Fire Activity in Mediterranean Forests (The Algerian Case)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fire Data: MODIS Fire Hotspots and Burned Areas
2.3. Vegetation Fuels and Land Uses
2.4. Bioclimatic Data and Estimation of Fire Weather Danger
2.5. Topographic Features
2.6. Fire Causes and Controls
2.7. Preparation of the Datasets
2.8. Modelling Fire Hazard
3. Results
3.1. Main Characteristics of Fire Regime in Northern Algeria
3.2. The Latitudinal Gradient: Bioclimate-Fuel-Fire Relationships
3.3. The Anthropogenic Part of Fire
3.4. Model of Fire Occurrence
4. Discussion
4.1. Maximal Fire Risk in Northern Biodiverse Forests
4.2. Implication for Fire Risk Management in the Long-Term
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Keeley, J.; Bond, W.; Bradstock, R.; Pausas, J.; Rundel, P. Fire in Mediterranean Ecosystems. In Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2012; p. 450. [Google Scholar]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastián-López, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J. Environ. Manag. 2019, 206, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Cardil, A.; Vega-Garcia, C.; Ascoli, D.; Molina-Terren, D.M.; Silva, C.A.; Rodrigues, M. How does drought impact burned area in Mediterranean vegetation communities? Sci. Total Environ. 2019, 693, 11. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Jerez, S.; Augusto, S.; Tarín-Carrasco, P.; Ratola, N.; Jimenez-Guerrero, P.; Trigo, R. Climate drivers of the 2017 devastating fires in Portugal. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Belhadj-Khedher, C.; Koutsias, N.; Karamitsou, A.; EI-Melki, T.; Ouelhazi, B.; Hamdi, A.; Nouri, H.; Mouillot, F. A Revised Historical Fire Regime Analysis in Tunisia (1985–2010) from a Critical Analysis of the National Fire Database and Remote Sensing. Forests 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Meddour-Sahar, O. Wildfires in Algeria: Problems and challenges. iForest Biogeosci. For. 2015, 8, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Aini, A.; Curt, T.; Bekdouche, F. Modelling fire hazard in the southern Mediterranean fire rim (Bejaia region, northern Algeria). Environ. Monit. Assess. 2019, 191, 747. [Google Scholar] [CrossRef]
- Rivas-Martinez, S.; Rivas-Saenz, S.; Penas Merino, A. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Heyerdahl, E.K.; Brubaker, L.B.; Agee, J.K. Spatial controls of historical fire regimes: A multiscale example from the interior west, USA. Ecology 2001, 82, 660–678. [Google Scholar] [CrossRef]
- Pausas, J.; Fernandez-Munoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems 2019, 21, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Benslimane, M.; Hamimed, A.; El Zerey, W.; Khaldi, A.; Mederbal, K. Analyse et suivi du phénomène de la désertification en Algérie du nord. VertigO—la Rev. Electron. en Sci. de L’environ. [En ligne] 2008, 8, 1–9. [Google Scholar] [CrossRef]
- MFRA, E. Mediterranean Forest Research Agenda (MFRA); FAO—European Forest Institute Mediterranean Regional Office (EFIMED, Barcelona): Barcelona, Spain, 2010; p. 32. [Google Scholar]
- Meddour-Sahar, O. Les feux de forêts en Algérie: Analyse du Risque, étude des Causes, évaluation du Dispositif de Défense et des Politiques de Gestion. Ph.D. Thesis, University of Tizi Ouzou, Tizi-Ouzou, Algeria, 2014; p. 195. [Google Scholar]
- WWF. An analysis of key issues that underlie forest fires and shape subsequent fire management strategies in 12 countries in the Mediterranean basin. In FIREFIGHT Mediterranean Region; Final Report; WWF Project 9Z0731.01; WWF Mediterranean Programme Office: Gland, Switzerland, 2001; p. 66. [Google Scholar]
- GFN Report of Mediterranean Ecological Footprint Trends; Plan Bleu Edition: Paris, France, 2012; p. 44. Available online: www.footprintnetwork.org (accessed on 5 September 2020).
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Laurent, P.; Mouillot, F.; Yue, C.; Ciais, P.; Moreno, M.V.; Nogueira, J.M.P. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci. Data 2019, 5, 180132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; San Miguel, J.; Oliveira, S.; Moreira, F.; Camia, A. An Insight into Spatial-Temporal Trends of Fire Ignitions and Burned Areas in the European Mediterranean Countries. J. Earth Sci. Eng. 2013, 3, 497–505. [Google Scholar]
- FAO Global Forest Resources Assessment 2010; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; p. 80.
- Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R. A new global tree-cover percentage map using MODIS data. Int. J. Remote Sens. 2016, 37, 969–992. [Google Scholar] [CrossRef]
- van Wagner, C. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report, Report 35; Canadian Forestry Service Headquarters: Ottawa, ON, Canada, 1987. [Google Scholar]
- Meddour-Sahar, O.; Meddour, R.; Leone, V.; Lovreglio, R.; Derridj, A. Analysis of forest fires causes and their motivations in northern Algeria: The Delphi method. Iforest Biogeosci. For. 2013, 6, 247–254. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire frequency varies with the size and shape of fuel types in southeastern France: Implications for environmental management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; de la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T.; Lahaye, S. Modelling the spatial patterns of ignition causes and fire regime features in southern France: Implications for fire prevention policy. Int. J. Wildland Fire 2016, 25, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Olabarria, J.R.; Brotons, L.; Gritten, D.; Tudela, A.; Teres, J.A. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int. J.Wildland Fire 2012, 21, 905–914. [Google Scholar] [CrossRef]
- Viedma, O.; Urbieta, I.R.; Moreno, J.M. Wildfires and the role of their drivers are changing over time in a large rural area of west-central Spain. Sci. Rep. 2019, 8, 17797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Ridgeway, G. Generalized Boosted Models: A Guide to the Gbm Package; 2013; p. 34. Available online: http://cran.r-project.org/ (accessed on 5 September 2020).
- Pearce, J.; Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 2000, 133, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130. [Google Scholar] [CrossRef]
- Rodrigues, M.; Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Spatial stratification of wildfire drivers towards enhanced definition of large-fire regime zoning and fire seasons. Sci. Total Environ. 2019, 689, 634–644. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- EFFIS Forest Fires in Europe. Joint Report of JRC and Directorate-General Environment; Middle East and North Africa 2015 European Commission: Brussels, Belgium, 2016; p. 122. Available online: http://effis.jrc.ec.europa.eu/ (accessed on 5 September 2020).
- Kahiu, M.N.; Hanan, N.P. Fire in sub-Saharan Africa: The fuel, cure and connectivity hypothesis. Global Ecol. Biogeogr. 2019, 27, 946–957. [Google Scholar] [CrossRef] [Green Version]
- Mayr, M.J.; Vanselow, K.A.; Samimi, C. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol. Indic 2019, 91, 324–337. [Google Scholar] [CrossRef]
- Rego, F.; Moreno, J.; Vallejo, V.; Xanthopoulos, G. Forest fires. Sparking firesmart policies in the EU. In Research & Innovation Projects for Policy. Directorate-General for Research and Innovation Climate Action and Resource Efficiency; Faivre, N., Ed.; European Commission: Brussels, Belgium, 2019; p. 48. [Google Scholar]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean Basin. J. Geophys. Res. Biogeosci. 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Martin St-Paul, N.K.; Moron, V.; Trigo, R.M. Extreme Wildfire occurrence in response to Global Change type Droughts in the Northern Mediterranean. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 2017, 1–21. [Google Scholar]
- Batllori, E.; Parisien, M.A.; Krawchuk, M.A.; Moritz, M.A. Climate change-induced shifts in fire for Mediterranean ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 1118–1129. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Begueria, S.; Vicente-Serrano, S.M. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef] [Green Version]
- DGF (2019) Les Feux de Forêts en Algérie: Analyses et Perspectives. Direction Générale des Forêts. Available online: www.interieur.gov.dz (accessed on 5 September 2020).
Bioclimatic Zone | NBF | FWI | BUILT-UP | NDVI | PREC | Main Land Cover Types | % Total Area | % Burned |
---|---|---|---|---|---|---|---|---|
Humid | 1.07 ± 0.01 | 64.5 ± 2.3 | 17.7 ± 0.6 | 0.56 ± 0.1 | 1050 ± 320 | Forests | 7 | 40 |
Subhumid | 0.53 ± 0.001 | 70.1 ± 6.6 | 4.7 ± 0.2 | 0.40 ± 0.1 | 580 ± 250 | Forests Shrublands | 15 | 33 |
Subarid | 0.010 ± 0.001 | 87 ± 0.41 | 0.9 ± 0.003 | 0.23 ± 0.08 | 350 ± 180 | Shrublands Sparse vegetation | 55 | 25 |
Arid | 0.001 ± 0.001 | 91 ± 1.7 | 0.02 ± 0.003 | 0.15 ± 0.05 | 239 ± 240 | Bare soils | 23 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curt, T.; Aini, A.; Dupire, S. Fire Activity in Mediterranean Forests (The Algerian Case). Fire 2020, 3, 58. https://doi.org/10.3390/fire3040058
Curt T, Aini A, Dupire S. Fire Activity in Mediterranean Forests (The Algerian Case). Fire. 2020; 3(4):58. https://doi.org/10.3390/fire3040058
Chicago/Turabian StyleCurt, Thomas, Aissa Aini, and Sylvain Dupire. 2020. "Fire Activity in Mediterranean Forests (The Algerian Case)" Fire 3, no. 4: 58. https://doi.org/10.3390/fire3040058
APA StyleCurt, T., Aini, A., & Dupire, S. (2020). Fire Activity in Mediterranean Forests (The Algerian Case). Fire, 3(4), 58. https://doi.org/10.3390/fire3040058