Assessment of the Performance of FireFOAM in Simulating a Real-Scale Fire Scenario Using High Resolution Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Solver
2.2. Experimental Data
2.3. Numerical Setup
- Structured mesh with rectangular cells.
- Unstructured mesh with tetrahedron cells.
2.4. Data Comparison
3. Results
3.1. Run-Time Sensitivity
3.2. Mass Balance
3.3. Energy Balance
3.4. Internal Flow Streamlines
3.5. Temperature Contours
3.6. Incident Radiation Contours
3.7. Interior Temperature Profiles
3.8. Opening Temperatures and Velocity Profiles
3.9. Temperature Evolution at Central Tree
4. Discussion
4.1. Perceived Strengths
4.1.1. Real-Time Computing Capabilities
4.1.2. Convergence
4.2. FireFOAM Limitations
4.2.1. Irregular-Tetrahedron Meshes
4.2.2. Steady-State Boundary Conditions
4.2.3. Sensitivity to Domain Construction
4.3. Simulated Data Agreement with Experimental Measurements
- Flow patterns at the compartment interior.
- Neutral plane height and pronounced temperature gradients at openings.
- Cold air/hot smoke interface height at the compartment interior.
- Temperatures in the cold air zone and in most of the hot gas zone (below the ceiling jet).
- Incident radiation in the hot gas zone, above the 1.4 m thermocouple.
- Temperatures in the upper half of the smoke layer, especially inside the ceiling jet.
- Transient behaviour of near-ceiling temperatures (related to the above).
- Mean inflow and outflow velocities at the compartment interior.
4.4. Relevant Findings
5. Conclusions
Future Work
- A revision of the effects of subgrid-scale models (e.g., one-equation eddy viscosity model) on energy conservation, as in these exercises the finite volumes method was not found to be conservative, with errors ranging from 10–20%.
- Investigate the implementation of conjugate heat transfer simulations to better account for heat losses, and consequently improve near wall temperature estimations.
- Refine using mesh resolutions in the 1–15 mm range, as is common practice in other CFD applications. This is to confirm complete mesh convergence. In this study, it was seen how the M7.5 case (75 mm) was not mesh convergent for near-flame zones and in the vicinity of geometric discontinuities.
- Following the previous recommendation, implement mesh refinement in the near-flame zone and near geometric discontinuities, mesh coarsening in the far-field and flame-extinction zones, and assess speed-up and improvements in overall performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, H.; Ooka, R.; Chen, H.; Kato, S. Optimum design for smoke-control system in buildings considering robustness using CFD and Genetic Algorithms. Build. Environ. 2009, 44, 2218–2227. [Google Scholar] [CrossRef]
- Jahn, W.; Gonzalez, O.; Rivera, J.D.D. Using Computational Fluid Dynamics to Recreate the Time-Line of a Prison Fire; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–19. [Google Scholar]
- Jahn, W.; Rein, G.; Torero, J.L. Forecasting fire dynamics using inverse computational fluid dynamics and tangent linearisation. Adv. Eng. Softw. 2012, 47, 114–126. [Google Scholar] [CrossRef]
- Overholt, K.J.; Ezekoye, O.A. Characterizing Heat Release Rates Using an Inverse Fire Modeling Technique. Fire Technol. 2012, 48, 893–909. [Google Scholar] [CrossRef]
- Verstockt, S.; Beji, T.; De Potter, P.; Van Hoecke, S.; Sette, B.; Merci, B.; Van De Walle, R. Video driven fire spread forecasting (f) using multi-modal LWIR and visual flame and smoke data. Pattern Recognit. Lett. 2013, 34, 62–69. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Wu, X.; Huang, X. Predicting Transient Building Fire Based on External Smoke Images and Deep Learning. J. Build. Eng. 2022, 47, 103823. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Huang, X. Predicting Real-Time Fire Heat Release Rate by Flame Images and Deep Learning. Proc. Combust. Inst. 2023, 39, 4115–4123. [Google Scholar] [CrossRef]
- Jahn, W.; Rein, G.; Torero, J.L. A posteriori modelling of the growth phase of Dalmarnock Fire Test One. Build. Environ. 2011, 46, 1065–1073. [Google Scholar] [CrossRef]
- Weng, M.C.; Yu, L.X.; Liu, F.; Nielsen, P.V. Full-scale experiment and CFD simulation on smoke movement and smoke control in a metro tunnel with one opening portal. Tunn. Undergr. Space Technol. 2014, 42, 96–104. [Google Scholar] [CrossRef]
- Nielsen, J.G. Validation Study of Fire Dynamics Simulator. Master’s Thesis, Aalborg University, Aalborg, Denmark, 2013. [Google Scholar]
- Kwon, J.W.; Dembsey, N.a.; Lautenberger, C.W. Evaluation of FDS V.4: Upward Flame Spread. Fire Technol. 2007, 43, 255–284. [Google Scholar] [CrossRef]
- Węgrzyński, W.; Vigne, G. Experimental and Numerical Evaluation of the Influence of the Soot Yield on the Visibility in Smoke in CFD Analysis. Fire Saf. J. 2017, 91, 389–398. [Google Scholar] [CrossRef]
- Król, A.; Jahn, W.; Krajewski, G.; Król, M.; Węgrzyński, W. A Study on the Reliability of Modeling of Thermocouple Response and Sprinkler Activation during Compartment Fires. Buildings 2022, 12, 77. [Google Scholar] [CrossRef]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator Technical Reference Guide, 6th ed.; Technical report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [CrossRef]
- McGrattan, K.; Hostikka, S.; Floyd, J.; McDermott, R.; Overholt, K.J. Fire Dynamics Simulator; Technical Reference Guide, Volume 3: Validation; Technical report; National Institute of Standard and Technology Gaithersburg: Gaithersburg, MD, USA, 2021.
- Würzburger, M.L.; Arnold, L. Dynamic Domain Expansion in Smoke Spread Simulations with ARTSS: Speedup and Overhead. Fire Saf. J. 2021, 120, 103168. [Google Scholar] [CrossRef]
- Almeida, Y.P.; Lage, P.L.; Silva, L.F.L. Large eddy simulation of a turbulent diffusion flame including thermal radiation heat transfer. Appl. Therm. Eng. 2015, 81, 412–425. [Google Scholar] [CrossRef]
- Vilfayeau, S.; White, J.; Sunderland, P.; Marshall, A.; Trouvé, A. Large eddy simulation of flame extinction in a turbulent line fire exposed to air-nitrogen co-flow. Fire Saf. J. 2016, 86, 16–31. [Google Scholar] [CrossRef]
- Ren, N.; Wang, Y.; Vilfayeau, S.; Trouvé, A. Large eddy simulation of turbulent vertical wall fires supplied with gaseous fuel through porous burners. Combust. Flame 2016, 169, 194–208. [Google Scholar] [CrossRef]
- Ren, N.; de Vries, J.; Chaos, M.; Yi, W. FireFOAM modeling of standard class 2 commodity rack storage fires. In Proceedings of the Fire and Materials 2015 Conference, San Francisco, CA, USA, 2–4 February 2015. [Google Scholar]
- Trouvé, A.; Wang, Y. Large eddy simulation of compartment fires. Int. J. Comput. Fluid Dyn. 2010, 24, 449–466. [Google Scholar] [CrossRef]
- Wang, Y.; Chatterjee, P.; de Ris, J.L. Large eddy simulation of fire plumes. Proc. Combust. Inst. 2011, 33, 2473–2480. [Google Scholar] [CrossRef]
- Hidalgo, J.; Cowlard, A.; Abecassis-Empis, C.; Maluk, C.; Majdalani, A.; Kahrmann, S.; Hilditch, R.; Krajcovic, M.; Torero, J. An experimental study of full-scale open floor plan enclosure fires. Fire Saf. J. 2017, 89, 22–40. [Google Scholar] [CrossRef]
- Maluk, C.; Linnan, B.; Wong, A.; Hidalgo, J.P.; Torero, J.L.; Abecassis-Empis, C.; Cowlard, A. Energy distribution analysis in full-scale open floor plan enclosure fires. Fire Saf. J. 2017, 91, 422–431. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Rehm, R.G.; Baum, H.R. The Equation of Motion for Thermally Driven Buoyant Flows. J. Res. Natl. Bur. Stand. 1978, 83, 297–308. [Google Scholar] [CrossRef]
- Magnussen, B.F.; Hjertager, B.H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In Proceedings of the Symposium (International) on Combustion, Cambridge, MA, USA, 15–20 August 1976; Elsevier: Amsterdam, The Netherlands, 1977; Volume 16, pp. 719–729. [Google Scholar]
- Mishra, S.C.; Roy, H.K. Solving transient conduction and radiation heat transfer problems using the lattice Boltzmann method and the finite volume method. J. Comput. Phys. 2007, 223, 89–107. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Wang, C.; Wen, J.X.; Chen, Z. Simulation of large-scale LNG pool fires using FireFOAM. Combust. Sci. Technol. 2014, 186, 1632–1649. [Google Scholar] [CrossRef]
- Ministerio de Vivienda y Urbanismo. Norma chilena Nch 853.Of2007 Acondicionamiento Termico; Instituto de Normalización de Chile: Santiago, Chile, 2007.
- Welch, S.; Jowsey, A.; Deeny, S.; Morgan, R.; Torero, J.L. BRE large compartment fire tests—Characterising post-flashover fires for model validation. Fire Saf. J. 2007, 42, 548–567. [Google Scholar] [CrossRef]
- Mills, A. Heat and Mass Transfer; Irwin Graphics Series; Taylor & Francis: Abingdon, UK, 1995. [Google Scholar]
- Hidalgo, J.P.; Maluk, C.; Cowlard, A.; Abecassis-Empis, C.; Krajcovic, M.; Torero, J.L. A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing. Int. J. Therm. Sci. 2017, 112, 383–394. [Google Scholar] [CrossRef]
- Stern-Gottfried, J.; Rein, G.; Bisby, L.a.; Torero, J.L. Experimental review of the homogeneous temperature assumption in post-flashover compartment fires. Fire Saf. J. 2010, 45, 249–261. [Google Scholar] [CrossRef]
Case | Number of Vertices | Number of Elements |
---|---|---|
M40 | 7.38 k | 18.1 k |
M30 | 13.7 k | 29.0 k |
M20 (B) | 50.2 k | 82.9 k |
M10 | 432 k | 558 k |
M7.5 | 943 k | 1152 k |
T20 | 85.7 k | 501 k |
Outlet | pressureInlet OutletVelocity | prghTotal HydroPress |
Entrainment | ‘…’ | ‘…’ |
Burners | flowRate InletVelocity | fixed FluxPress |
Burner walls | noSlip | ‘…’ |
Hanger | ‘…’ | ‘…’ |
Floor/roof/walls | ‘…’ | ‘…’ |
Room walls | ‘…’ | ‘…’ |
k | ||
Outlet | inletOutlet: | intetOutlet: |
Entrainment | ‘…’ | ‘…’ |
Burner | totalFlowRate AdvDiff | fixedValue: |
Burner walls | zeroGradient | ‘…’ |
Hanger | ‘…’ | ‘…’ |
Floor/roof/walls | ‘…’ | ‘…’ |
Room walls | ‘…’ | ‘…’ |
I | ||
Outlet | inletOutlet: | greyDiff Rad: 1 |
Entrainment | ‘…’ | ‘…’ |
Burner | fixedValue: | greyDiff Rad: 0.9 |
Burner walls | zeroGradient | ‘…’ |
Hanger | ‘…’ | ‘…’ |
Floor/roof/walls | ‘…’ | ‘…’ |
Room walls | ‘…’ | ‘…’ |
HRR | ‘Qtot’ | ‘Qop’ | ‘QopRad’ | ‘Qwalls’ | |
---|---|---|---|---|---|
Sim | 50% | 0.88 | 0.80 | 0.08 | <0.01 |
74% | 0.78 | 0.70 | 0.08 | <0.01 | |
Exp | 50% | 0.90 | 0.67 | N/A | 0.23 |
74% | 0.88 | 0.70 | N/A | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahn, W.; Zamorano, R.; Calderón, I.; Claren, R.; Molina, B. Assessment of the Performance of FireFOAM in Simulating a Real-Scale Fire Scenario Using High Resolution Data. Fire 2023, 6, 375. https://doi.org/10.3390/fire6100375
Jahn W, Zamorano R, Calderón I, Claren R, Molina B. Assessment of the Performance of FireFOAM in Simulating a Real-Scale Fire Scenario Using High Resolution Data. Fire. 2023; 6(10):375. https://doi.org/10.3390/fire6100375
Chicago/Turabian StyleJahn, Wolfram, Rafael Zamorano, Ignacio Calderón, Raimundo Claren, and Benjamín Molina. 2023. "Assessment of the Performance of FireFOAM in Simulating a Real-Scale Fire Scenario Using High Resolution Data" Fire 6, no. 10: 375. https://doi.org/10.3390/fire6100375
APA StyleJahn, W., Zamorano, R., Calderón, I., Claren, R., & Molina, B. (2023). Assessment of the Performance of FireFOAM in Simulating a Real-Scale Fire Scenario Using High Resolution Data. Fire, 6(10), 375. https://doi.org/10.3390/fire6100375