Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics
Abstract
:1. Introduction
- Vast areas of Campania, some of which also have outstanding features from the landscape and heritage perspective, were ravaged by severe wildfires in 2017, such as the Vesuvius National Park and Cilento National Park as well as many hillsides on the renowned Amalfi Coast. Note that the Amalfi Coast and the Cilento National Park are both listed among “Cultural Landscapes” that UNESCO considers “World Heritage”;
2. Overview and Rationale of the Simulation Approach
- Rainfall is a Poisson stochastic process with parameters depending on the season of the year;
- Dry and rainy season dynamics are different: no fire event occurs during the rainy season when the vegetation is dormant, i.e., is lying in a state of minimal metabolic activity;
- Soil hydraulic characteristics may be modified for a certain time lapse after a fire depending on its severity.
2.1. Modeling Soil Moisture Dynamics
2.2. The Modified Predator–prey Model for Fire Dynamics
2.3. Scenarios for Sensitivity Analysis
2.4. Initial and Boundary Conditions
3. Results
4. Proper Framing of this Study and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Variable | Value | Units | Description |
---|---|---|---|
Z | 40 | cm | Thickness of the soil control volume (see Equation (1)) |
Δu | 0.25 | cm | Rainfall threshold for overstory interception (see Equation (4)) |
Δl | 0.080 | cm | Rainfall threshold for understory interception (see Equation (4)) |
Kϕ | 1 | - | Parameter characterizing soil wettability in a post-fire condition (see Equation (9)) |
Sfire | 0.40 | Soil moisture threshold for no fire (see Equation (17)) | |
χ | 0.01 | Fire feedback coefficient (see Equation (17)) |
Soil Texture | θr | θs = n | hb | l | γ = 2l + 3 | Ks | f0 |
---|---|---|---|---|---|---|---|
(cm3 cm−3) | (cm3 cm−3) | (cm) | (-) | (-) | (cm day−1) | (cm day−1) | |
Loam | 0.00 | 0.451 | 14.6 | 5.39 | 13.78 | 60.05 | 100.00 |
Sandy Clay Loam | 0.00 | 0.420 | 8.63 | 7.12 | 17.24 | 54.43 | 100.00 |
Soil Texture | Veg. Type | θh | θwp | θ * | θfc | θ ** |
---|---|---|---|---|---|---|
(-) | (-) | (-) | (-) | (-) | ||
Loam | Overstory | 0.065 | 0.110 | 0.199 | 0.281 | |
Understory | 0.065 | 0.100 | 0.210 | 0.281 | 0.221 | |
Sandy Clay loam | Overstory | 0.090 | 0.134 | 0.210 | 0.311 | |
Understory | 0.090 | 0.124 | 0.219 | 0.311 | 0.201 |
Vegetation Type | Period | Tmax | Emax |
---|---|---|---|
(mm day−1) | (mm day−1) | ||
overstory | wet | 0.00 | 0.00 |
dry | 2.81 | 0.65 | |
understory | wet | 0.00 | 0.00 |
dry | 0.19 | 0.65 |
Variable | Value | Unit | Description |
---|---|---|---|
ru | 0.25 | yr−1 | Specific growth rate of the overstory |
rl | 1.50 | yr−1 | Specific growth rate of the understory |
ku; kl | 10 | kg m−2 | Carrying capacities of the two biomass layers |
α | 0.05 | kg m−2 yr−1 | Factor limiting growth of the understory due to interspecific competition for light |
βu; βl | 25.0; 95.0 | yr−1 | Specific rate at which fire develops within each biomass layer |
γu; γl | 0.10 | yr−1 | Specific rate at which fire spreads from one biomass layer to the other |
δu | 1/(17/365) = 21.47 | yr−1 | Specific fire extinction rate for overstory |
δl | 1/(4/365) = 91.25 | yr−1 | Specific fire extinction rate for understory |
h; hl; hu | 0.15 | kg m−2 | Biomass density supporting a fire development rate one-half the maximum development rate |
References
- Gudmundsson, L.; Rego, F.C.; Rocha, M.; Seneviratne, S.I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 2014, 9, 084008. [Google Scholar] [CrossRef]
- Hanel, M.; Rakovec, O.; Markonis, Y.; Máca, P.; Samaniego, L.; Kyselý, J.; Kumar, R. Revisiting the recent European droughts from a long-term perspective. Sci. Rep. 2018, 8, 9499. [Google Scholar] [CrossRef] [PubMed]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Ann. N. Y. Acad. Sci. 2018, 1436, 19–35. [Google Scholar] [CrossRef]
- Barros, A.M.G.; Pereira, J.M.C. Wildfire selectivity for land cover type: Does size matter? PLoS ONE 2014, 9, e84760. [Google Scholar] [CrossRef]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B 2016, 371, 20150345. [Google Scholar] [CrossRef]
- Romano, N. Intertwining observations and predictions in vadose zone hydrology: A review of selected studies. Water 2020, 12, 1107. [Google Scholar] [CrossRef]
- Nasta, P.; Palladino, M.; Sica, B.; Pizzolante, A.; Trifuoggi, M.; Toscanesi, M.; Giarra, A.; D’Auria, J.; Nicodemo, F.; Mazzitelli, C.; et al. Evaluating pedotransfer functions for predicting soil bulk density using hierarchical mapping information in Campania, Italy. Geoderma Reg. 2020, 21, e00267. [Google Scholar] [CrossRef]
- Eagleson, P.S. Dynamic Hydrology; EGU Reprint Series, #2; Copernicus GmbH: Katlenburg-Lindau, Germany, 2003; ISBN 3-936586-09-8. [Google Scholar]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics; Cambridge University Press: New York, NY, USA, 2004; p. 442. ISBN 0521819431. [Google Scholar]
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: New York, NY, USA, 2012; p. 522. ISBN 9780521824910. [Google Scholar]
- Turco, M.; Llasat, M.C.; Tudela, A.; Castro, X.; Provenzale, A. Decreasing fires in a Mediterranean region (1970–2010, NE Spain). Nat. Hazards Earth Syst. Sci. 2013, 13, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Sci. Rep. 2017, 81, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Camia, A.; Amatulli, G. Weather factors and fire danger in the Mediterranean. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 71–82. [Google Scholar]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönssong, A.M.; Merganičováh, K.; Netherer, S.; Arpaci, A.; Bontemps, J.-D.; Bugmann, H.; et al. Modelling natural disturbances in forest ecosystems: A review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Slingsby, J.A.; Privett, S.D.J.; Cowling, R.M. Stochastic species turnover and stable coexistence in a species-rich, fire-prone plant community. PLoS ONE 2007, 2, e938. [Google Scholar] [CrossRef] [Green Version]
- De Bano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Iturbe, I.; D’Odorico, P.; Porporato, A.; Ridolfi, L. Tree-grass coexistence in Savannas: The role of spatial dynamics and climate fluctuations. Geophys. Res. Lett. 1999, 26, 247–250. [Google Scholar] [CrossRef]
- Romano, N.; Palladino, M.; Chirico, G.B. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes. Hydrol. Earth Syst. Sci. 2011, 15, 3877–3893. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Ackerly, D.D.; Dawson, T.E.; Manzoni, S.; Skelton, R.P.; Vico, G.; Thompson, S.E.; Maherali, H. The ecohydrological context of drought and classification of plant responses. Ecol. Lett. 2018, 21, 1723–1736. [Google Scholar] [CrossRef] [Green Version]
- Lasaponara, R.; Santulli, A.; Telesca, L. Time-clustering analysis of forest-fire sequences in southern Italy. Chaos Soliton. Fract. 2005, 24, 139–149. [Google Scholar] [CrossRef]
- Ursino, N.; Rulli, M.C. Hydrological minimal model for fire regime assessment in a Mediterranean ecosystem. Water Resour. Res. 2011, 47, W11526. [Google Scholar] [CrossRef]
- Ursino, N.; Romano, N. Wild forest fire regime following land abandonment in the Mediterranean region. Geophys. Res. Lett. 2014, 41, 8359–8368. [Google Scholar] [CrossRef]
- Platt, W.J.; Orzell, S.L.; Slocum, M.G. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes. PLoS ONE 2015, 10, e0116952. [Google Scholar] [CrossRef] [PubMed]
- Guswa, A.J.; Celia, M.A.; Rodriguez-Iturbe, I. Models of soil moisture dynamics in ecohydrology: A comparative study. Water Resour. Res. 2002, 38, W01166. [Google Scholar] [CrossRef]
- Porporato, A.; D’Odorico, P.; Laio, F.; Ridolfi, L.; Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Res. 2002, 25, 1335–1348. [Google Scholar] [CrossRef]
- De Groen, M.M.; Savenije, H.H.G. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resour. Res. 2006, 42, W12417. [Google Scholar] [CrossRef]
- Caylor, K.K.; D’Odorico, P.; Rodriguez-Iturbe, I. On the ecohydrology of structurally heterogeneous semiarid landscapes. Water Resour. Res. 2006, 42, W07424. [Google Scholar] [CrossRef]
- Cerdà, A.; Robichaud, P.R. Fire effects on soil infiltration. In Fire Effects on Soils and Restoration Strategies; Cerdà, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; Volume 5, pp. 81–103. [Google Scholar]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; de Dios Benavides-Solorio, J.; Schaffrath, K. Causes of post-fire runoff and erosion: The roles of soil water repellency, surface cover, and soil sealing. Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Shakesby, R.A.; Walsh, R.P.D. Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Sci. Rev. 2000, 51, 33–65. [Google Scholar] [CrossRef]
- Letey, J. Causes and consequences of fire-induced soil water repellency. Hydrol. Process. 2001, 15, 2867–2875. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Hardegree, S.P.; Clark, P.E.; Williams, C.J. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape. Hydrol. Process. 2008, 22, 2916–2929. [Google Scholar] [CrossRef]
- Ravi, S.; D’Odorico, P.; Wang, L.; White, C.S.; Okin, G.S.; Macko, S.A.; Collins, S.L. Post-fire resource redistribution in desert grasslands: A possible negative feedback on land degradation. Ecosystems 2009, 12, 434–444. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire effects on soil aggregation: A review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Prosser, I.P.; Williams, L. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; Gen. Tech. Rep. RMRS-GTR-63; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2000; pp. 1–89.
- Choromanska, U.; De Luca, T.H. Prescribed fire alters the impact of wildfire on soil biochemical properties in a ponderosa pine forest. Soil Sci. Soc. Am. J. 2001, 65, 232–238. [Google Scholar] [CrossRef]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Capitanio, R.; Carcaillet, C. Post-fire Mediterranean vegetation dynamics and diversity: A discussion of succession models. For. Ecol. Manag. 2008, 255, 431–439. [Google Scholar] [CrossRef]
- Allen, R.G.; Pruitt, W.O.; Raes, D.; Smith, M.; Pereira, L.S. Estimating evaporation from bare soil and the crop coefficient for the initial period using common soils information. J. Irrig. Drain. Eng. 2005, 131, 14–23. [Google Scholar] [CrossRef]
- Nasta, P.; Romano, N. Use of a flux-based field capacity criterion to identify effective hydraulic parameters of layered soil profiles subjected to synthetic drainage experiments. Water Resour. Res. 2016, 52, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Henley, C.L. Statics of a “self-organized” percolation model. Phys. Rev. Lett. 1993, 71, 2741–2744. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Jacobs, A.E. Self-organization and scaling in a lattice predator-prey model. Complex Syst. 1994, 8, 385–405. [Google Scholar]
- Casagrandi, R.; Rinaldi, S. A minimal model for forest fire regimes. Am. Nat. 1999, 153, 527–539. [Google Scholar] [CrossRef]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Olsen, J.M. Cistus, Fuel Moisture and Flammability; Research Note #159; USDA, California Forest and Range Experiment Station: Berkeley, CA, USA, 1960. [Google Scholar]
- Countryman, C.M.; Dean, W.A. Measuring Moisture Content in Living Chaparral: A Field User’s Manual; Gen. Tech. Rep. PSW-36; Pacific South West Forest and Range Exp. Stn., Forest Serv., U.S. Department of Agriculture: Berkeley, CA, USA, 1979; pp. 1–27.
- Dennison, P.E.; Roberts, D.A.; Thorgusen, S.R.; Regelbrugge, J.C.; Weise, D.; Lee, C. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sens. Environ. 2003, 88, 442–452. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Peterson, S.H.; Rechel, J. Use of normalized difference water index for monitoring live fuel moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- Peterson, S.H.; Goldstein, N.C.; Clark, M.L.; Halligan, K.Q.; Schneider, P.; Dennison, P.E.; Roberts, D.A. Sensitivity analysis of a model of the 2003 simi wildfire event. In Proceedings of the 8th Interantional Conference on GeoComputation, Ann Arbor, MI, USA, 31 July–3 August 2005; Xie, Y., Brown, D.G., Eds.; GeoComputation CD-ROM: Ann Arbor, MI, USA, 2005; Available online: http://www.geocomputation.org/2005/ (accessed on 1 September 2020).
- Walsh, R.P.D.; Lawler, D.M. Rainfall seasonality: Description, spatial patterns and change through time. Weather 1981, 36, 201–208. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; IDMP, IDM Tools and Guidelines, Series 2; Svoboda, M., Fuchs, B.A., Eds.; World Meteorological Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Campbell, G.S. A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Nasta, P.; Allocca, C.; Deidda, R.; Romano, N. Assessing the impact of seasonal rainfall anomalies on catchment-scale water balance components. Hydrol. Earth Syst. Sci. 2020, 24, 3211–3227. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Nasta, P.; Palladino, M.; Ursino, N.; Saracino, A.; Sommella, A.; Romano, N. Assessing long-term impact of land-use change on hydrological ecosystem functions in a Mediterranean upland agro-forestry catchment. Sci. Total. Environ. 2017, 605, 1070–1082. [Google Scholar] [CrossRef]
Scenario | NDwet | ζwet | λwet | δwet | Pwet | NDdry | ζdry | λdry | δdry | Pdry | Pyear |
---|---|---|---|---|---|---|---|---|---|---|---|
day | mm | day−1 | day−1 | mm | day | mm | day−1 | day−1 | mm | mm | |
S1-A | 183 | 10.65 | 0.40 | 6.0 | 779.6 | 182 | 8.487 | 0.25 | 8.0 | 386.2 | 1165.8 |
S1-B | 120 | 10.62 | 0.40 | 6.0 | 511.2 | 245 | 8.487 | 0.25 | 8.0 | 519.8 | 1031.0 |
S2-A | 183 | 6.59 | 0.27 | 6.0 | 325.6 | 182 | 6.670 | 0.19 | 8.0 | 230.6 | 556.2 |
S2-B | 120 | 6.59 | 0.27 | 6.0 | 213.5 | 245 | 6.670 | 0.19 | 8.0 | 310.5 | 524.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, N.; Ursino, N. Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire 2020, 3, 49. https://doi.org/10.3390/fire3030049
Romano N, Ursino N. Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire. 2020; 3(3):49. https://doi.org/10.3390/fire3030049
Chicago/Turabian StyleRomano, Nunzio, and Nadia Ursino. 2020. "Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics" Fire 3, no. 3: 49. https://doi.org/10.3390/fire3030049
APA StyleRomano, N., & Ursino, N. (2020). Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire, 3(3), 49. https://doi.org/10.3390/fire3030049