A Parametric Study of Fire Risks of Green Roofs to Adjacent Buildings
Abstract
:1. Introduction
2. Methodology
2.1. Radiation Model
2.2. Fire Behavior Models
2.3. Parameters
2.3.1. Vegetation Types (Fuel Models)
2.3.2. Moisture Content (MC)
2.3.3. Wind Speed
2.3.4. Radiation Model Parameters
- Set the initial value for the angle (α0) and determination of the view factor (F0) with the Equations (6)–(9) in AS3959. The target height h is taken in the middle of Lf.
- Set the increment for the angle (Δα) and maximum error allowed (°).
- Calculate view factor (F1) for α1 which is equal to α0 + Δα.
- Calculate view factor (F2) for α2 which is equal to α1 + Δα.
- Comparison of obtained view factors. In case F1 >= F0 and F1 > F2, then check the error. If it is greater than the set value, then decrease Δα and repeat steps 3 and 4. In case F2 is greater than F0 and F1 then set new values: α0 is equal to α1, α1 is equal to α2, thus F0 becomes equal to F1, and F1 equal to F2. Then repeat steps 4 and 5.
3. Results
3.1. Radiative Heat Flux
3.2. Wind and Moisture Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, R.K. Green Roof Ecosystems; Springer International Publishing: Geneva, Switzerland, 2015; Volume 223, p. 447. [Google Scholar]
- Snodgrass, E.C.; McIntyre, L. The Green Roof Manual: A Professional Guide to Design, Installation, and Maintenance; Timber Press: Portland, OR, USA, 2010. [Google Scholar]
- Carlsson, E. External Fire Spread to Adjoining Buildings; Department of Fire Safety Engineering, Lund University: Lund, Sweden, 1999; pp. 1402–3504. [Google Scholar]
- Buchanan, A.H.; Abu, A.K. Fires and Heat. In Structural Design for Fire Safety; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 35–83. [Google Scholar]
- RBQ. Critères Techniques Visant la Construction de Toits Végétalisés Quebec; Gouvernement du Québec: Québec, QC, Canada, 2015; pp. 15–16. [Google Scholar]
- ANSI/SPRI VF-1; External Fire Design Standard for Vegetative Roofs. American National Standards Institute/SPRI: Waltham, MA, USA, 2017.
- FM Global. Property Loss Prevention Data Sheet (1–35) Green Roof Systems; Factory Mutual Insurance Company: Johnston, RI, USA, 2011; pp. 1–27. [Google Scholar]
- FLL. Guidelines for the Planning, Construction and Maintenance of Green Roofing–Green Roofing Guideline. In Fire Characteristics; FLL (Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau), Research Society for Landscape Development and Landscape Construction: Bonn, Germany, 2008; p. 36. [Google Scholar]
- Torvi, D.A.; Kashef, A.; Benichou, N. FIERAsystem Radiation to Adjacent Buildings Model (RABM) Theory Report; Institute for Research in Construction, National Research Council Canada: Québec, QC, Canada, 2005. [Google Scholar]
- McGuire, J.H. Fire and the spatial separation of buildings. Fire Technol. 1965, 1, 278–287. [Google Scholar] [CrossRef] [Green Version]
- NRCC. National Building Code of Canada 2015; National Research Council of Canada: Québec, QC, Canada, 2015. [Google Scholar]
- Drysdale, D. Diffusion Flames and Fire Plumes. In An Introduction to Fire Dynamics, 3rd ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 121–179. [Google Scholar]
- Beyler, C.L. Fire hazard calculations for large, open hydrocarbon fires. In SFPE Handbook of Fire Protection Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 2591–2663. [Google Scholar]
- Shokri, M.; Beyler, C.L. Radiation from large pool fires. J. Fire Prot. Eng. 1989, 1, 141–150. [Google Scholar] [CrossRef]
- Zárate, L.; Arnaldos, J.; Casal, J. Establishing safety distances for wildland fires. Fire Saf. J. 2008, 43, 565–575. [Google Scholar] [CrossRef]
- Fleury, R. Evaluation of Thermal Radiation Models for Fire Spread between Objects; University of Canterbury: Christchurch, New Zealand, 2010. [Google Scholar]
- Butler, B.W.; Cohen, J.D. Firefighter safety zones: A theoretical model based on radiative heating. Int. J. Wildland Fire 1998, 8, 73–77. [Google Scholar] [CrossRef]
- Sullivan, A.; Ellis, P.; Knight, I. A review of radiant heat flux models used in bushfire applications. Int. J. Wildland Fire 2003, 12, 101–110. [Google Scholar] [CrossRef]
- Cohen, J.D.; Butler, B.W. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In Proceedings of the 13th Fire and Forest Meteorology Conference, Virtual Meeting, 11–13 May 2021; pp. 81–86. [Google Scholar]
- Mudan, K.S. Thermal radiation hazards from hydrocarbon pool fires. Prog. Energy Combust. Sci. 1984, 10, 59–80. [Google Scholar] [CrossRef]
- Pastor, E.; Rigueiro, A.; Zárate, L.; Gimenez, A.; Arnaldos, J.; Planas, E. Experimental methodology for characterizing flame emissivity of small scale forest fires using infrared thermography techniques. In Proceedings of the IV International Conference on Forest Fire Research 2002 Wildland Fire Safety Summit, Coimbra, Portugal, 18–23 November 2002; pp. 1–11. [Google Scholar]
- Sudheer, S.; Prabhu, S.V. Measurement of flame emissivity of hydrocarbon pool fires. Fire Technol. 2012, 48, 183–217. [Google Scholar] [CrossRef]
- Àgueda, A.; Pastor, E.; Pérez, Y.; Planas, E. Experimental study of the emissivity of flames resulting from the combustion of forest fuels. Int. J. Therm. Sci. 2010, 49, 543–554. [Google Scholar] [CrossRef]
- Modak, A.T.; Croce, P.A. Plastic pool fires. Combust. Flame 1977, 30, 251–265. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Gill, A.M. Fire in semiarid, mallee shrublands-size of flames from discrete fuel arrays and their role in the spread of fire. Int. J. Wildland Fire 1993, 3, 3–12. [Google Scholar] [CrossRef]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 1993, 3, 31–44. [Google Scholar] [CrossRef]
- Fidelis, A.T.; Delgado Cartay, M.D.; Blanco, C.C.; Muller, S.C.; Pillar, V.P.; Pfadenhauer, J.S. Fire intensity and severity in Brazilian campos grasslands. Interciencia Rev. Cienc. Y Tecnol. Am. Caracas 2010, 35, 739–745. [Google Scholar]
- Silvani, X.; Morandini, F. Fire spread experiments in the field: Temperature and heat fluxes measurements. Fire Saf. J. 2009, 44, 279–285. [Google Scholar] [CrossRef]
- Santoni, P.A.; Simeoni, A.; Rossi, J.L.; Bosseur, F.; Morandini, F.; Silvani, X.; Balbi, J.-H.; Cancellieri, D.; Rossi, L. Instrumentation of wildland fire: Characterisation of a fire spreading through a Mediterranean shrub. Fire Saf. J. 2006, 41, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Morandini, F.; Silvani, X.; Rossi, L.; Santoni, P.-A.; Simeoni, A.; Balbi, J.-H.; Rossi, J.L.; Marcelli, T. Fire spread experiment across Mediterranean shrub: Influence of wind on flame front properties. Fire Saf. J. 2006, 41, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Mutch, R.W. Wildland Fires and Ecosystems—A Hypothesis. Ecology 1970, 51, 1046–1051. [Google Scholar] [CrossRef]
- Simard, A.J.; Blank, R.W.; Hobrla, S.L. Measuring and interpreting flame height in wildland fires. Fire Technol. 1989, 25, 114–133. [Google Scholar] [CrossRef]
- Nelson, R.M., Jr.; Adkins, C.W. Flame characteristics of wind-driven surface fires. Can. J. For. Res. 1986, 16, 1293–1300. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Bradstock, R.A.; Choate, J.; Fogarty, L.G.; Gellie, N.; McCarthy, G.; McCaw, W.L.; Marsden-Smedley, J.B.; Pearce, G. Cooperative development of equations for heathland fire behaviour. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Conference on Fire and Forest Meteorology, Luso, Portugal, 16–20 November 1998; pp. 16–20. [Google Scholar]
- Cruz, M.G.; Matthews, S.; Gould, J.; Ellis, P.; Henderson, M.; Knight, I.; Watters, J. Fire Dynamics in Mallee-Heath: Fuel, Weather and Fire Behaviour Prediction in South Australian Semi-Arid Shrublands; CSIRO Sustainable Ecosystems: Canberra, Australia, 2010. [Google Scholar]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. Prediction of fire spread in grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service: Washington, DC, USA, 1972. [Google Scholar]
- Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires; UT 84401; US Department of Agriculture, Forest Service Intermountain Forest and Range Experiment Station Ogden: Washington, DC, USA, 1983. [Google Scholar]
- SAI Global. AS3959; 2009 Construction of Buildings in Bushfire-Prone Areas. Standards Australia: Sydney, Australia, 2009.
- Penney, G. Bushfire Fuels–Representation in Empirical and Physics Based Bushfire Models. Master’s Thesis, Victoria University, Melbourne, Australia, 2017. [Google Scholar]
- McAlpine, R.S. Acceleration of Point Source Fire to Equilibrium Spread. Master’s Thesis, University of Montana, Missoula, MT, USA, 1988. [Google Scholar]
- Delany, J.; Boverman, D.; Matthews, S. Short fire runs: Assessing bush fire risk from small areas of vegetation. In Fire Safety Engineering Stream Conference: Quantification of Fire Safety: Fire Australia; Engineers Australia: Sydney, Australia, 2017; p. 260. [Google Scholar]
- Wilson, R. Reformulation of Forest Fire Spread Equations in SI Units; Research Note INT-292; Department of Agriculture, Forest Service, Intermountain Range and Forest Experiment Station: Ogden, UT, USA, 1980; 5p. [Google Scholar]
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Albini, F.A. Estimating Wildfire Behavior and Effects; Rocky Mountain Research Station: Nederland, CO, USA, 1976. [Google Scholar]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Intermountain Range and Forest Experiment Station: Ogden, UT, USA, 2005. [Google Scholar]
- BehavePlus 6.0.0 Beta 3 (Version of 26 March 2018). Available online: www.frames.gov/behaveplus/software-manuals (accessed on 7 June 2022).
- Pyne, S.J. Introduction to Wildland Fire. Fire Management in the United States; John Wiley & Sons: Hoboken, NJ, USA, 1984. [Google Scholar]
- Burgan, R.E. Estimating live fuel moisture for the 1978 National Fire Danger Rating System; USDA Forest Service Research Paper INT-226; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1979. [Google Scholar]
- Environment Canada. Historical Climate Data. Hourly Data Report; Gouvernement du Québec: Québec, QC, Canada, 2019. [Google Scholar]
- Environment and Natural Resources. Beaufort Wind Scale Table. Available online: www.canada.ca/en/environment-climate-change/services/general-marine-weather-information/understanding-forecasts/beaufort-wind-scale-table.html (accessed on 26 November 2019).
- Byram, G.M. Combustion of Forest Fuels. In Forest Fire: Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York, NY, USA, 1959; pp. 61–90. [Google Scholar]
Fuel Model | Fine Dead Fuel Load (kg/m2) | Live Herbaceous Load (kg/m2) | Live Woody Load (kg/m2) | Mean Fuel Height (m) |
---|---|---|---|---|
Grass | ||||
GR-2 | 0.02 | 0.25 | - | 0.3 |
GR-3 | 0.02 | 0.37 | - | 0.6 |
GR-4 | 0.06 | 0.47 | - | 0.6 |
Grass-Shrub | ||||
GS-1 | 0.05 | 0.12 | 0.16 | 0.3 |
GS-2 | 0.12 | 0.15 | 0.25 | 0.5 |
GS-3 | 0.07 | 0.36 | 0.31 | <0.6 |
Shrub | ||||
SH-2 | 0.33 | - | 0.95 | 0.3 |
SH-4 | 0.21 | - | 0.63 | 0.9 |
SH-8 | 0.51 | - | 1.07 | 0.9 |
Fuel | MC, % | |||
---|---|---|---|---|
Very Low | Low | Moderate | High | |
Dead | D1 | D2 | D3 | D4 |
1-h | 3 | 6 | 9 | 12 |
10-h | 4 | 7 | 10 | 13 |
100-h | 5 | 8 | 11 | 14 |
Live | L1 | L2 | L3 | L4 |
Herbaceous | 30 | 60 | 90 | 120 |
Woody | 60 | 90 | 120 | 150 |
Dead Fuel Moisture | |||||
---|---|---|---|---|---|
D1 | D2 | D3 | D4 | ||
Live fuel moisture | L1 | GR, GS, SH | |||
L2 | GR, GS, SH | GR, GS, SH | GR, GS, SH | ||
L3 | GR, GS, SH | GR, GS, SH | GR, GS, SH | ||
L4 | SH | SH | SH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerzhova, N.; Dagenais, C.; Ménard, S.; Blanchet, P.; Côté, J. A Parametric Study of Fire Risks of Green Roofs to Adjacent Buildings. Fire 2022, 5, 93. https://doi.org/10.3390/fire5040093
Gerzhova N, Dagenais C, Ménard S, Blanchet P, Côté J. A Parametric Study of Fire Risks of Green Roofs to Adjacent Buildings. Fire. 2022; 5(4):93. https://doi.org/10.3390/fire5040093
Chicago/Turabian StyleGerzhova, Nataliia, Christian Dagenais, Sylvain Ménard, Pierre Blanchet, and Jean Côté. 2022. "A Parametric Study of Fire Risks of Green Roofs to Adjacent Buildings" Fire 5, no. 4: 93. https://doi.org/10.3390/fire5040093
APA StyleGerzhova, N., Dagenais, C., Ménard, S., Blanchet, P., & Côté, J. (2022). A Parametric Study of Fire Risks of Green Roofs to Adjacent Buildings. Fire, 5(4), 93. https://doi.org/10.3390/fire5040093