Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework for Meta-Study
2.2. Human Fire Variables
- Fire use, including the purpose of use and fire sizes;
- Fire suppression, including the types of actions taken;
- Fire policies, including those adopted by government and non-governmental institutional actors.
2.2.1. Fire Use
2.2.2. Fire Suppression
- Control actions taken immediately prior to lighting a deliberate fire to control its behaviour;
- Prevention actions to modify the fire regime, particularly to prevent catastrophic wildfires;
- Extinguishing actions to put out active wildfires.
2.2.3. Fire Policy
- Environmental, including efforts to protect biodiversity, ensure water quality and prevent soil erosion;
- Economic, often with the aim of eradicating fire use to encourage agricultural intensification, as well as incentives to clear primary forest for economic development;
- Health, principally to improve air quality but also to protect people from death directly due to wildfire.
2.3. Database Summary and Analysis
3. Results
3.1. Geographic Distribution
3.2. Fire Use
3.2.1. Fire Purpose
3.2.2. Physical Characteristics
3.3. Fire Suppression
3.4. Fire Policy
4. Discussion
4.1. Improving the Quality of Anthropogenic Fire Data
4.2. Modelling and Observing Anthropogenic Fire Regimes
4.3. Categorising Anthropogenic Fire Uses and Regimes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
AFR | Land Use | ||
---|---|---|---|
Forestry | Livestock | Cropland | |
Pre-Industrial | Traditional fire knowledge; traditional fire use; traditional ecological knowledge AND fire; Indigenous fire use; Aboriginal burning; Aboriginal fire use; hunting AND fire; patch mosaic burning | Migratory pastoralism AND fire; pastoralist AND fire; transhumant herder AND fire; nomadic herder AND fire | Shifting cultivation AND fire; swidden; “slash and burn” AND fire; Citamene AND fire; “slash and mulch” |
Transition | Charcoal making; charcoal production; fire use timber harvesting; logging fires; fire illegal forestry; fire tropical timber extraction Fire-free agroforestry; agroforestry fire use | Rangeland burning; rangeland AND prescribed fire; pasture burning; pasture renewal fire; pasture fire; escaped pasture fire; rangeland management fire; pasture AND deforestation | Straw use AND fire; straw management AND fire; crop residue disposal AND fire; agricultural fires, field burning, agricultural burning, stubble burning; crop residue burning; haze AND agricultural fire; air quality AND agricultural fire; air pollution AND agricultural fire; veld fire; sugar cane burning; pre-harvest sugar cane burning; rice straw burning |
Industrial | Forest management AND fire; salvage logging fire; prescribed burning AND forestry; fuel load management; fuel load management AND fire; forest fuel load management; stand thinning AND forestry | Woody encroachment AND fire; rangeland AND fire reintroduction; livestock AND fire management; patch-burning AND livestock | Deforestation AND fire; deforestation AND wildfire; land clearance AND fire; agricultural land clearance AND fire; fire use deforestation |
Post-Industrial | Wildland urban interface; wildland urban interface AND fire; wildland urban interface AND fire management; fire paradox; wildland urban interface AND fire paradox; wildland urban interface AND fire suppression; tourist AND accidental AND fire; Pyrodiversity; prescribed burn; pyrodiversity AND management; conservation AND fire; conservation AND prescribed fire; diversity conservation AND prescribed fire | Grazing AND fire management; prescribed grazing; prescribed grazing AND fire management | Land abandonment AND fire; agricultural abandonment AND fire; land abandonment AND fuel load |
References
- Pingali, P.L.; Bigot, Y.; Binswanger, H.P. Agricultural Mechanization and the Evolution of Farming Systems in Sub-Saharan Africa; Johns Hopkins University Press: Baltimore, MD, USA, 1987. [Google Scholar]
- Carmenta, R.; Vermeylen, S.; Parry, L.; Barlow, J. Shifting Cultivation and Fire Policy: Insights from the Brazilian Amazon. Hum. Ecol. 2013, 41, 603–614. [Google Scholar] [CrossRef]
- Korontzi, S.; McCarty, J.; Loboda, T.; Kumar, S.; Justice, C. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Kull, C.A. Others Isle of Fire: The Political Ecology of Landscape Burning in Madagascar; University of Chicago Press: Chicago, IL, USA, 2004. [Google Scholar]
- Cano-Crespo, A.; Oliveira, P.J.C.; Boit, A.; Cardoso, M.; Thonicke, K. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures. J. Geophys. Res. Biogeosci. 2015, 120, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- Barnett, K.; Parks, S.A.; Miller, C.; Naughton, H.T. Beyond fuel treatment effectiveness: Characterizing interactions between fire and treatments in the US. Forests 2016, 7, 237. [Google Scholar] [CrossRef] [Green Version]
- Parisien, M.A.; Barber, Q.E.; Hirsch, K.G.; Stockdale, C.A.; Erni, S.; Wang, X.; Arseneault, D.; Parks, S.A. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nat. Commun. 2020, 11, 2121. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, M.A. Fire, land use, land cover dynamics, and climate change in the Brazilian Amazon. In Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 389–462. [Google Scholar] [CrossRef]
- Archibald, S. Managing the human component of fire regimes: Lessons from Africa. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 346. [Google Scholar] [CrossRef]
- Archibald, S.; Staver, A.C.; Levin, S.A. Evolution of human-driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 847–852. [Google Scholar] [CrossRef] [Green Version]
- Pyne, S.J. Fire: A Brief History; University of Washington Press: Seattle, WA, USA, 2019. [Google Scholar]
- Bliege Bird, R.; Bird, D.W.; Codding, B.F.; Parker, C.H.; Jones, J.H. The “Fire Stick Farming” hypothesis: Australian Aboriginal Foraging Strategies, Biodiversity, and Anthropogenic Fire Mosaics. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [Green Version]
- Stewart, O.C. Forgotten Fires: Native Americans and the Transient Wilderness; University of Oklahoma Press: Norman, OK, USA, 2002. [Google Scholar]
- Foley, J.A.; Levis, S.; Costa, M.H.; Cramer, W.; Pollard, D. Incorporating Dynamic Vegetation Cover within Global Climate Models. Ecol. Appl. 2000, 10, 1620–1632. [Google Scholar] [CrossRef]
- Quillet, A.; Peng, C.; Garneau, M. Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: Recent developments, limitations, and future challenges. Environ. Rev. 2010, 18, 333–353. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Arneth, A.; Harrison, S.P.; Kelley, D.I.; Colin Prentice, I.; Rabin, S.S.; Archibald, S.; Mouillot, F.; Arnold, S.R.; Artaxo, P.; et al. The status and challenge of global fire modelling. Biogeosciences 2016, 13, 3359–3375. [Google Scholar] [CrossRef] [Green Version]
- Teckentrup, L.; Harrison, S.P.; Hantson, S.; Heil, A.; Melton, J.R.; Forrest, M.; Li, F.; Yue, C.; Arneth, A.; Hickler, T.; et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: A comparison of seven fire models. Biogeosciences 2019, 16, 3883–3910. [Google Scholar] [CrossRef] [Green Version]
- Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.; Heil, A.; et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 2019, 16, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.S.; Ward, D.S.; Malyshev, S.L.; Magi, B.I.; Shevliakova, E.; Pacala, S.W. A fire model with distinct crop, pasture, and non-agricultural burning: Use of new data and a model-fitting algorithm for FINAL.1. Geosci. Model Dev. 2018, 11, 815–842. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Lasslop, G.; Kloster, S.; Chuvieco, E. Anthropogenic effects on global mean fire size. Int. J. Wildland Fire 2015, 24, 589–596. [Google Scholar] [CrossRef]
- Kelley, D.I.; Bistinas, I.; Whitley, R.; Burton, C.; Marthews, T.R.; Dong, N. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Chang. 2019, 9, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef]
- Mistry, J.; Berardi, A.; Andrade, V.; Krahô, T.; Krahô, P.; Leonardos, O. Indigenous fire management in the cerrado of Brazil: The case of the Krahô of Tocantíns. Hum. Ecol. 2005, 33, 365–386. [Google Scholar] [CrossRef]
- Seijo, F.; Millington, J.D.A.; Gray, R.; Sanz, V.; Lozano, J.; García-Serrano, F.; Sangüesa-Barreda, G.; Julio Camarero, J. Forgetting fire: Traditional fire knowledge in two chestnut forest ecosystems of the Iberian Peninsula and its implications for European fire management policy. Land Use Policy 2015, 47, 130–144. [Google Scholar] [CrossRef] [Green Version]
- Eloy, L.; Schmidt, I.B.; Borges, S.L.; Ferreira, M.C.; dos Santos, T.A. Seasonal fire management by traditional cattle ranchers prevents the spread of wildfire in the Brazilian Cerrado. Ambio 2019, 48, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, M.R.; Magi, B.I.; Derr, K.M. A global analysis of hunter-gatherers, broadcast fire use, and lightning-fire-prone landscapes. Fire 2018, 1, 41. [Google Scholar] [CrossRef] [Green Version]
- Coughlan, M.R.; Petty, A.M. Linking humans and fire: A proposal for a transdisciplinary fire ecology. Int. J. Wildland Fire 2012, 21, 477–487. [Google Scholar] [CrossRef]
- Van Vliet, J.; Magliocca, N.R.; Büchner, B.; Cook, E.; Rey Benayas, J.M.; Ellis, E.C.; Heinimann, A.; Keys, E.; Lee, T.M.; Liu, J.; et al. Meta-studies in land use science: Current coverage and prospects. Ambio 2016, 45, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Huffman, M.R. The many elements of traditional fire knowledge: Synthesis, classification, and aids to cross-cultural problem solving in firedependent systems around the world. Ecol. Soc. 2013, 18, 3. [Google Scholar] [CrossRef]
- Smith, C.; Perkins, O.; Mistry, J. Global decline in subsistence-oriented and smallholder fire use. Nat. Sustain. 2022, 5, 542–551. [Google Scholar] [CrossRef]
- Arneth, A.; Brown, C.; Rounsevell, M.D.A. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Chang. 2014, 4, 550–557. [Google Scholar] [CrossRef]
- Magliocca, N.R.; van Vliet, J.; Brown, C.; Evans, T.P.; Houet, T.; Messerli, P.; Messina, J.P.; Nicholas, K.A.; Ornetsmüller, C.; Sagebiel, J.; et al. From meta-studies to modeling: Using synthesis knowledge to build broadly applicable process-based land change models. Environ. Model. Softw. 2015, 72, 10–20. [Google Scholar] [CrossRef]
- Carmenta, R.; Coudel, E.; Steward, A.M. Forbidden fire: Does criminalising fire hinder conservation efforts in swidden landscapes of the Brazilian Amazon? Geogr. J. 2019, 185, 23–37. [Google Scholar] [CrossRef]
- Nikolakis, W.D.; Roberts, E. Indigenous fire management: A conceptual model from literature. Ecol. Soc. 2020, 25, 11. [Google Scholar] [CrossRef]
- Mangora, M.M. Ecological impact of tobacco farming in miombo woodlands of Urambo District, Tanzania. Afr. J. Ecol. 2006, 43, 385–391. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Vu, T.P.; Hoang, V.A. Trajectories of deforestation, coffee expansion and displacement of shifting cultivation in the Central Highlands of Vietnam. Glob. Environ. Chang. 2013, 23, 1187–1198. [Google Scholar] [CrossRef]
- Dawoe, E.K.; Quashie-Sam, J.; Isaac, M.E.; Oppong, S.K. Exploring farmers’ local knowledge and perceptions of soil fertility and management in the Ashanti Region of Ghana. Geoderma 2012, 179–180, 96–103. [Google Scholar] [CrossRef]
- Norgrove, L.; Hauser, S. Estimating the Consequences of Fire Exclusion for Food Crop Production, Soil Fertility, and Fallow Recovery in Shifting Cultivation Landscapes in the Humid Tropics. Environ. Manag. 2015, 55, 536–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sembhi, H.; Wooster, M.; Zhang, T.; Sharma, S.; Singh, N.; Agarwal, S.; Boesch, H.; Gupta, S.; Misra, A.; Tripathi, S.N.; et al. Post-monsoon air quality degradation across Northern India: Assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environ. Res. Lett. 2020, 15, 10. [Google Scholar] [CrossRef]
- Lauk, C.; Erb, K.-H. A Burning Issue: Anthropogenic Vegetation Fires. In Social Ecology; Springer: Cham, Switzerland, 2016; pp. 335–348. [Google Scholar]
- Seijo, F.; Gray, R. Pre-industrial anthropogenic fire regimes in transition: The case of Spain and its implications for fire governance in Mediterranean type biomes. Hum. Ecol. Rev. 2012, 19, 58–69. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; Defries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Stuart Chapin, F.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Cosentino, F.; Malek, Z.; Maiorano, L.; Thuiller, W.; Verburg, P.H. A new European land systems representation accounting for landscape characteristics. Landsc. Ecol. 2021, 36, 2215–2234. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Hölzel, N.; Hostert, P.; Kamp, J.; Müller, D.; Ullrich, B.; Kuemmerle, T. Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems 2020, 23, 943–956. [Google Scholar] [CrossRef]
- Chokkalingam, U.; Suyanto; Permana, R.P.; Kurniawan, I.; Mannes, J.; Darmawan, A.; Khususyiah, N.; Susanto, R.H. Community fire use, resource change, and livelihood impacts: The downward spiral in the wetlands of southern Sumatra. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 75–100. [Google Scholar] [CrossRef]
- Welch, J.R.; Fowler, C.T. Fire Otherwise: Ethnobiology of Burning for a Changing World; University of Utah Press: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Solomon, T.B.; Snyman, H.A.; Smit, G.N. Cattle-rangeland management practices and perceptions of pastoralists towards rangeland degradation in the Borana zone of southern Ethiopia. J. Environ. Manag. 2007, 82, 481–494. [Google Scholar] [CrossRef]
- Jakovac, C.C.; Dutrieux, L.P.; Siti, L.; Peña-Claros, M.; Bongers, F. Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: Expansion and intensification. PLoS ONE 2017, 12, e0181092. [Google Scholar] [CrossRef] [PubMed]
- Jakimow, B.; Griffiths, P.; van der Linden, S.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2018, 205, 453–468. [Google Scholar] [CrossRef]
- Liu, T.; Marlier, M.E.; Karambelas, A.; Jain, M.; Singh, S.; Singh, M.K.; Gautam, R.; Defries, R.S. Missing emissions from post-monsoon agricultural fires in northwestern India: Regional limitations of modis burned area and active fire products. Environ. Res. Commun. 2019, 1, 1. [Google Scholar] [CrossRef]
- Steen-Adams, M.M.; Charnley, S.; Adams, M.D. Historical perspective on the influence of wildfire policy, law, and informal institutions on management and forest resilience in a multiownership, frequent-fire, coupled human and natural system in Oregon, USA. Ecol. Soc. 2017, 22, 23. [Google Scholar] [CrossRef]
- Bendel, C.; Toledo, D.; Hovick, T.; McGranahan, D. Using behavioral change models to understand private landowner perceptions of prescribed fire in North Dakota. Rangel. Ecol. Manag. 2020, 73, 194–200. [Google Scholar] [CrossRef]
- McCarty, J.L.; Korontzi, S.; Justice, C.O.; Loboda, T. The spatial and temporal distribution of crop residue burning in the contiguous United States. Sci. Total Environ. 2009, 407, 5701–5712. [Google Scholar] [CrossRef]
- Petty, A.M.; Dekoninck, V.; Orlove, B. Cleaning, protecting, or abating? Making indigenous fire management “work” in northern Australia. J. Ethnobiol. 2015, 35, 140–162. [Google Scholar] [CrossRef] [Green Version]
- Varela, E.; Górriz-Mifsud, E.; Ruiz-Mirazo, J.; López-i-Gelats, F. Payment for targeted grazing: Integrating local shepherds intowildfire prevention. Forests 2018, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal (1958–1995) Pattern of Change in a Cultural Landscape of Northwestern Portugal: Implications for Fire Occurrence. Landscape Ecology 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Johnson, T.P. Snowball sampling: Introduction. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Ellis, E.C.; Allington, G.R.H.; de Bremond, A.; Dell’Angelo, J.; Mertz, O.; Messerli, P.; Meyfroidt, P.; Seppelt, R.; Verburg, P.H. Closing global knowledge gaps: Producing generalized knowledge from case studies of social-ecological systems. Glob. Environ. Chang. 2018, 50, 3. [Google Scholar] [CrossRef]
- Blanco, V.; Brown, C.; Rounsevell, M. Characterising forest owners through their objectives, attributes and management strategies. Eur. J. For. Res. 2015, 134, 1027–1041. [Google Scholar] [CrossRef]
- Bliege Bird, R.; Codding, B.F.; Kauhanen, P.G.; Bird, D.W. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands. Proc. Natl. Acad. Sci. USA 2012, 109, 10287–10292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, O.; Millington, J.D.A. DAFI: A global database of Anthropogenic Fire. Figshare 2021, 5290792. [Google Scholar] [CrossRef]
- Thaler, G.M.; Anandi, C.A.M. Shifting cultivation, contentious land change and forest governance: The politics of swidden in East Kalimantan. J. Peasant Stud. 2017, 44, 1066–1087. [Google Scholar] [CrossRef]
- Van Wilgen, B.W. Fire management in species-rich Cape fynbos shrublands. Front. Ecol. Environ. 2013, 11, e35–e44. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Ahmad, B.; Ahmad, W. Why do farmers burn rice residue? Examining farmers’ choices in Punjab, Pakistan. Land Use Policy 2015, 47, 448–458. [Google Scholar] [CrossRef]
- Wesche, K.; Miehe, G.; Kaeppeli, M. The significance of fire for afroalpine ericaceous vegetation. Mt. Res. Dev. 2000, 20, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Scheller, R.; Kretchun, A.; Hawbaker, T.J.; Henne, P.D. A landscape model of variable social-ecological fire regimes. Ecol. Model. 2019, 401, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Laris, P. Burning the Seasonal Mosaic: Preventative Burning Strategies in the Wooded Savanna of Southern Mali. Human Ecology 2002, 30, 155–186. [Google Scholar] [CrossRef]
- Rodriguez, I.; Sletto, B.; Bilbao, B.; Sánchez-Rose, I.; Leal, A. Speaking of fire: Reflexive governance in landscapes of social change and shifting local identities. J. Environ. Policy Plan. 2018, 20, 689–703. [Google Scholar] [CrossRef]
- Perkins, O.; Millington, J.D.A. AnthroFireDB. Available online: https://github.com/OliPerkins1987/AnthroFireDB (accessed on 17 June 2022).
- Lasko, K.; Vadrevu, K.P.; Tran, V.T.; Ellicott, E.; Nguyen, T.T.N.; Bui, H.Q.; Justice, C. Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environ. Res. Lett. 2017, 12, 8. [Google Scholar] [CrossRef]
- Johansson, M.U.; Senay, S.D.; Creathorn, E.; Kassa, H.; Hylander, K. Change in heathland fire sizes inside vs. Outside the bale mountains national park, ethiopia, over 50 years of fire-exclusion policy: Lessons for REDD+. Ecol. Soc. 2019, 24, 26. [Google Scholar] [CrossRef]
- Burrows, N.D.; Burbidge, A.A.; Fuller, P.J.; Behn, G. Evidence of altered fire regimes in the Western Desert region of Australia. Conserv. Sci. West. Aust. 2006, 5, 14–26. [Google Scholar]
- Cardil, A.; De-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.; Pijanowski, B.C.; et al. Recent deforestation drove the spike in Amazonian fires. Environ. Res. Lett. 2019, 15, 12. [Google Scholar] [CrossRef]
- Suyanto, S.; Applegate, G.; Permana, R.P.; Khususiyah, N.; Kurniawan, I. The Role of Fire in Changing Land Use and Livelihoods in Riau-Sumatra. Ecol. Soc. 2004, 9, 15. [Google Scholar] [CrossRef]
- Butz, R.J. Traditional fire management: Historical fire regimes and land use change in pastoral East Africa. Int. J. Wildland Fire 2009, 18, 442–450. [Google Scholar] [CrossRef]
- Gil-Romera, G.; Turton, D.; Sevilla-Callejo, M. Landscape change in the lower Omo valley, southwestern Ethiopia: Burning patterns and woody encroachment in the savanna. J. East. Afr. Stud. 2011, 5, 108–128. [Google Scholar] [CrossRef]
- Bilbao, B.; Mistry, J.; Millán, A.; Berardi, A. Sharing multiple perspectives on burning: Towards a participatory and intercultural fire management policy in Venezuela, Brazil, and Guyana. Fire 2019, 2, 39. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, K.; Noromiarilanto, F.; Ratovonamana, R.Y.; Buerkert, A. Deforestation processes in south-western Madagascar over the past 40 years: What can we learn from settlement characteristics? Agric. Ecosyst. Environ. 2014, 195, 231–243. [Google Scholar] [CrossRef]
- Lake, F.K.; Wright, V.; Morgan, P.; McFadzen, M.; McWethy, D.; Stevens-Rumann, C. Returning fire to the land: Celebrating traditional knowledge and fire. J. For. 2017, 115, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Ford, A.E.S.; Harrison, S.P.; Kountouris, Y.; Millington, J.D.A.; Mistry, J.; Perkins, O.; Rabin, S.S.; Rein, G.; Schreckenberg, K.; Smith, C.; et al. Modelling Human-Fire Interactions: Combining Alternative Perspectives and Approaches. Front. Environ. Sci. 2021, 9, 649835. [Google Scholar] [CrossRef]
- Copes-Gerbitz, K.; Hagerman, S.M.; Daniels, L.D. Situating Indigenous knowledge for resilience in fire-dependent social-ecological systems. Ecol. Soc. 2021, 26, 25. [Google Scholar] [CrossRef]
- Laurent, P.; Mouillot, F.; Yue, C.; Ciais, P.; Moreno, M.V.; Nogueira, J.M.P. Data Descriptor: FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci. Data 2018, 5, 180132. [Google Scholar] [CrossRef] [Green Version]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef]
- Rindfuss, R.R.; Stern, P.C. Linking remote sensing and social science: The need and the challenges. In People Pixels Link. Remote Sensing and Social Science; National Academy Press: Washington, DC, USA, 1998; pp. 1–27. [Google Scholar]
- Dennis, R.A.; Mayer, J.; Applegate, G.; Chokkalingam, U.; Colfer, C.J.P.; Kurniawan, I.; Lachowski, H.; Maus, P.; Permana, R.P.; Ruchiat, Y.; et al. Fire, people and pixels: Linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Hum. Ecol. 2005, 33, 465–504. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P.H. Mapping global patterns of land use decision-making. Glob. Environ. Chang. 2020, 65, 102170. [Google Scholar] [CrossRef]
- Goldammer, J.G.; Stocks, B.J.; Sukhinin, A.I.; Ponomarev, E. Current Fire regimes, Impacts and Likely changes-II: Forest Fires in Russia –Past and Current Trends. In Vegetation Fires and Global Change; Kessel Publishing House: Oberwinter, Germany, 2013; pp. 51–78. [Google Scholar]
- Feurdean, A.; Florescu, G.; Tanţău, I.; Vannière, B.; Diaconu, A.C.; Pfeiffer, M.; Warren, D.; Hutchinson, S.M.; Gorina, N.; Gałka, M.; et al. Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia. Quat. Sci. Rev. 2020, 244, 106495. [Google Scholar] [CrossRef]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol. 2012, 156, 41–53. [Google Scholar] [CrossRef]
- Perkins, O.; Perkins, O.; Matej, S.; Erb, K.-H.; Millington, J.D.A. Towards a global behavioural model of anthropogenic fire: The spatiotemporal distribution of land-fire systems. Socio-Environ. Syst. Model. 2022, 4, 18130. [Google Scholar] [CrossRef]
- Van Vliet, N.; Mertz, O.; Heinimann, A.; Langanke, T.; Pascual, U.; Schmook, B.; Adams, C.; Schmidt-Vogt, D.; Messerli, P.; Leisz, S.; et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Glob. Environ. Chang. 2012, 22, 418–429. [Google Scholar] [CrossRef]
- Lopes, A.A.; Viriyavipart, A.; Tasneem, D. The role of social influence in crop residue management: Evidence from Northern India. Ecol. Econ. 2020, 169, 106563. [Google Scholar] [CrossRef]
- Smil, V. Crop Residues: Agriculture’s Largest Harvest: Crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience 1999, 49, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Zhang, Q.; He, K. Survey-based pollutant emission inventory from open burning of straw in China. Environ. Sci. 2016, 8, 1109–1118. [Google Scholar] [CrossRef]
- Yang, S.; He, H.; Lu, S.; Chen, D.; Zhu, J. Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmos. Environ. 2008, 42, 1961–1969. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Joshi, L. Socioeconomic and Environmental Implications of Agricultural Residue Burning: A Case Study of Punjab, India; Springer Nature: New Delhi, India, 2015. [Google Scholar]
- Hall, J.V.; Loboda, T.V.; Giglio, L.; McCarty, G.W. A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sens. Environ. 2016, 184, 506–521. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Anderson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef]
- Hong Van, N.P.; Nga, T.T.; Arai, H.; Hosen, Y.; Chiem, N.H.; Inubushi, K. Rice straw management by farmers in a triple rice production system in the Mekong Delta, Viet Nam. Trop. Agric. Dev. 2014, 58, 155–162. [Google Scholar] [CrossRef]
- Zhang, T.; Wooster, M.J.; de Jong, M.C.; Xu, W. How well does the “small fire boost” methodology used within the GFED4.1s fire emissions database represent the timing, location and magnitude of agricultural burning? Remote Sens. 2018, 10, 823. [Google Scholar] [CrossRef] [Green Version]
- McCarty, J.L.; Krylov, A.; Prishchepov, A.V.; Banach, D.M.; Tyukavina, A.; Potapov, P.; Turubanova, S. Agricultural fires in European Russia, Belarus, and Lithuania and their impact on air quality, 2002–2012. In Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer: Cham, Switzerland, 2017; pp. 193–221. [Google Scholar]
- Sayer, R.A. Method in Social Science: A Realist Approach; Routledge: London, UK, 1992. [Google Scholar]
- Goodenough, A.E.; Harrell, A.N.; Keating, R.L.; Rolfe, R.N.; Stubbs, H.; Mactavish, L.; Hart, A.G. Managing grassland for wildlife: The effects of rotational burning on tick presence and abundance in African savannah habitat. Wildl. Biol. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.S.; Rego, F.C.; Fernandes, P.; Rigolot, E. Towards Integrated Fire Management-Outcomes of the European Project Fire Paradox; European Forest Institute: Joensuu, Finland, 2010. [Google Scholar]
- Hoffmann, A.A.; Parry, J.-E.; Cuambe, C.C.D.; Kwesha, D.; Zhakata, W. Climate change and wildland fires in Mozambique. In Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 227–259. [Google Scholar] [CrossRef]
- Araki, S. Ten Years of Population Change and the Chitemene Slash-and-Burn System around the Mpika Area, Northern Zambia. Afr. Study Monographs. Suppl. Issue 2007, 34, 75–89. [Google Scholar]
- Boossabong, P.; Chamchong, P. Public policy in the face of post-truth politics and the role of deliberation. Crit. Policy Stud. 2020, 15, 107–124. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Perry, G.L.W.; Higgins, S.I.; Johnson, C.N.; Fuhlendorf, S.D.; Murphy, B.P. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerri, C.E.P.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability 2018, 10, 989. [Google Scholar] [CrossRef] [Green Version]
- Easdale, M.; Aguiar, M. From traditional knowledge to novel adaptations of transhumant pastoralists the in face of new challenges in North Patagonia. J. Rural Stud. 2018, 63, 65–73. [Google Scholar] [CrossRef]
- Fischer, R.; Giessen, L.; Günter, S. Governance effects on deforestation in the tropics: A review of the evidence. Environ. Sci. Policy 2020, 105, 84–101. [Google Scholar] [CrossRef]
- Jajtić, K.; Galijan, V.; Žafran, I.; Cvitanović, M. Analysing wildfire occurrence through a mixed-method approach: A case study from the Croatian Mediterranean. Erdkunde 2019, 73, 323–341. [Google Scholar] [CrossRef]
- Keck, M.; Hung, D.T. Burn or bury? A comparative cost–benefit analysis of crop residue management practices among smallholder rice farmers in northern Vietnam. Sustain. Sci. 2019, 14, 375–389. [Google Scholar] [CrossRef]
- Kubitza, C.; Krishna, V.V.; Urban, K.; Alamsyah, Z.; Qaim, M. Land Property Rights, Agricultural Intensification, and Deforestation in Indonesia. Ecol. Econ. 2018, 147, 312–321. [Google Scholar] [CrossRef]
- Mbow, C.; Nielsen, T.T.; Rasmussen, K. Savanna Fires in East-Central Senegal: Distribution Patterns, Resource Management and Perceptions. Hum. Ecol. 2000, 28, 561–583. [Google Scholar] [CrossRef]
- McGregor, S.; Lawson, V.; Christophersen, P.; Kennett, R.; Boyden, J.; Bayliss, P.; Liedloff, A.; McKaige, B.; Andersen, A.N. Indigenous Wetland Burning: Conserving Natural and Cultural Resources in Australia’s World Heritage-listed Kakadu National Park. Hum. Ecol. 2010, 38, 721–729. [Google Scholar] [CrossRef]
- Mendoza, T.C. Enhancing Crop Residues Recycling in the Philippine Landscape. In Environmental Implications of Recycling and Recycled Products; Muthu, S.S., Ed.; Springer: Singapore; pp. 79–100. [CrossRef]
- Mertz, O.; Padoch, C.; Fox, J.; Cramb, R.A.; Leisz, S.J.; Lam, N.T.; Viên, T.D. Swidden Change in Southeast Asia: Understanding Causes and Consequences. Hum. Ecol. 2009, 37, 259–264. [Google Scholar] [CrossRef]
- Parr, C.L.; Andersen, A.N. Patch Mosaic Burning for Biodiversity Conservation: A Critique of the Pyrodiversity Paradigm. Conserv. Biol. 2006, 20, 1610–1619. [Google Scholar] [CrossRef] [PubMed]
- Rakatama, A.; Pandit, R.; Ma, C.; Iftekhar, S. The costs and benefits of REDD+: A review of the literature. For. Policy Econ. 2017, 75, 103–111. [Google Scholar] [CrossRef]
- Saladyga, T.; Hessl, A.; Nachin, B.; Pederson, N. Privatization, Drought, and Fire Exclusion in the Tuul River Watershed, Mongolia. Ecosystems 2013, 16, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Schmerbeck, J. Patterns of Forest Use and Its Influence on Degraded Dry Forests: A Sase Study in Tamil Nadu, South India. Ph.D. Thesis, University of Munich, Munich, Germany, 2003. [Google Scholar]
- Shaffer, L.J. Indigenous Fire Use to Manage Savanna Landscapes in Southern Mozambique. Fire Ecol. 2010, 6, 43–59. [Google Scholar] [CrossRef]
- Spencer, A.G.; Schultz, C.A.; Hoffman, C.M. Enhancing adaptive capacity for restoring fire-dependent ecosystems: The Fire Learning Network’s Prescribed Fire Training Exchanges. Ecol. Soc. 2015, 20, 38. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Ge, Y.; Zhou, Y. Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China. Energy Policy 2019, 134, 110882. [Google Scholar] [CrossRef]
- Taylor, C.A. Rangeland Monitoring and Fire: Wildfires and Prescribed Burning, Nutrient Cycling, and Plant Succession. Arid Land Res. Manag. 2003, 17, 429–438. [Google Scholar] [CrossRef]
- Trollope, W.S.W. Personal Perspectives on Commercial versus Communal African Fire Paradigms when Using Fire to Manage Rangelands for Domestic Livestock and Wildlife in Southern and East African Ecosystems. Fire Ecol. 2011, 7, 57–73. [Google Scholar] [CrossRef]
- Twidwell, D.; E Rogers, W.; Fuhlendorf, S.D.; Wonkka, C.L.; Engle, D.M.; Weir, J.R.; Kreuter, U.P.; A Taylor, C. The rising Great Plains fire campaign: Citizens’ response to woody plant encroachment. Front. Ecol. Environ. 2013, 11, e64–e71. [Google Scholar] [CrossRef]
- Vehrs, H.-P. Changes in landscape vegetation, forage plant composition and herding structure in the pastoralist livelihoods of East Pokot, Kenya. J. East. Afr. Stud. 2016, 10, 88–110. [Google Scholar] [CrossRef]
AFR | Land Use | ||
---|---|---|---|
Forestry | Livestock | Crops | |
Pre-Industrial | Hunting–Gathering [49] | Pastoralism [50] | Swidden [51] |
Transition | Logging [9] | Extensive Ranching [52] | Small-holdings [53] |
Industrial | Managed Forests [54] | Intensive Ranching [55] | Intensive Farming [56] |
Post-Industrial | Pyro-diverse Mgmnt [57] | Subsidised Grazing [58] | Abandoned [59] |
Fire Use | DAFI Records (%) | Description | Key Reference | Mean Size (ha) | Mean Burned Area (% LC) | Mean Return Period (yrs) | Escaped (%) |
---|---|---|---|---|---|---|---|
Crop Field Preparation | 20.6 | Preparing temporary fields for crop planting | [51] | 0.8 | 12.8 | 9.8 | 0.06 |
Crop Residue Burning | 17.4 | Removing unwanted crop debris post-harvest | [73] | 3.9 | 22.8 | 1.5 | 0.01 |
Pasture Management | 12.8 | Supporting livestock farming by improving forage or combating pests | [74] | 33.9 | 32.1 | 3.0 | 5.01 |
Hunting–Gathering | 6.7 | Catching wild animals and fish for meat; harvesting plants and fungi for food, shelter, or medicine | [75] | 2.1 | 9.1 | 4.3 | 1.10 |
Vegetation Clearing | 14.0 | Permanently clearing primary vegetation for extractive land use (e.g., agriculture) | [76] | 9.2 | 6.6 | N/A | 0.95 |
Pyrome Management | 18.5 | Managing intensity, frequency, timing of fires by altering vegetation characteristics | [57] | 357.2 | 8.9 | 5.6 | 0.06 |
Arson | 3.5 | Deliberately causing damage to persons or property | [77] | N/A | N/A | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millington, J.D.A.; Perkins, O.; Smith, C. Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire 2022, 5, 87. https://doi.org/10.3390/fire5040087
Millington JDA, Perkins O, Smith C. Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire. 2022; 5(4):87. https://doi.org/10.3390/fire5040087
Chicago/Turabian StyleMillington, James D. A., Oliver Perkins, and Cathy Smith. 2022. "Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling" Fire 5, no. 4: 87. https://doi.org/10.3390/fire5040087
APA StyleMillington, J. D. A., Perkins, O., & Smith, C. (2022). Human Fire Use and Management: A Global Database of Anthropogenic Fire Impacts for Modelling. Fire, 5(4), 87. https://doi.org/10.3390/fire5040087