS and Landsat-TM/ETM+ satellite data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2012, 9, 9–26. (In Russian) [Google Scholar]
- Tomshin, O.A.; Solovyev, V.S. Features of forest fire activity in boreal forests of the permafrost region of Eastern Siberia. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 2018, 15, 261–271. (In Russian) [Google Scholar] [CrossRef]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [Green Version]
- Crockett, J.L.; Westerling, A.L. Greater temperature and precipitation extremes intensify Western, U.S. droughts, wildfire severity, and sierra Nevada tree mortality. J. Clim. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Trauernicht, C. Vegetation-Rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii. Sci. Total Environ. 2019, 650, 459–469. [Google Scholar] [CrossRef]
- Bondur, V.G.; Tsidilina, M.N.; Kladov, V.L.; Gordo, K.A. Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data. Dokl. Earth Sci. 2019, 485, 461–464. [Google Scholar] [CrossRef]
- Bondur, V.G.; Tsidilina, M.N.; Cherepanova, E.V. Satellite monitoring of wildfire impacts on the conditions of various types of vegetation cover in the federal districts of the Russian Federation. Izv. Atmos. Ocean. Phys. 2019, 55, 1238–1253. [Google Scholar] [CrossRef]
- Bondur, V.G.; Voronova, O.S.; Cherepanova, E.V.; Tsidilina, M.N.; Zima, A.L. Spatiotemporal Analysis of Multi-Year Wildfires and Emissions of Trace Gases and Aerosols in Russia Based on Satellite Data. Izv. Atmos. Ocean. Phys. 2020, 56, 1457–1469. [Google Scholar] [CrossRef]
- Bondur, V.G.; Mokhov, I.I.; Voronova, O.S.; Sitnov, S.A. Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes. Dokl. Earth Sci. 2020, 492, 370–375. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Semenov, V.A.; Khon, V.C. Estimates of possible regional hydrologic regime changes in the 21st century based on global climate models. Izv. Atmos. Ocean. Phys. 2003, 39, 130–144. [Google Scholar]
- Zhong, S.; Yu, L.; Heilman, W.E.; Bian, X.; Fromm, H. Synoptic weather patterns for large wildfires in the northwestern United States—A climatological analysis using three classification methods. Theor. Appl. Climatol. 2020, 141, 1057–1073. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Bondur, V.G.; Sitnov, S.A.; Voronova, O.S. Satellite Monitoring of Wildfires and Emissions into the Atmosphere of Combustion Products in Russia: Relation to Atmospheric Blockings. Dokl. Earth Sci. 2020, 495, 921–924. [Google Scholar] [CrossRef]
- Mokhov, I.I. Russian climate research in 2015–2018. Izv. Atmos. Ocean. Phys. 2020, 56, 325–343. [Google Scholar] [CrossRef]
- Earl, N.; Simmonds, I. Spatial and temporal variability and trends in 2001–2016 global fire activity. J. Geophys. Res. Atmos. 2018, 123, 2524–2536. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gordo, K.A.; Voronova, O.S.; Zima, A.L. Satellite Monitoring of Anomalous Wildfires in Australia. Front. Earth Sci. 2021, 8, 617252. [Google Scholar] [CrossRef]
- Bondur, V.G.; Voronova, O.S.; Gordo, K.A.; Zima, A.L. Satellite Monitoring of the Variability of Wildfire Areas and Emissions of Harmful Gas Components into the Atmosphere for Various Regions of Russia over a 20-Year Period. Dokl. Earth Sci. 2021, 500, 890–894. [Google Scholar] [CrossRef]
- Voronova, O.S.; Gordo, K.A.; Zima, A.L.; Feoktistova, N.V. Strong Natural Fires in the Russian Federation in 2021 Detected Using Satellite Data. Izv. Atmos. Ocean. Phys. 2022, 58, 1065–1076. [Google Scholar] [CrossRef]
- Chen, D.; Pereira, J.M.C.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and burned area data. Appl. Geogr. 2017, 85, 14–26. [Google Scholar] [CrossRef]
- Wei, X.; Wang, G.; Chen, T.; Hagan, D.F.T.; Ullah, W. A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sens. 2020, 12, 1787. [Google Scholar] [CrossRef]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Kganyago, M.; Shikwambana, L. Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products. Remote Sens. 2020, 12, 1803. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Metsaranta, J.M.; Landry, R.; Fraser, R.H.; Raymond, D.; Gartrell, M.; Decker, V.; Little, J. Generating Annual Estimates of Forest Fire Disturbance in Canada: The National Burned Area Composite. Int. J. Wildland Fire. 2020, 29, 878–891. [Google Scholar] [CrossRef]
- Ardakani, A.S.; Valadan Zoej, M.J.; Mohammadzadeh, A.; Mansourian, A. Spatial and temporal analysis of fires detected by MODIS data in northern iran from 2001 to 2008. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 216–225. [Google Scholar] [CrossRef]
- Filkov, A.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Desservettaz, M.; Paton-Walsh, C.; Griffith, D.W.; Kettlewell, G.; Keywood, M.D.; Vanderschoot, M.V.; Ward, J.; Mallet, M.D.; Milic, A.; Miljevic, B.; et al. Emission factors of trace gases and particles from tropical savanna fires in Australia. J. Geophys. Res. Atmos. 2017, 122, 6059–6074. [Google Scholar] [CrossRef]
- Silva, C.V.; Aragão, L.E.; Barlow, J.; Espirito-Santo, F.; Young, P.J.; Anderson, L.O.; Farias, R. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20180043. [Google Scholar] [CrossRef] [Green Version]
- Vadrevu, K.; Csiszar, I.; Ellicott, E.A.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot Analysis of Vegetation Fires and Intensity in the Indian Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 224–238. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, I.; Grégoire, J.; Simonetti, D.; Punga, M. Spatio-temp oral distribution of fire activity in protected areas of Sub-Saharan Africa derived from MODIS data. Procedia Environ. Sci. 2011, 7, 26–31. [Google Scholar] [CrossRef]
- Molinario, G.; Davies, D.K.; Schroeder, W.; Justice, C.O. Characterizing the spatio-temporal fire regime in Ethiopia using the MODIS-active fire product: A replicable methodology for country-level fire reporting. Afr. Geogr. Rev. 2014, 33, 99–123. [Google Scholar] [CrossRef]
- Heisig, J.; Olson, E.; Pebesma, E. Predicting Wildfire Fuels and Hazard in a Central European Temperate Forest Using Active and Passive. Fire 2022, 5, 29. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gordo, K.A. Satellite monitoring of burnt-out areas and emissions of harmful contaminants due to forest and other wildfires in Russia. Izv. Atmos. Ocean. Phys. 2018, 54, 955–965. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The Modis fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Kaufman, Y.; Remen, L.; Ottmar, R.; Ward, D.; Rong, R.L.; Kleifman, R.; Fraser, R.; Flynn, L.; McDougal, D.; Shelton, G. Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment. In Global Biomass Burning; Levine, J., Ed.; MIT Press: Cambridge, MA, USA, 1996; pp. 685–696. [Google Scholar]
- Wooster, M.J. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 2002, 29, 2027. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bondur, V.G.; Gordo, K.A.; Zima, A.L. Satellite research of wildfire effects on the territory of Russia for various types of vegetation cover. Issled. Zemli Kosm. 2022, 74–86. (In Russian) [Google Scholar] [CrossRef]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Intern. J. Wildland Fire. 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Tian, B.; Manning, E.; Fetzer, E.; Olsen, E.; Wong, S.; Susskind, J.; Iredell, L. AIRS/AMSU/HSB Version 6 Level 3 Product User Guide; Tech Rep; Jet Propulsion Laboratory: Pasadena, CA, USA, 2013. [Google Scholar]
- Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Timazhev, A.V. Atmospheric Blocking and Changes in Its Frequency in the 21st Century Simulated with the Ensemble of Climate Models. Russ. Meteorol. Hydrol. 2019, 44, 369–377. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Sitnov, S.A.; Tsidilina, M.N.; Voronova, O.S. Relation between pyrogenic NO2 emissions from wildfires in Russia and atmospheric blocking events. Atmos. Ocean. Opt. 2021, 34, 503–506. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Timazhev, A.V. Assessing the probability of El Niño-related weather and climate anomalies in Russian regions. Russ. Meteorol. Hydrol. 2017, 42, 635–643. [Google Scholar] [CrossRef]
- Lupo, A.R.; Smith, P.J. Climatological features of blocking anticyclones in the Northern Hemisphere. Tellus A Dyn. Meteorol. Oceanogr. 1995, 47, 439–456. [Google Scholar] [CrossRef] [Green Version]
- Pelly, J.L.; Hoskins, B.J. A New Perspective on Blocking. J. Atmos. Sci. 2003, 60, 743–755. [Google Scholar] [CrossRef]
- Sitnov, S.A.; Mokhov, I.I. Anomalous transboundary transport of the products of biomass burning from North American wildfires to Northern Eurasia. Dokl. Earth Sci. 2017, 475, 832–835. [Google Scholar] [CrossRef]
- Ser-Giacomi, E.; Vasile, R.; Recuerda, I.; HernándezGarcía, E.; López, C. Dominant transport pathways in an atmospheric blocking event. Chaos 2015, 25, 087413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, P.M.; Trigo, R.M.; Barriopedro, D.; Soares, P.M.M.; Santos, J.A. European temperature responses to blocking and ridge regional patterns. Clim. Dynam. 2018, 50, 457–477. [Google Scholar] [CrossRef]
- Woollings, T.; Barriopedro, D.; Methven, J.; Son, S.-W.; Martius, O.; Harvey, B.; Sillmann, J.; Lupo, A.R.; Seneviratne, S. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 2018, 4, 287–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kautz, L.-A.; Martius, O.; Pfahl, S.; Pinto, J.G.; Ramos, A.M.; Sousa, P.M.; Woolling, T. Atmospheric blocking and weather extremes over the Euro-Atlantic sector—A review. Weather Clim. Dynam. 2022, 3, 305–336. [Google Scholar] [CrossRef]
- Descals, A.; Gaveau, D.L.A.; Verger, A.; Sheil, D.; Naito, D.; Peñuelas, J. Unprecedented fire activity above the Arctic Circle linked to rising temperatures. Science 2022, 378, 532–537. [Google Scholar] [CrossRef]
- Voronova, O.S.; Zima, A.L.; Kladov, V.L.; Cherepanova, E.V. Anomalous Wildfires in Siberia in Summer 2019. Izv. Atmos. Ocean. Phys. 2020, 56, 1042–1052. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R. Global increase in wildfire potential from compound fire weather and drought. NPJ Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
MW | Number of Hotspots | Average Value, MW | Standard Deviation |
---|---|---|---|
FRP < 100 | 6,391,961 | 26.7 | 21.2 |
100 ≤ FRP < 500 | 622,583 | 187.4 | 89.1 |
500 ≤ FRP < 1000 | 42,382 | 675.8 | 135.1 |
1000 ≤ FRP < 1500 | 9050 | 1198.4 | 139.3 |
FRP ≥ 1500 | 7158 | 2226.6 | 921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondur, V.G.; Gordo, K.A.; Voronova, O.S.; Zima, A.L.; Feoktistova, N.V. Intense Wildfires in Russia over a 22-Year Period According to Satellite Data. Fire 2023, 6, 99. https://doi.org/10.3390/fire6030099
Bondur VG, Gordo KA, Voronova OS, Zima AL, Feoktistova NV. Intense Wildfires in Russia over a 22-Year Period According to Satellite Data. Fire. 2023; 6(3):99. https://doi.org/10.3390/fire6030099
Chicago/Turabian StyleBondur, Valery G., Kristina A. Gordo, Olga S. Voronova, Alla L. Zima, and Natalya V. Feoktistova. 2023. "Intense Wildfires in Russia over a 22-Year Period According to Satellite Data" Fire 6, no. 3: 99. https://doi.org/10.3390/fire6030099
APA StyleBondur, V. G., Gordo, K. A., Voronova, O. S., Zima, A. L., & Feoktistova, N. V. (2023). Intense Wildfires in Russia over a 22-Year Period According to Satellite Data. Fire, 6(3), 99. https://doi.org/10.3390/fire6030099