Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Forest Stand and Surface Fuel Characteristics of P. yunnanensis Forest
2.3. Sample Collection
2.4. Fuel Moisture and Fuel Loading
2.5. Isolation of Volatile Oils and Analysis
2.6. Lower Explosion Limit (LEL) Determination
2.7. Statistical Analysis
3. Results
3.1. Fuel Loading
3.2. Volatile Oil Contents in P. yunnanensis Live Branches and Surface Dead Fuel
3.3. Proportions of Volatile Oil Components in Live Branches and Surface Dead Fuel from P. yunnanensis Forest
3.4. Lower Explosion Limit (LEL)
3.5. Potential Space Filled with Flammable Gas Reaching the LEL
4. Discussion
4.1. Volatile Oils from P. yunnanensis Branches and Needles
4.2. Effect of Volatile Oil on Extreme Fire Behavior
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.W.; Wang, Q.H.; Xu, W.H.; Yan, X.X.; Long, T.T.; Wei, J.H.; Gao, Z.L. Review on “Deflagration” in Forest Fire. For. Inventory Plan 2021, 46, 61–66, 114. [Google Scholar]
- McAllister, S.; Weise, D.R. Effects of Season on Ignition of Live Wildland Fuels Using the Forced Ignition and Flame Spread Test Apparatus. Combust. Sci. Technol. 2017, 189, 231–247. [Google Scholar] [CrossRef]
- Courty, L.; Chetehouna, K.; Halter, F.; Foucher, F.; Garo, J.P.; Mounaim-Rousselle, C. Experimental determination of emission and laminar burning speeds of α-pinene. Combust. Flame 2012, 159, 1385–1392. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Rodríguez-Añón, J.A.; Proupín, J.; Mouriño, B.; Artiaga-Diaz, R. Energetic study of residual forest biomass using calorimetry and thermal analysis. J. Anal. Calorim. 2005, 80, 457–464. [Google Scholar] [CrossRef]
- Viegas, D.X.; Simeoni, A. Eruptive behavior of forest fires. Fire Technol. 2011, 47, 303–320. [Google Scholar] [CrossRef] [Green Version]
- Andrews, P.L. Current status and future needs of the Behave Plus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Finney, M.A.; Cohen, J.D.; Mc Allister, S.S.; Jolly, W.M. On the need for a theory of wildland fire spread. Int. J. Wildland Fire 2013, 22, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Rossa, C.G.; Fernandes, P.M. Live fuel moisture content: The ‘pea under the mattress’ of fire spread rate modeling? Fire 2018, 1, 43. [Google Scholar] [CrossRef] [Green Version]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; US Department of Agriculture: Ogden, UT, USA, 1972; Volume 40, p. 115. [Google Scholar]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; HuntJr, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Weise, D.R.; Zhou, X.; Sun, L.; Mahalingam, S. Fire spread in chaparral-‘go or no-go?’. Int. J. Wildland Fire 2005, 14, 99–106. [Google Scholar] [CrossRef]
- Page, W.G.; Jenkins, M.J.; Runyon, J.B. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage. Can. J. For. Res. 2012, 42, 1631–1647. [Google Scholar] [CrossRef] [Green Version]
- Campos-Ruiz, R.; Parisien, M.A.; Flannigan, M.D. Physicochemical characteristics controlling the flammability of live Pinus banksiana needles in central Alberta, Canada. Int. J. Wildland Fire 2022, 31, 857–870. [Google Scholar] [CrossRef]
- Della Rocca, G.; Danti, R.; Hernando, C.; Guijarro, M.; Michelozzi, M.; Carrillo, C.; Madrigal, J. Terpenoid Accumulation Links Plant Health and Flammability in the Cypress-Bark Canker Pathosystem. Forests 2020, 11, 651. [Google Scholar] [CrossRef]
- Alessio, G.A.; Penuelas, J.; De Lillis, M.; Llusia, J. Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol. 2008, 10, 123–128. [Google Scholar] [CrossRef]
- Alessio, G.A.; Penuelas, J.; Llusia, J.; Ogaya, R.; Estiarte, M.; De Lillis, M. Influence of water and terpenes on flammability in some dominant Mediterranean species. Int. J. Wildland Fire 2008, 17, 274–286. [Google Scholar] [CrossRef]
- Barboni, T.; Cannac, M.; Leoni, E.; Chiaramonti, N. Emission of biogenic volatile organic compounds involved in eruptive fire: Implications for the safety of firefighters. Int. J. Wildland Fire 2011, 20, 152–161. [Google Scholar] [CrossRef]
- Della Rocca, G.; Madrigal, J.; Marchi, E.; Michelozzi, M.; Moya, B.; Danti, R. Relevance of terpenoids on flammability of Mediterranean species: An experimental approach at a low radiant heat flux. IForest 2017, 10, 766–775. [Google Scholar] [CrossRef] [Green Version]
- De Lillis, M.; Bianco, P.M.; Loreto, F. The influence of leaf water content and terpenoids on flammability of some Mediterranean woody species. Int. J. Wildland Fire 2009, 18, 203–212. [Google Scholar] [CrossRef]
- White, C.S. Monoterpenes: Their effect on ecosystem nutrient cycling. J. Chem. Ecol. 1994, 20, 1381–1406. [Google Scholar] [CrossRef]
- Guerrero, F.; Hernández, C.; Toledo, M.; Espinoza, L.; Carrasco, Y.; Arriagada, A.; Muñoz, A.; Taborga, L.; Bergmann, J.; Carmona, C. Leaf thermal and chemical properties as natural drivers of plant flammability of native and exotic tree species of the Valparaíso region, Chile. Int. J. Environ. Res. Public Health 2021, 18, 7191. [Google Scholar] [CrossRef]
- Pausas, J.G.; Alessio, G.A.; Moreira, B.; Segarra-Moragues, J.G. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 2016, 180, 103–110. [Google Scholar] [CrossRef]
- Dewhirst, R.A.; Smirnoff, N.; Belcher, C.M. Pine Species That Support Crown Fire Regimes Have Lower Leaf-Level Terpene Contents Than Those Native to Surface Fire Regimes. Fire 2020, 3, 17. [Google Scholar] [CrossRef]
- Romero, B.; Fernandez, C.; Lecareux, C.; Ormeo, E.; Ganteaume, A. How terpene content affects fuel flammability of wildland–urban interface vegetation. Int. J. Wildland Fire 2019, 28, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Kleist, E.; Mentel, T.F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences 2012, 9, 5111–5123. [Google Scholar] [CrossRef] [Green Version]
- Kleiber, A.; Duan, Q.; Jansen, K.; Junker, L.V.; Kammerer, B.; Rennenberg, H.; Ensminger, I.; Gessler, A.; Kreuzwieser, J. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance. Tree Physiol. 2017, 37, 1648–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.L.; Wei, J.H.; Long, T.T.; Li, Z.; Zhou, R.L.; Shu, L.F.; Wang, Q.H. Response Law of Forest Fire Disasters of P. yunnanensis under of Climate Change. J. West China For. Sci. 2021, 50, 12–18. [Google Scholar]
- Wang, Q.H.; Li, W.; Liu, S.Y.; Ren, J.X.; Li, S.Y.; Liu, B. A Study on the Fire Environment of Forest Fire in Kunming Area. Acta Agric. Univ. Jiangxiensis Nat. Sci. Ed. 2015, 37, 108–113. [Google Scholar]
- Wang, Q.H.; Shu, L.F.; Li, S.Y. Study on spotting of P. yunnanensis forest during burning. J. Saf. Sci. Technol. 2011, 7, 48–53. [Google Scholar]
- Wang, S.; Niu, S.K.; Li, D.; Wang, J.H.; Chen, F.; Sun, W. Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors. Chin. J. Appl. Ecol. 2013, 24, 331–337. [Google Scholar]
- Amine, S.; Bouhrim, M.; Mechchate, H.; Ailli, A.; Radi, M.; Sahpaz, S.; Amalich, S.; Mahjoubi, M.; Zair, T. Influence of abiotic factors on the phytochemical profile of two species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. Int. J. Plant Biol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Dalmazzone, D.; Laforest, J.C.; Petit, J.P. Application of thermochemical energy hazard criteria to the prediction of lower flammability limits of hydrocarbons in air. Oil Gas Sci. Technol. 2001, 56, 365–372. [Google Scholar] [CrossRef]
- Tian, Y.H.; Li, Z.; Wu, S.H.; Huang, Q. Antimicrobial Activity of Essential Oil from Pinus yunnanensis Franch.var tenuifolia Growing in China. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2012; Volume 430–432, pp. 438–442. [Google Scholar]
- Li, X.; Li, Y.; Dong, J.; Zhang, H.; Song, Z. Optimization of extraction process and antioxidant activity of essential oil from needles of Pinus yunnanensis. China Food Addit. 2020, 31, 27–35. [Google Scholar]
- Da Costa, J.S.; Andrade, W.M.S.; de Figueiredo, R.O.; Santos, P.V.L.; Freitas, J.J.d.S.; Setzer, W.N.; daSilva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L. Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules 2022, 27, 2234. [Google Scholar] [CrossRef] [PubMed]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. GeoSci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Wang, M.Y.; Shu, L.F.; Tian, X.R.; Liu, K.Z. Supercritical extracts of forest fuels in Great Xing’an Mountains. J. Res. 2016, 27, 1143–1151. [Google Scholar] [CrossRef]
- Zhao, F.J.; Shu, L.F.; Wang, Q.H.; Tian, X.R. Investigation of emissions from heated essential-oil-rich fuels at 200 °C. Fire Mater. 2013, 37, 391–400. [Google Scholar] [CrossRef]
- Rowley, J. Flammability Limits, Flash Points, and Their Consanguinity: Critical Analysis, Experimental Exploration, and Prediction; Brigham Young University: Provo, UT, USA, 2010. [Google Scholar]
- Ciccioli, P.; Centritto, M.; Loreto, F. Biogenic volatile organic compound emissions from vegetation fires. Plant Cell Environ. 2014, 37, 1810–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganteaume, A.; Romero, B.; Fernandez, C.; Ormeo, E.; Lecareux, C. Volatile and semi-volatile terpenes impact leaf flammability: Differences according to the level of terpene identification. Chemoecology 2021, 31, 259–275. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Vinogorova, V.T.; Rafalowski, K. HS-SPME analysis of volatile organic compounds of coniferous needle litter. Atmos. Environ. 2003, 37, 4645–4650. [Google Scholar] [CrossRef]
- Schönwitz, R.; Lohwasser, K.; Kloos, M.; Ziegler, H. Seasonal variation in the monoterpenes in needles of Picea abies (L.) Karst. Trees 1990, 4, 34–40. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manage. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Chatelon, F.J.; Sauvagnargues, S.; Dusserre, G.; Balbi, J.H. Generalized blaze flash, a “flashover” behavior for forest fires-analysis from the firefighter’s point of view. Open J. For. 2014, 4, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The relationship between terpenes and flammability of leaf litter. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Zhao, F.J.; Shu, L.F.; Wang, Q.H.; Wang, M.Y. Emissions of volatile organic compounds from heated needles and twigs of Pinus pumila. J. For. Res. 2011, 22, 243–248. [Google Scholar] [CrossRef]
- Chetehouna, K.; Barboni, T.; Zarguili, I.; Leoni, E.; Simeoni, A.; Fernandez-Pello, A.C. Investigation on the emission of volatile organic compounds from heated vegetation and their potential to cause an eruptive forest fire. Combust. Sci. Technol. 2009, 181, 1273–1288. [Google Scholar] [CrossRef] [Green Version]
- Ormeño, E.; Ruffault, J.; Gutigny, C.; Madrigal, J.; Guijarro, M.; Hernando, C.; Ballini, C. Increasing cuticular wax concentrations in a drier climate promote litter flammability. Ecol. Manag. 2020, 473, 118242. [Google Scholar] [CrossRef]
- Večeřová, K.; Klem, K.; Veselá, B.; Holub, P.; Grace, J.; Urban, O. Combined Effect of altitude, season and light on the accumulation of extractable terpenes in Norway Spruce needles. Forests 2021, 12, 1737. [Google Scholar] [CrossRef]
- Varga, K.; Jones, C.; Trugman, A.; Carvalho, L.M.V.; McLoughlin, N.; Seto, D.; Thompson, C.; Daum, K. Megafires in a warming world: What wildfire risk factors led to California’s largest recorded wildfire. Fire 2022, 5, 16. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. [Google Scholar] [CrossRef]
- Romero, B.; Ganteaume, A. Effect of Fire Frequency on the Flammability of Two Mediterranean Pines: Link with Needle Terpene Content. Plants 2021, 10, 2164. [Google Scholar] [CrossRef]
- Li, X.X.; Zhao, F.J.; Wang, M.Y.; Si, L.Q.; Li, W.K. Review on Mechanisms of Eruptive Forest fire. Terr. Ecosyst. Conserv. 2022, 2, 55–61. [Google Scholar]
- Dold, J.; Simeoni, A.; Zinoviev, A.; Weber, R. The Palasca fire, September 2000:Eruption or Flashover. In Viegas DX (ed) Recent Forest Fire Accidents in Europe; JRC-IES, European Commission: Ispra, Italy, 2009. [Google Scholar]
- Lv, Z.Y.; He, C.; Shu, L.F.; Ji, R.X.; Zhang, S.Y.; Wang, Y.; Gao, J.Q.; Zhao, F.J. Deflagration characteristics of forest trees from the perspective of UAV. Spectrosc. Spectr. Anal. 2019, 39, 3946–3952. [Google Scholar]
- Butler, B.W.; Bartlette, R.A.; Bradshaw, L.S.; Cohen, J.D. Fire Behavior Associated with the 1994 South Canyon Fire on Storm King Mountain, Colorado; USDA, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; Volume 82. [Google Scholar]
- Chetehouna, K.; Courty, L.; Garo, J.P.; Viegas, D.X.; Fernandez-Pello, C. Flammability limits of biogenic volatile organic compounds emitted by fire-heated vegetation (Rosmarinus officinalis) and their potential link with accelerating forest fires in canyons: A Froude-scaling approach. J. Fire Sci. 2014, 32, 459–479. [Google Scholar] [CrossRef]
- Yang, G.; Yuan, S.B.; Shu, L.F.; Ning, J.B.; Sun, S.Q.; Di, X.Y. Research Progress of High-energy Forest Fire: Spotting. Fire World For. Res. 2020, 33, 20–25. [Google Scholar]
- Adnan, D.A.; Ahmad, M.A.; Ahmad, S.; Nelson, K.A.; Mark, F.; Jason, M.F.; Kozo, S. Ignition and burning mechanisms of live spruce needles. Fuel 2021, 304, 121371. [Google Scholar]
- Mancilla-Leytón, J.M.; Hernando, C.; Cambrollé, J.; Muñoz-Vallés, S.; Pino-Mejías, R.; Vicente, Á.M. Can shrub flammability be affected by goatgrazing? flammability parameters of Mediterranean shrub species under grazing. Sustainability 2021, 13, 1555. [Google Scholar] [CrossRef]
- Chen, D.Y.; Anjiang Gao, A.J.; Cen, K.H.; Zhang, J.; Cao, X.B.; Ma, Z.Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin. Energy Convers. Manag. 2018, 169, 228–237. [Google Scholar] [CrossRef]
- Zhao, F.J.; Wang, Q.H.; Shu, L.F.; Yang, L.J.; Liu, K.Z. Correlations between supercritical extracts of coniferous fuel and the heat yield value and ignition point. Sci. Silvae Sin. 2016, 52, 68–74. [Google Scholar]
Latitude/Longitude | Altitude, m | Slope, ° | Aspect | Average Height, m | Average DBH, cm | Canopy Density | Surface Dead Fuel Cover | |
---|---|---|---|---|---|---|---|---|
Plot 1 | 26°59′4″ N/100°2′56″ E | 1869 | 36 | Northeast | 23.74 | 15.52 | 0.69 | 100% |
Plot 2 | 26°59′7″ N/100°2′54″ E | 1920 | 23 | Northeast | 22.52 | 15.16 | 0.65 | 100% |
Plot 3 | 26°59′41″ N/100°4′3″ E | 2101 | 30 | Northeast | 20.04 | 12.78 | 0.45 | 100% |
Fuel Loading of Live Branches (t·ha−1) | Fuel Loading of Surface Dead Fuel (t·ha−1) | Volatile Oil Content of Live Branches (mL·kg−1) | Volatile Oil Content of Surface Dead Fuel (mL·kg−1) | |
---|---|---|---|---|
Plot 1 | 13.99 | 4.34 | 8.17 | 3.63 |
Plot 2 | 15.28 | 5.26 | 8.55 | 3.62 |
Plot 3 | 17.37 | 5.51 | 8.13 | 3.39 |
Mean ± Standard Deviation | 15.55 ± 1.71 | 5.04 ± 0.62 | 8.28 ± 0.23 | 3.55 ± 0.14 |
ANOVA Table | SS | DF | MS | F (DFn, DFd) | p-Value |
---|---|---|---|---|---|
Interaction | 2.146 | 2 | 1.073 | F (2, 24) = 0.6456 | p = 0.5332 |
Plot Factor | 4.557 | 2 | 2.278 | F (2, 24) = 1.371 | p = 0.2731 |
Fuel Type Factor | 827.7 | 1 | 827.7 | F (1, 24) = 498.0 | p < 0.0001 |
Residual | 39.89 | 24 | 1.662 |
ANOVA Table | SS | DF | MS | F (DFn, DFd) | p-Value |
---|---|---|---|---|---|
Interaction | 0.01608 | 2 | 0.00804 | F (2, 24) = 0.2392 | p = 0.7891 |
Plot Factor | 0.2116 | 2 | 0.1058 | F (2, 24) = 3.147 | p = 0.0611 |
Fuel Type Factor | 167.4 | 1 | 167.4 | F (1, 24) = 4979 | p < 0.0001 |
Residual | 0.8068 | 24 | 0.03362 |
Fuel Loading (t·ha−1) | Volatile Oil Content (kg·ha−1) | LEL (g·m−3) | Potential Space Filled with Flammable Gas Reaching the LEL (m3) | |
---|---|---|---|---|
Live Branches | 15.55 ± 1.71 | 110.73 ± 12.13 | 38.40 | 2883.55 ± 316.00 |
Surface Dead Fuel | 5.04 ± 0.62 | 15.39 ± 1.88 | 38.40 | 400.71 ± 48.97 |
Total | 20.59 ± 2.27 | 126.12 ± 13.86 | 38.40 | 3284.26 ± 360.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Si, L.; Zhao, F.; Wang, M. Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior. Fire 2023, 6, 113. https://doi.org/10.3390/fire6030113
Chen F, Si L, Zhao F, Wang M. Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior. Fire. 2023; 6(3):113. https://doi.org/10.3390/fire6030113
Chicago/Turabian StyleChen, Feng, Liqing Si, Fengjun Zhao, and Mingyu Wang. 2023. "Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior" Fire 6, no. 3: 113. https://doi.org/10.3390/fire6030113
APA StyleChen, F., Si, L., Zhao, F., & Wang, M. (2023). Volatile Oil in Pinus yunnanensis Potentially Contributes to Extreme Fire Behavior. Fire, 6(3), 113. https://doi.org/10.3390/fire6030113