A Survey on Monitoring of Wild Animals during Fires Using Drones
Abstract
:1. Introduction
2. Using Drone Technology to Monitor Wild Animals
3. Use of Drones for Monitoring and Detecting Fires
4. Using Drone Technology to Monitor Wild Animals during Fires
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State of the World’s Forests, 2020. Available online: https://www.fao.org/state-of-forests/en/ (accessed on 5 March 2022).
- Mangani, A. When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia. For. Policy Econ. 2021, 130, 102537. [Google Scholar] [CrossRef]
- Fathima, S.K.; Velammal, B.L.; Shanmugam, K.; Jayareka, K.S. Anintegrated Iot based Approach Enabled in UAV for the Early Prediction of Forest Fires. Ann. Rom. Soc. Cell Biol. 2021, 25, 11042–11054. [Google Scholar]
- Lewis, S.L.; Edwards, D.P.; Galbraith, D. Increasing human dominance of tropical forests. Science 2015, 349, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Orozco, S.M.; Siebe, C.; Fernández, D. Causes and effects of forest fires in tropical rainforests: A bibliometric approach. Trop. Conserv. Sci. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Wildfire Statistics. Available online: https://sgp.fas.org/crs/misc/IF10244.pdf (accessed on 2 March 2022).
- Abram, N.J.; Henley, B.J.; Gupta, A.S.; Lippmann, T.J.; Clarke, H.; Dowdy, A.J.; Boer, M.M. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 1–17. [Google Scholar] [CrossRef]
- Boer, M.M.; de Dios, V.R.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest fires and climate change: Causes, consequences and management options. Int. J. Wildland Fire 2016, 25, 1–2. [Google Scholar] [CrossRef]
- Pons, P.; Clavero, M. Bird responses to fire severity and time since fire in managed mountain rangelands. Anim. Conserv. 2010, 13, 294–305. [Google Scholar] [CrossRef]
- Bond, W.J.; Keane, R. Fires, ecological effects of. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Environmental Protection in Russia. Available online: https://rosstat.gov.ru/folder/210/document/13209 (accessed on 7 March 2022).
- Bartenev, I.M.; Malyukov, S.V.; Gnusov, M.A.; Stupnikov, D.S. Study of efficiency of soil-thrower and fire-break majer on the basis of mathematic simulation. Int. J. Mech. Eng. Technol. 2018, 9, 1008–1018. [Google Scholar]
- Kasymov, D.P.; Fateyev, V.N.; Zima, V.P. Methods and devices used in the wildfire localization for the protection of forest ecosystems. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russia, 3–7 July 2017; p. 1046664. [Google Scholar] [CrossRef]
- Mell, W.E.; Manzello, S.L.; Maranghides, A.; Butry, D.; Rehm, R.G. The wildland–urban interface fire problem–current approaches and research needs. Int. J. Wildland Fire 2010, 19, 238–251. [Google Scholar] [CrossRef]
- László, F.; Rajmund, K. Characteristics of forest fires and their impact on the environment. AARMS—Acad. Appl. Res. Mil. Public Manag. Sci. 2016, 15, 5–17. [Google Scholar]
- DeMars, C.A.; Serrouya, R.; Mumma, M.A.; Gillingham, M.P.; McNay, R.S.; Boutin, S. Moose, caribou, and fire: Have we got it right yet? Can. J. Zool. 2019, 97, 866–879. [Google Scholar] [CrossRef]
- Singer, F.J. Habitat partitioning and wildfire relationships of cervids in Glacier National Park, Montana. J. Wildl. Manag. 1979, 43, 437–444. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation and Vulnerability: The IPCC Sixth Assessment Report. Available online: https://report.ipcc.ch/ar6wg2/pdf/IPCC_AR6_WGII_FinalDraft_FullReport.pdf (accessed on 7 March 2022).
- Tape, K.D.; Gustine, D.D.; Ruess, R.W.; Adams, L.G.; Clark, J.A. Range expansion of moose in Arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 2016, 11, e0152636. [Google Scholar] [CrossRef]
- Anderson, K.L. Effects of Fire on Diet Composition, Foraging Behavior, and Nutritional Status of Moose in South-Central and Interior Alaska. Master’s Thesis, University of Alaska Anchorage, Anchorage, AK, USA, 2020. [Google Scholar]
- Prosekov, A.; Kuznetsov, A.; Rada, A.; Ivanova, S. Methods for Monitoring Large Terrestrial Animals in the Wild. Forests 2020, 11, 808. [Google Scholar] [CrossRef]
- Joyce, K.E.; Anderson, K.; Bartolo, R.E. Of Course We Fly Unmanned—We’re Women! Drones 2021, 5, 21. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Smyser, T.J.; Guenzel, R.J.; Jacques, C.N.; Garton, E.O. Double-observer evaluation of pronghorn aerial line-transect surveys. Wildl. Res. 2016, 43, 474–481. [Google Scholar] [CrossRef]
- Ivanova, S.; Prosekov, A.; Kaledin, A. Is Ecotourism an Opportunity for Large Wild Animals to Thrive? Sustainability 2022, 14, 2718. [Google Scholar] [CrossRef]
- Rey, N.; Volpi, M.; Joost, S.; Tuia, D. Detecting animals in African Savanna with UAVs and the crowds. Remote Sens. Environ. 2017, 200, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, 5716–5725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyequien, E.; Verrelst, J.; Slot, M.; Schaepman-Strub, G.; Heitkönig, I.M.A.; Skidmore, A. Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 1–20. [Google Scholar] [CrossRef]
- Dulava, S.; Bean, W.T.; Richmond, O.M.W. Environmental reviews and case studies: Applications of unmanned aircraft systems (UAS) for waterbird surveys. Environ. Pract. 2015, 17, 201–210. [Google Scholar] [CrossRef]
- LaRue, M.A.; Stapleton, S.; Anderson, M. Feasibility of using high-resolution satellite imagery to assess vertebrate wildlife populations. Conserv. Biol. 2017, 31, 213–220. [Google Scholar] [CrossRef]
- Olivares-Mendez, M.A. Towards an autonomous vision-based unmanned aerial system against wildlife poachers. Sensors 2015, 15, 31362–31391. [Google Scholar] [CrossRef]
- Christiansen, F.; Dujon, A.M.; Sprogis, K.R.; Arnould, J.P.; Bejder, L. Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 2016, 7, 1–18. [Google Scholar] [CrossRef]
- Hodgson, A.; Peel, D.; Kelly, N. Unmanned aerial vehicles for surveying marine fauna: Assessing detection probability. Ecol. Appl. 2017, 27, 1253–1267. [Google Scholar] [CrossRef]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests-preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Vermeulen, C.; Lejeune, P.; Lisein, J.; Sawadogo, P.; Bouché, P. Unmanned aerial survey of elephants. PLoS ONE 2013, 8, e54700. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, D.J.; Gallon, S.; Nord, A. Challenges of measuring body temperatures of free-ranging birds and mammals. Anim. Biotelemetry 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Pradhan, B.; Suliman, M.D.H.B.; Awang, M.A.B. Forest fire susceptibility and risk mapping using remote sensing and geographical information systems (GIS). Disaster Prev. Manag. An. Int. J. 2007, 16, 344–352. [Google Scholar] [CrossRef]
- Bouabdellah, K.; Noureddine, H.; Larbi, S. Using wireless sensor networks for reliable forest fires detection. Procedia Comput. Sci. 2013, 19, 794–801. [Google Scholar] [CrossRef] [Green Version]
- Gaur, A.; Singh, A.; Kumar, A.; Kulkarni, K.S.; Lala, S.; Kapoor, K.; Mukhopadhyay, S.C. Fire sensing technologies: A review. IEEE Sens. J. 2019, 19, 3191–3202. [Google Scholar] [CrossRef]
- Gaur, A.; Singh, A.; Kumar, A.; Kumar, A.; Kapoor, K. Video flame and smoke based fire detection algorithms: A literature review. Fire Technol. 2020, 56, 1943–1980. [Google Scholar] [CrossRef]
- Memane, S.E.; Kulkarni, V.S. A review on flame and smoke detection techniques in video’s. Int. J. Adv. Res. Electr. Electron. Instrumen. Eng. 2015, 4, 885–889. [Google Scholar]
- Bu, F.; Gharajeh, M.S. Intelligent and vision-based fire detection systems: A survey. Image Vis. Comput. 2019, 91, 103803. [Google Scholar] [CrossRef]
- Allison, R.S.; Johnston, J.M.; Craig, G.; Jennings, S. Airborne optical and thermal remote sensing for wildfire detection and monitoring. Sensors 2016, 16, 1310. [Google Scholar] [CrossRef] [Green Version]
- Nixon, M.; Aguado, A. Feature Extraction and Image Processing for Computer Vision, 4th ed.; Academic Press: London, UK, 2019; pp. 141–217. [Google Scholar]
- Brinkman, M.P.; Garcelon, D.K. Applying UAV Systems in Wildlife Management. Proc. Vertebr. Pest. Conf. 2020, 29, 1–4. [Google Scholar]
- Yuan, C.; Liu, Z.; Zhang, Y. UAV-based forest fire detection and tracking using image processing techniques. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; IEEE: New York, NY, USA, 2015; pp. 639–643. [Google Scholar] [CrossRef]
- Albani, D.D.; Nardi, V. Trianni Field coverage and weed mapping by UAV swarms. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4319–4325. [Google Scholar]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: New York, NY, USA, 2017; pp. 3024–3031. [Google Scholar] [CrossRef]
- Ostovar, A.; Hellström, T.; Ringdahl, O. Human detection based on infrared images in forestry environments. In Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science; Campilho, A., Karray, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 9730. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Liu, Z.; Zhang, Y. Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. J. Intell. Robot. Syst. 2017, 88, 635–654. [Google Scholar] [CrossRef]
- Harikumar, K.; Senthilnath, J.; Sundaram, S. Multi-UAV oxyrrhis marina-inspired search and dynamic formation control for forest firefighting. IEEE Trans. Autom. Sci. Eng. 2018, 16, 863–873. [Google Scholar] [CrossRef]
- Merino, L.; Caballero, F.; de Dios, J.R.M.; Maza, I.; Ollero, A. Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In Proceedings of the 6th International Congress on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010. Available online: http://robotics.upo.es/~lmercab/publications/papers/ICFFR10_Merinoetal.pdf (accessed on 20 January 2022).
- Zharikova, M.; Sherstjuk, V. Forest firefighting monitoring system based on UAV team and remote sensing. In Automated Systems in the Aviation and Aerospace Industries; IGI Global: Hershey, PA, USA, 2019; p. 22. [Google Scholar] [CrossRef]
- Imdoukh, A.; Shaker, A.; Al-Toukhy, A.; Kablaoui, D.; El-Abd, M. Semi-autonomous indoor firefighting UAV. In Proceedings of the 2017 18th International Conference on Advanced Robotics (ICAR), Hong Kong, China, 10–12 July 2017; pp. 310–315. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, Z.; Zhang, Y. Learning-based smoke detection for unmanned aerial vehicles applied to forest fire. J. Intell. Robot. Syst. 2019, 93, 337–349. [Google Scholar] [CrossRef]
- Merino, L.; Caballero, F.; Martínez-de-Dios, J.R.; Maza, I.; Ollero, A. An unmanned aircraft system for automatic forest fire monitoring and measurement. J. Intell. Robot. Syst. 2012, 65, 533–548. [Google Scholar] [CrossRef]
- Pham, H.X.; La, H.M.; Feil-Seifer, D.; Deans, M. A distributed control framework for a team of unmanned aerial vehicles for dynamic wildfire tracking. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: New York, NY, USA, 2017; pp. 6648–6653. [Google Scholar] [CrossRef] [Green Version]
- McKenna, P.; Erskine, P.D.; Lechner, A.M.; Phinn, S. Measuring fire severity using UAV imagery in semi-arid central Queensland, Australia. Int. J. Remote Sens. 2017, 38, 4244–4264. [Google Scholar] [CrossRef]
- Lee, W.; Kim, S.; Lee, Y.T.; Lee, H.W.; Choi, M. Deep neural networks for wild fire detection with unmanned aerial vehicle. In Proceedings of the 2017 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 30 March 2017; IEEE: New York, NY, USA, 2017; pp. 252–253. [Google Scholar] [CrossRef]
- Holyoak, M.; Casagrandi, R.; Nathan, R.; Revilla, E.; Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. USA 2008, 105, 19060–19065. [Google Scholar] [CrossRef] [Green Version]
- Jeltsch, F.; Bonte, D.; Pe’er, G.; Reineking, B.; Leimgruber, P.; Balkenhol, N.; Bauer, S. Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 2013, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- van Mantgem, E.F.; Keeley, J.E.; Witter, M. Faunal responses to fire in chaparral and sage scrub in California, USA. Fire Ecol. 2015, 11, 128–148. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Parr, C.L. Towards an understanding of the evolutionary role of fire in animals. Evol. Ecol. 2018, 32, 113–125. [Google Scholar] [CrossRef]
- Nimmo, D.G.; Kelly, L.T.; Spence-Bailey, L.M.; Watson, S.J.; Taylor, R.S.; Clarke, M.F.; Bennett, A.F. Fire mosaics and reptile conservation in a fire-prone region. Conserv. Biol. 2013, 27, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, D.G.; Avitabile, S.; Banks, S.C.; Bliege Bird, R.; Callister, K.; Clarke, M.F.; Bennett, A.F. Animal movements in fire-prone landscapes. Biol. Rev. 2019, 94, 981–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marvin, D.C.; Koh, L.P.; Lynam, A.J.; Wich, S.; Davies, A.B.; Krishnamurthy, R.; Asner, G.P. Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 2016, 7, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Scholten, C.N.; Kamphuis, A.J.; Vredevoogd, K.J.; Lee-Strydhorst, K.G.; Atma, J.L.; Shea, C.B.; Proppe, D.S. Real-time thermal imagery from an unmanned aerial vehicle can locate ground nests of a grassland songbird at rates similar to traditional methods. Biol. Conserv. 2019, 233, 241–246. [Google Scholar] [CrossRef]
- Karumanchi, R.V.; Raju, S.H.; Kavitha, S.; Lalitha, V.L.; Krishna, S.V. Fully Smart fire detection and prevention in the authorized forests. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; IEEE: New York, NY, USA, 2021; pp. 573–579. [Google Scholar] [CrossRef]
- Moura, M.C.; Caparelli, A.C.; Freitas, S.R.; Vieira, M.V. Scale-dependent habitat selection in three didelphid marsupials using the spool-and-line technique in the Atlantic forest of Brazil. J. Trop. Ecol. 2005, 21, 337–342. [Google Scholar] [CrossRef]
- Kay, G.M.; Driscoll, D.A.; Lindenmayer, D.B.; Pulsford, S.A.; Mortelliti, A. Pasture height and crop direction influence reptile movement in an agricultural matrix. Agric. Ecosyst. Environ. 2016, 235, 164–171. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Baylis, S.M.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, S.; Prosekov, A. Hunting resource management by population size control by remote sensing using an unmanned aerial vehicle. Nat. Environ. Pollut. Technol. 2022, in press. [Google Scholar]
- Gonzalez, L.F.; Montes, G.A.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K.J. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, E.D.; Martin, J.M.; Boer, M.M.; Welbergen, J.A. Drone-based thermal remote sensing provides an effective new tool for monitoring the abundance of roosting fruit bats. Remote Sens. Ecol. Conserv. 2021, 7, 461–474. [Google Scholar] [CrossRef]
- Di, L.; Fromm, Y.T.; Chen, Q. A data fusion system for attitude estimation of low-cost miniature UAVs. J. Intell Robot. Syst 2012, 65, 621–635. [Google Scholar] [CrossRef]
- Van Moorter, B.; Visscher, D.R.; Jerde, C.L.; Frair, J.L.; Merrill, E.H. Identifying movement states from location data using cluster analysis. J. Wildl. Manag. 2010, 74, 588–594. [Google Scholar] [CrossRef]
- Berry, L.E.; Lindenmayer, D.B.; Dennis, T.E.; Driscoll, D.A.; Banks, S.C. Fire severity alters spatio–temporal movements and habitat utilisation by an arboreal marsupial, the mountain brushtail possum (Trichosurus cunninghami). Int. J. Wildland Fire 2016, 25, 1291–1302. [Google Scholar] [CrossRef]
- McGregor, H.W.; Legge, S.; Jones, M.E.; Johnson, C.N. Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci. Rep. 2016, 6, 22559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouten, W.; Baaij, E.W.; Shamoun-Baranes, J.; Camphuysen, K.C. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 2013, 154, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shao, Q.; Yue, H. Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASs): A review. Remote Sens. 2019, 11, 1308. [Google Scholar] [CrossRef] [Green Version]
Object of Study | Number of Individuals | ||||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | |||||||
1 | 2 | 1 | 2 | 1 | 2 | ||||
2019 | 2019 | 2020 | 2019 | 2019 | 2020 | 2019 | 2019 | 2020 | |
Maral deer | 3 | 7 | 11 | 2 | 5 | 9 | 85 | 93 | 98 |
Roe deer | 48 | 69 | 74 | 25 | 42 | 51 | 220 | 245 | 254 |
Elk | 42 | 57 | 59 | 103 | 99 | 101 | 59 | 57 | 58 |
Wild boar | 36 | 42 | 40 | 0 | 0 | 0 | 150 | 172 | 191 |
Sable | 187 | 243 | 260 | 634 | 691 | 734 | 190 | 223 | 256 |
Badger | 36 | 34 | 40 | 131 | 159 | 168 | 140 | 130 | 141 |
Fox | 18 | 22 | 21 | 49 | 41 | 44 | 25 | 21 | 24 |
White hare | 89 | 74 | 69 | 400 | 398 | 395 | 180 | 233 | 225 |
Drone Type | Equipment | Shooting Type | Object of Observation | Features | Sources |
---|---|---|---|---|---|
AscTec Firefly hexacopter | Onboard computer, uEye wideband camera, and inertial measurement unit; vision-based sensors | Video | Elefants, rhinos | Adaptive tracking algorithm; dependence of image quality on the type of drone | [33] |
Splashdrone quadcopter | Canon fixed camera | - | Humpback whales (Megaptera novaeangliae) | Necessity to get close to animals | [34] |
Fixed-wing drone ScanEagle | Nikon digital reflex camera; Standard Definition Electro-Optical Camera (Electro-Optical Imaging, Inc., West Melbourne, FL, USA) | Spectroscopy | Humpback whales (Megaptera novaeangliae) | Ability to collect additional spatial information; limited camera coverage; the systematic movement of animals introduces errors in monitoring the population size; the need for GPS navigation | [35] |
Fixed-wing AVI-1 aeroplane; fixed-wing Skywalker X8 Flying Wing | Autopilot, GPS-module, radiotelemetric system, Thermal imager, TIR-camera IRMOD v640 | Thermal imagery | Large ungulates | Dependence on environmental conditions and weather; difficulty in species identification; the need for a library of reference signatures for animal identification; the need to increase the resolution of the camera | [36] |
Unmanned aerial system | GPS, inertial measuring unit, fixed automatic camera Ricoh GR III | - | Elefants | Low autonomy; high cost of the system | [37] |
FX79 airframe drone | Mirrorless digital camera EOS M, Canon, CMOS ceнcop (vision-based sensors) | Video | Colonies of three seabird taxa—frigatebirds, terns, and penguins | Population counting accuracy; | [75] |
Quadrocopter Iris+, 3D Robotics | Digital camera Cyber-shot RX100 III, Sony, CMOS sensor (vision-based sensors) | Video | tern Thalasseus bergii | Reducing the time for counting the number of individuals; increase in accuracy; no negative impact on animals | [38] |
Fixed-wing aircraft Supercam S250 | Camera and Thermal infrared object finder (TIOF) | Video Thermal imagery | Maral deer, Roe deer, Elk, Wild boar, Sable, Badger, Fox, and White hare | Accuracy of received data and operator safety; customized software; dependence on weather conditions | [76] |
S800 EVO Hexacopter | WooKong-M (WK-M) flight controller, GPS, FLIR-Tau 2-640 camera | RGB-video Thermal imagery | Koalas | Efficiency of monitoring in hard-to-reach places; the laboriousness of processing large volumes of images to identify individual species and specimens of animals; high operating costs | [77] |
DJI Inspire 1 version 2.0 drone | Zenmuse XT radiometric thermal camera | Thermal imagery | Flying-fox colonies | Influence of weather phenomena on the quality of thermographic images; it is desirable to have information about the nature of the movement and dislocation of individuals | [78] |
Drone Type | Equipment | Shooting Type | Features | Sources |
---|---|---|---|---|
Drone or group of drones | Surveillance systems with cameras; IR sensors, inertial sensors, thermal sensors, and vision sensors | Video | Fast response ability, high performance, low cost, and operator safety | [54] |
IR spectrometry | [55] | |||
Thermal imagery | [79] | |||
ALTUS drone | IMUS and GPS navigators, Infrared and video cameras | Video IR spectrometry | Operator safety and agility | [56] |
Fixed-wing and proppeler drones | Onboard radio-electronic and instrumental equipment, a global positioning system receiver for self-locating, and wireless modems for building a communication network with other drones; optical and IR cameras | Photo Video IR spectroscopy | Possibility of application in hard-to-reach areas, breadth of the territory of use; dependence on weather conditions; flight time limit | [25] |
Quadcopters, hexacopters, octacopters | Inertial navigation systems, GPS, and HF transceivers and cameras | Video | Reducing the negative impact of cloudiness and dependence on lighting; algorithms for detecting smoke in an image | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, S.; Prosekov, A.; Kaledin, A. A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire 2022, 5, 60. https://doi.org/10.3390/fire5030060
Ivanova S, Prosekov A, Kaledin A. A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire. 2022; 5(3):60. https://doi.org/10.3390/fire5030060
Chicago/Turabian StyleIvanova, Svetlana, Alexander Prosekov, and Anatoly Kaledin. 2022. "A Survey on Monitoring of Wild Animals during Fires Using Drones" Fire 5, no. 3: 60. https://doi.org/10.3390/fire5030060
APA StyleIvanova, S., Prosekov, A., & Kaledin, A. (2022). A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire, 5(3), 60. https://doi.org/10.3390/fire5030060