The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal)
Abstract
:1. Introduction
1.1. The Pedrógão Grande Fire Complex
1.2. The Wildland Urban Interface
1.3. The Impact of Fire on Structures
2. Materials and Methods
2.1. Database Design
2.2. Field Campaign Design and Data Collection
3. Results and Discussion
3.1. Group 1—The Structure
3.2. Group 2—The Surroundings of the Structure
3.3. Group 3—The Arrival and Impact of the Fire
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viegas, D.X.; Figueiredo Almeida, M.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; Oliveira, R.; Pinto, C.; Jorge, H.; Rodrigues, A.; Lucas, D. O Complexo de Incêndios de Pedrógão Grande e Concelhos Limítrofes, Iniciado a 17 de Junho de 2017; Centro de Estudos sobre Incêndios Florestais (CEIF/ADAI/LAETA): Coimbra, Portugal, 2017. [Google Scholar]
- Raposo, J.; Viegas, D.X.; Xie, X.; Almeida, M.; Figueiredo, A.R.; Porto, L.; Sharples, J. Analysis of the physical processes associated with junction fires at laboratory and field scales. Int. J. Wildland Fire 2018, 27, 52–68. [Google Scholar] [CrossRef]
- BRP. The Blue Ribbon Panel on Wildland/Urban Interface Fire. Blue Ribbon Panel; International Code Council (ICC): Washington, DC, USA, 2008. [Google Scholar]
- Ribeiro, L.M. Os Incêndios na Interface Urbano-Florestal em Portugal: Uma Análise de Diagnóstico. Dissertação para a Obtenção do Grau de Mestre em Dinâmicas Sociais, Riscos Naturais e Tecnológicos; Faculdade de Ciências e Tecnologia da Universidade de Coimbra: Coimbra, Portugal, 2016. [Google Scholar]
- Butler, C.P. The urban/wildland fire interface. In Proceedings of the Western States Section/Combustion Institute Papers; Washington State University: Spokane, WA, USA, 1974; Volume 74, p. 15. [Google Scholar]
- Restuccia, F. Conduction. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–6. [Google Scholar]
- Hu, L.; Delichatsios, M. Thermal Radiation. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer International Publishing: Cham, Switzerland, 2020; pp. 1004–1011. [Google Scholar]
- McAllister, S. Convection. In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–8. [Google Scholar]
- Manzello, S.L.; Shields, J.R.; Yang, J.C.; Hayashi, Y.; Nii, D. On the use of a firebrand generator to investigate the ignition of structures in wildland-urban interface (WUI) fires. In Proceedings of the Eleventh International Fire Science and Engineering Conference (INTERFLAM), London, UK, 3–5 September 2007. [Google Scholar]
- Cohen, J.D.; Stratton, R.D. Home Destruction Examination Grass Valley Fire; R5-TP-026b; United States Department of Agriculture: Washington, DC, USA, 2008. [Google Scholar]
- Maranghides, A.; Mell, W. A Case Study of a Community Affected by the Witch and Guejito Wildland Fires. Fire Technol. 2011, 47, 379–420. [Google Scholar] [CrossRef]
- Manzello, S.L.; Foote, E.I.D. Characterizing Firebrand Exposure from Wildland–Urban Interface (WUI) Fires: Results from the 2007 Angora Fire. Fire Technol. 2014, 50, 105–124. [Google Scholar] [CrossRef]
- Caton, S.E.; Hakes, R.S.P.; Gorham, D.J.; Zhou, A.; Gollner, M.J. Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions. Fire Technol. 2017, 53, 429–473. [Google Scholar] [CrossRef]
- Manzello, S.L.; Park, S.-H.; Cleary, T.G. Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf. J. 2009, 44, 894–900. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S.; Hayashi, Y. Enabling the study of structure vulnerabilities to ignition from wind driven firebrand showers: A summary of experimental results. Fire Saf. J. 2012, 54, 181–196. [Google Scholar] [CrossRef]
- Manzello, S. Enabling the Investigation of Structure Vulnerabilities to Wind- Driven Firebrand Showers in Wildland-Urban Interface (WUI) Fires. Fire Saf. Sci. 2014, 11, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Manzello, S.L.; Suzuki, S. Experimental investigation of wood decking assemblies exposed to firebrand showers. Fire Saf. J. 2017, 92, 122–131. [Google Scholar] [CrossRef]
- Suzuki, S.; Manzello, S.L. Experimental investigation of firebrand accumulation zones in front of obstacles. Fire Saf. J. 2017, 94, 1–7. [Google Scholar] [CrossRef]
- Beverly, J.L.; Bothwell, P.; Conner, J.C.R.; Herd, E.P.K. Assessing the exposure of the built environment to potential ignition sources generated from vegetative fuel. Int. J. Wildland Fire 2010, 19, 299–313. [Google Scholar] [CrossRef]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Pello, A.C. Wildland fire spot ignition by sparks and firebrands. Fire Saf. J. 2017, 91, 2–10. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S.; Gollner, M.J.; Fernandez-Pello, A.C. Role of firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 2020, 76, 100801. [Google Scholar] [CrossRef] [PubMed]
- Gorostiaga, J.P.; Vega, J.A.; Fonturbel, M.T.; Guijarro, M.; Hernando, C.; Diez, C.; Martinez, E.; Lampin, C.; Blanc, L.; Colin, P.Y.; et al. Capability of ignition of some forest firebrands. In Proceedings of the V International Conference on Forest Fire research and wildland Fire Safety Summit, Luso Coimbra, Portugal, 18–23 November 2002; pp. 1–11. [Google Scholar]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. Ignition of mulch and grasses by firebrands in wildland-urban interface fires. Int. J. Wildland Fire 2006, 15, 427–431. [Google Scholar] [CrossRef]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. On the ignition of fuel beds by firebrands. Fire Mater. 2006, 30, 77–87. [Google Scholar] [CrossRef]
- Hadden, R.M.; Scott, S.; Lautenberger, C.; Fernandez-Pello, A.C. Ignition of Combustible Fuel Beds by Hot Particles: An Experimental and Theoretical Study. Fire Technol. 2010, 47, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Viegas, D.X.; Almeida, M.; Raposo, J.; Oliveira, R.; Viegas, C.X. Ignition of Mediterranean Fuel Beds by Several Types of Firebrands. Fire Technol. 2014, 50, 61–77. [Google Scholar] [CrossRef]
- Cohen, J.D. What is the Wildland Fire Threat to Homes? In Thompson Memorial Lecture; School of Forestry, Northern Arizona University: Flagstaff, AZ, USA, 2000. [Google Scholar]
- Pyne, S.J.; Andrews, P.L.; Laven, R.D. Introduction to Wildland Fire; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Cohen, J.D. The wildland-urban interface fire problem: A consequence of the fire exclusion paradigm. For. Hist. Today 2008, 20–26. [Google Scholar]
- Cohen, J. The wildland-urban interface fire problem. Fremontia 2010, 38, 16–22. [Google Scholar]
- Graham, R.; Finney, M.; McHugh, C.; Cohen, J.; Calkin, D.; Stratton, R.; Bradshaw, L.; Nikolov, N. Fourmile Canyon Fire Findings; USDA: Fort Collins, CO, USA, 2012.
- Mell, W.; Manzello, S.L.; Maranghides, A.; Butry, D.; Rehm, R.G. The wildland-urban interface fire problem—Current approaches and research needs. Int. J. Wildland Fire 2010, 19, 238–251. [Google Scholar] [CrossRef]
- Cohen, J.D. Structure Ignition Assessment Model (SIAM). In The Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems; Walnut Creek, California. Gen. Tech. Rep. PSW-GTR-158; Weise, D.R., Martin, R.E., Eds.; Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture: Albany, CA, USA, 1994; pp. 85–92. [Google Scholar]
- Platt, R.V. Wildfire hazard in the home ignition zone: An object-oriented analysis integrating LiDAR and VHR satellite imagery. Appl. Geogr. 2014, 51, 108–117. [Google Scholar] [CrossRef]
- Gollner, M.J.; Hakes, R.; Caton, S.; Kohler, K. Pathways for Building Fire Spread at the Wildland Urban Interface; Fire Protection Research Foundation: Quincy, MA, USA, 2015. [Google Scholar]
- Westhaver, A. Why Some Homes Survived: Learning from the Fort Mcmurray Wildland/Urban Interface Fire Disaster; Research Paper Series (56); Institute for Catastrophic Loss Reduction: Toronto, ON, Canada, 2017. [Google Scholar]
- Cohen, J.D.; Butler, B.W. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management. In Proceedings of the 13th Fire and Forest Meteorology Conference, Lorne, Australia, 27–31 October 1996; International Association of Wildland Fire: Lorne, Australia, 1996; pp. 81–87. [Google Scholar]
- Penman, S.; Price, O.; Penman, T.D.; Bradstock, R.A. The role of defensible space on the likelihood of house impact from wildfires in forested landscapes of south eastern Australia. Int. J. Wildland Fire 2019, 28, 4–14. [Google Scholar] [CrossRef]
- Cohen, J.D. Relating flame radiation to home ignition using modeling and experimental crown fires. Can. J. For. Res. 2004, 34, 1616–1626. [Google Scholar] [CrossRef]
- Cohen, J.D. Preventing disaster: Home ignitability in the wildland-urban interface. J. For. 2000, 98, 15–21. [Google Scholar]
- Gibbons, P.; Van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.J.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land Management Practices Associated with House Loss in Wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, P.; Gill, A.M.; Shore, N.; Moritz, M.A.; Dovers, S.; Cary, G.J. Options for reducing house-losses during wildfires without clearing trees and shrubs. Landsc. Urban Plan. 2018, 174, 10–17. [Google Scholar] [CrossRef]
- Ribeiro, C.; Viegas, D.X.; Almeida, M.; Ribeiro, L.M.; Rodrigues, A.; Raposo, J.; Alves, D. Forest fuel management in wildland urban interface areas. In Incendios Forestales: Amenazas y Oportunidades Ante los Desafíos de un Entorno Cambiante; Colección: SINIF-Incendios Forestales, No 2; SINIF: Alicante, Spain, 2019. [Google Scholar]
- Partners in Protection. FireSmart: Protecting Your Community from Wildfire, 2nd ed.; Maryhelen Vicars & Associates: Edmonton, AB, Canada, 2003. [Google Scholar]
- Tedim, F.; Carvalho, S. A vulnerabilidade aos incêndios florestais: Reflexões em torno de aspetos conceptuais e metodológicos. Territ. Rev. Port. Riscos Prevenção Segurança 2013, 85–99. [Google Scholar] [CrossRef]
- Viegas, D.X.; Almeida, M.F.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; Viegas, D.X.; Almeida, M.A.; Ribeiro, L.M.; Raposo, J.; Viegas, M.T.; et al. Análise dos Incêndios Florestais Ocorridos a 15 de Outubro de 2017; Centro de Estudos Sobre Incêndios Florestais (CEIF/ADAI/LAETA): Coimbra, Portugal, 2019. [Google Scholar]
- Cohen, J.D.; Saveland, J. Structure Ignition Assessment Can Help Reduce Fire Damages in the W-UI. Fire Manag. Notes 1997, 57, 19–23. [Google Scholar]
- Cohen, J.D. Preventing Residential Fire Disasters During Wildfires. In Proceedings of the International Workshop Forest Fires in the Wildland-Urban Interface and Rural Areas in Europe: An Integral Planning and Management Challenge, Athens, Greece, 15–16 May 2003; Xanthopoulos, G., Ed.; WARM Project. Publications Office of the EU: Luxembourg, 2003. [Google Scholar]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Castell, R.; Vega-Garcia, C. Assessing Wildland Fire Risk Transmission to Communities in Northern Spain. Forests 2017, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The large fire of Pedrógão Grande (Portugal) and its impact on structures. In Advances in Forest Fire Research 2018; Viegas, D.X., Ed.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2018; pp. 852–858. [Google Scholar]
- Almeida, M.; Pinto, C.; Prates, P.; Rodrigues, A.; Oliveira, R.; Ribeiro, L.M.; Viegas, D.X. Mechanisms of fire propagation to industrial facilities affected by the major wildfire events occurred in Portugal on 15/Oct/2017. In Incendios Forestales: Amenazas y Oportunidades Ante los Desafíos de un Entorno Cambiante; Colección: SINIF-Incendios Forestales, N° 2.; SINIF: Alicante, Spain, 2019. [Google Scholar]
- Syphard, A.D.; Keeley, J.E.; Bar Massada, A.; Brennan, T.J.; Radeloff, V.C. Housing Arrangement and Location Determine the Likelihood of Housing Loss Due to Wildfire. PLoS ONE 2012, 7, e33954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The importance of building construction materials relative to other factors affecting structure survival during wildfire. Int. J. Disaster Risk Reduct. 2017, 21, 140–147. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Mockrin, M.H.; Stewart, S.I.; Hammer, R.B.; Radeloff, V.C. Rebuilding and new housing development after wildfire. Int. J. Wildland Fire 2015, 24, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Syphard, A.D.; Keeley, J.E. Factors Associated with Structure Loss in the 2013–2018 California Wildfires. Fire 2019, 2, 49. [Google Scholar] [CrossRef] [Green Version]
- Blanchi, R.; Leonard, J.; Haynes, K.; Opie, K.; James, M.; Kilinc, M.; de Oliveira, F.D.; van den Honert, R. Life and House Loss Database Description and Analysis Final Report; CSIRO EP-129645; CSIRO, Bushfire CRC Report to the Attorney-General’s Department: Canberra, Australia, 2012. [Google Scholar]
- Beighley, M.; Hyde, A.C. Portugal Wildfire Management in a New Era Assessing Fire Risks, Resources and Reforms; Technical Report; 2018. [Google Scholar]
- Paveglio, T.B.; Edgeley, C.M. Fire Adapted Community. Encycl. Wildfires Wildland-Urban Interface Fires 2020, 320–328. [Google Scholar] [CrossRef]
- Thompson, M.P.; Silva, F.R.Y.; Calkin, D.E.; Hand, M.S. A review of challenges to determining and demonstrating efficiency of large fire management. Int. J. Wildland Fire 2017, 26, 562. [Google Scholar] [CrossRef] [Green Version]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5, 100045. [Google Scholar] [CrossRef]
- ESRI. ArcMap|Documentation. 2020. Available online: https://desktop.arcgis.com/en/arcmap/ (accessed on 4 May 2020).
- de Smith, M.J.; Goodchild, M.F.; Longley, P.A. Geospatial Analysis. In A Comprehensive Guide to Principles, Techniques and Software Tools, 5th ed.; The Winchelsea Press: Winchelsea, UK, 2015. [Google Scholar]
- ESRI. Data Collection App|Collector for ArcGIS—Capture Field Data. 2020. Available online: https://www.esri.com/en-us/arcgis/products/collector-for-arcgis/overview (accessed on 29 April 2020).
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Microsoft Corporation. Microsoft Excel. 2017. Available online: https://office.microsoft.com/excel (accessed on 20 July 2020).
- ESRI. What is a Geodatabase?—ArcGIS Help|ArcGIS Desktop. 2020. Available online: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/geodatabases/what-is-a-geodatabase.htm (accessed on 29 April 2020).
- ESRI. ArcGIS Online|Software de Mapeamento SIG Baseado na Cloud. 2020. Available online: https://www.esri.com/pt-pt/arcgis/products/arcgis-online/overview (accessed on 4 May 2020).
- Esri Portugal. FireHub 2017. 2017. Available online: http://arcg.is/2rMwc0B (accessed on 20 July 2017).
- AFN. Gestão de Combustíveis para Protecção de Edificações—Manual; Autoridade Florestal Nacional—Direcção Nacional para a Defesa da Floresta: Lisboa, Portugal, 2011. [Google Scholar]
- Faixas de Gestão de Combustíveis: Edifícios Isolados e Aglomerados Populacionais; ICNF: Lisboa, Portugal, 2018.
- Hakes, R.S.P.; Caton, S.E.; Gorham, D.J.; Gollner, M.J. A Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United States. Fire Technol. 2017, 53, 475–515. [Google Scholar] [CrossRef]
- Ribeiro, L.M.; Viegas, D.X.; Almeida, M.; McGee, T.K.; Pereira, M.G.; Parente, J.; Xanthopoulos, G.; Leone, V.; Delogu, G.M.; Hardin, H. Extreme wildfires and disasters around the world: Lessons to be learned. In Extreme Wildfire Events and Disasters; Elsevier: Amsterdam, The Netherlands, 2020; pp. 31–51. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Morge, D.; Ferrier, J.-P. Characterization and mapping of dwelling types for forest fire prevention. Comput. Environ. Urban Syst. 2009, 33, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Programa Nacional para a Coesão Territorial. In Implementação, Acompanhamento e Monitorização; UMVI, 2016.
- Butry, D.; Mercer, E.; Prestemon, J. What is the price of catastrophic wildfire? J. For. 2001, 99, 9–17. [Google Scholar] [CrossRef]
Variable Group | Item/Variable | Options | Answers |
---|---|---|---|
1. The structure | 1.1 Type of structure | Primary housing; Secondary housing; Agricultural warehouse; Shed/Storage; Garage; Commerce; Industry; Uninhabited house; Vacant structure; Cattle shed/Stable; Outdoor kitchen; Other | 1043 (100%) |
1.2 Type of construction | Masonry; Stone; Wood; Metal; Other | 1042 (99.9%) | |
1.3 Age of construction | <10 years; between 10 and 30 years; >30 years | 1037 (99.4%) | |
1.4 Use of the structure before the fire | In use; Out of use | 1037 (99.4%) | |
1.5 Condition of the structure before the fire | Well preserved; Moderately preserved; Poorly preserved; In ruins | 1035 (99.7%) | |
1.6 Condition of the structure after the fire | Little damaged; Moderately damaged; Very damaged; Totally destroyed | 1043 (100%) | |
2. The surroundings of the structure | 2.1 Fuel management | Total; Partial; Absent | 963 (92.3%) |
2.2 Isolated structure? | Yes/No | 1042 (99.9%) | |
3. The arrival and impact of the fire | 3.1 Date of fire arrival | Date | 464 (44.5%) |
3.2 Time of fire arrival | Time | 464 (44.5%) | |
3.3 Ignition location | Roof; Window; Door; Open structure; Wall; Vent; Other; With damage but no ignition | 1041 (99.8%) | |
3.4 How the ignition occurred | Firebrands; Direct fire impact; Materials burning in the immediate vicinity; Contiguous structure; With damage but no ignition | 1041 (99.8%) | |
3.5 Did you have communications at the time of the fire? | Yes/No | 161 (15.4%) | |
3.6 Did the electric power fail during the fire? | Yes/No | 166 (15.9%) | |
3.7 Power supply failure time | Time | 133 (12.8%) | |
3.8 Did the water fail during the fire? | Yes/No | 162 (15.5%) | |
3.9 Water supply failure time | Time | 111 (10.6%) | |
4. Human behavior towards the incoming fire | 4.1 User of the structure ran away at the time of the fire? | Yes/No | 140 (13.4%) |
4.2 User of the structure survived on the run? | Yes/No | 73 (7%) | |
4.3 Were there people defending the structure? | Yes/No | 231 (22.1%) | |
4.4 Did anyone get injured defending the structure? | Yes/No | 103 (9.9%) | |
4.5 Number of injured persons defending the structure | Number | 8 (0.8%) | |
4.6 Did anyone die defending the structure? | Yes/No | 92 (8.8%) | |
4.7 Number of deaths defending the structure | Number | 3 (0.3%) |
1. District | Total | 2. Municipality | Total | 3. Parish/Union of Parishs | Total |
---|---|---|---|---|---|
Castelo Branco | 30 | Sertã | 30 | Castelo | 5 |
Cernache do Bonjardim, Nesperal e Palhais | 25 | ||||
Coimbra | 23 | Penela | 23 | Cumeeira | 2 |
Espinhal | 21 | ||||
Leiria | 990 | Castanheira de Pêra | 172 | Castanheira de Pêra e Coentral | 172 |
Figueiró dos Vinhos | 178 | Aguda | 51 | ||
Campelo | 57 | ||||
Figueiró dos Vinhos e Bairradas | 70 | ||||
Pedrogão Grande | 640 | Graça | 225 | ||
Pedrógão Grande | 134 | ||||
Total | 1043 |
Condition of the Structure after the Fire | |||||
---|---|---|---|---|---|
Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total | |
Number of structures | 79 (7.6%) | 74 (7.1%) | 432 (41.4%) | 458 (43.9%) | 1043 (100%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Type of Structure | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 1043 (100%) |
Primary housing | 35 (25.2%) | 17 (12.2%) | 46 (33.1%) | 41 (29.5%) | 139 (13.3%) |
Secondary housing | 19 (15.3%) | 9 (7.3%) | 46 (37.1%) | 50 (40.3%) | 124 (11.9%) |
Agricultural Warehouse | 1 (1.4%) | 5 (6.8%) | 28 (37.8%) | 40 (54.1%) | 74 (7.1%) |
Shed/Storage | 12 (3%) | 20 (5%) | 179 (44.4%) | 192 (47.6%) | 403 (38.6%) |
Garage | 5 (8.3%) | 9 (15%) | 22 (36.7%) | 24 (40%) | 60 (5.8%) |
Commerce | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 1 (0.1%) |
Industry | 0 (0%) | 2 (13.3%) | 5 (33.3%) | 8 (53.3%) | 15 (1.4%) |
Uninhabited house | 2 (3.4%) | 4 (6.9%) | 36 (62.1%) | 16 (27.6%) | 58 (5.6%) |
Vacant structure | 1 (0.8%) | 3 (2.3%) | 56 (42.4%) | 72 (54.5%) | 132 (12.7%) |
Cattle shed/Stable | 2 (10%) | 1 (5%) | 8 (40%) | 9 (45%) | 20 (1.9%) |
Outdoor kitchen | 0 (0%) | 2 (33.3%) | 2 (33.3%) | 2 (33.3%) | 6 (0.6%) |
Other | 2 (18.2%) | 1 (9.1%) | 4 (36.4%) | 4 (36.4%) | 11 (1.1%) |
Condition of the Structure after the Fire 1 | ||||||
---|---|---|---|---|---|---|
Use and Condition of the Structure before The Fire | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (1035) | |
In use | Well preserved | 47 (21.5%) | 27 (12.3%) | 50 (22.8%) | 95 (43.4%) | 219 |
Moderately preserved | 25 (4.9%) | 33 (6.5%) | 224 (44%) | 227 (44.6%) | 509 | |
Poorly preserved | 1 (2.9%) | 1 (2.9%) | 14 (41.2%) | 18 (52.9%) | 34 | |
Sub-total | 73 (9.6%) | 61 (8%) | 288 (37.8%) | 340 (44.6%) | 762 (73.6%) | |
Out of use | Well preserved | 1 (33.3%) | 0 (0%) | 1 (33.3%) | 1 (33.3%) | 3 |
Moderately preserved | 1 (1.1%) | 7 (8%) | 53 (60.9%) | 26 (29.9%) | 87 | |
Poorly preserved | 4 (2.2%) | 6 (3.3%) | 88 (48.1%) | 85 (46.4%) | 183 | |
Sub-total | 6 (2.2%) | 13 (4.8%) | 142 (52%) | 112 (41%) | 273 (26.4%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Type of Construction | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (1042) |
Masonry | 71 (13.4%) | 57 (10.8%) | 195 (36.8%) | 207 (39.1%) | 530 (50.9%) |
Stone | 7 (1.7%) | 14 (3.3%) | 222 (52.9%) | 177 (42.1%) | 420 (40.3%) |
Wood | 0 (0%) | 0 (0%) | 0 (0%) | 29 (100%) | 29 (2.8%) |
Metal | 1 (1.7%) | 2 (3.3%) | 14 (23.3%) | 43 (71.7%) | 60 (5.8%) |
Other | 0 (0%) | 1 (33.3%) | 1 (33.3%) | 1 (33.3%) | 3 (0.3%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Age of Construction | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (1037) |
<10 years | 6 (23.1%) | 5 (19.2%) | 2 (7.7%) | 13 (50%) | 26 (2.5%) |
Between 10 and 30 years | 17 (14.4%) | 11 (9.3%) | 26 (22%) | 64 (54.2%) | 118 (11.4%) |
>30 years | 56 (6.3%) | 58 (6.5%) | 399 (44.7%) | 380 (42.6%) | 893 (86.1%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Fuel Management | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (963) |
Absent | 17 (4%) | 20 (4.7%) | 183 (43.3%) | 203 (48%) | 423 (43.9%) |
Partial | 37 (7.6%) | 40 (8.2%) | 198 (40.7%) | 211 (43.4%) | 486 (50.5%) |
Full | 7 (13%) | 8 (14.8%) | 19 (35.2%) | 20 (37%) | 54 (5.6%) |
Condition of the Structure after the Fire 1 | ||||||
---|---|---|---|---|---|---|
Structure location and Fuel Management | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (963) | |
Isolated | Absent | 12 (5%) | 13 (5.4%) | 113 (47.1%) | 102 (42.5%) | 240 |
Partial | 15 (8.4%) | 14 (7.9%) | 71 (39.9%) | 78 (43.8%) | 178 | |
Full | 6 (16.2%) | 7 (18.9%) | 12 (32.4%) | 12 (32.4%) | 37 | |
Sub-total | 33 (7.3%) | 34 (7.5%) | 196 (43.1%) | 192 (42.2%) | 455 (47.2%) | |
Not isolated | Absent | 5 (2.7%) | 7 (3.8%) | 70 (38.3%) | 101 (55.2%) | 183 |
Partial | 22 (7.1%) | 26 (8.4%) | 127 (41.2%) | 133 (43.2%) | 308 | |
Full | 1 (5.9%) | 1 (5.9%) | 7 (41.2%) | 8 (47.1%) | 17 | |
Sub-total | 28 (5.5%) | 34 (6.7%) | 204 (40.2%) | 242 (47.6%) | 508 (52.8%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Type of Ignition | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (1042) |
Firebrands | 27 (4.2%) | 54 (8.5%) | 294 (46.2%) | 261 (41%) | 636 (61.1%) |
Direct fire impact | 7 (3.2%) | 8 (3.6%) | 91 (41%) | 116 (52.3%) | 222 (21.3%) |
Materials burning in the immediate vicinity | 7 (5.3%) | 9 (6.8%) | 43 (32.3%) | 74 (55.6%) | 133 (12.8%) |
Contiguous structure | 2 (16.7%) | 1 (8.3%) | 3 (25%) | 6 (50%) | 12 (1.2%) |
With damage but no ignition | 35 (92.1%) | 2 (5.3%) | 1 (2.6%) | 0 (0%) | 38 (3.7%) |
Condition of the Structure after the Fire 1 | |||||
---|---|---|---|---|---|
Location of the Ignition | Slightly Damaged | Moderately Damaged | Highly Damaged | Totally Destroyed | Total 2 (1042) |
Roof | 16 (2.5%) | 36 (5.6%) | 299 (46.4%) | 293 (45.5%) | 644 (61.9%) |
Window | 14 (8.3%) | 17 (10.1%) | 70 (41.4%) | 68 (40.2%) | 169 (16.2%) |
Door | 4 (5.3%) | 7 (9.3%) | 36 (48%) | 28 (37.3%) | 75 (7.2%) |
Open structure | 2 (2.9%) | 6 (8.8%) | 13 (19.1%) | 47 (69.1%) | 68 (6.5%) |
Wall | 5 (21.7%) | 4 (17.4%) | 0 (0%) | 14 (60.9%) | 23 (2.2%) |
Vent | 0 (0%) | 1 (5.3%) | 12 (63.2%) | 6 (31.6%) | 19 (1.8%) |
Other | 3 (60%) | 1 (20%) | 1 (20%) | 0 (0%) | 5 (0.5%) |
With damage but no ignition | 35 (92.1%) | 2 (5.3%) | 1 (2.6%) | 0 (0%) | 38 (3.7%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire 2020, 3, 57. https://doi.org/10.3390/fire3040057
Ribeiro LM, Rodrigues A, Lucas D, Viegas DX. The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire. 2020; 3(4):57. https://doi.org/10.3390/fire3040057
Chicago/Turabian StyleRibeiro, Luís M., André Rodrigues, Davi Lucas, and Domingos Xavier Viegas. 2020. "The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal)" Fire 3, no. 4: 57. https://doi.org/10.3390/fire3040057
APA StyleRibeiro, L. M., Rodrigues, A., Lucas, D., & Viegas, D. X. (2020). The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire, 3(4), 57. https://doi.org/10.3390/fire3040057