firebehavioR: An R Package for Fire Behavior and Danger Analysis
Abstract
:1. Introduction
2. Functions of firebehavioR
2.1. The rothermel() Function
2.2. The cfis() Function
2.3. Fire Danger Indices
3. Demonstration
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. Int. J. Wildl. Fire 2009, 18, 369–386. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior? For. Ecol. Manage. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Ex, S.; Ziegler, J.; Tinkham, W.; Hoffman, C. Long-term impacts of fuel treatment placement with respect to forest cover type on potential fire behavior across a mountainous landscape. Forests 2019, 10, 438. [Google Scholar] [CrossRef]
- Sherriff, R.L.; Platt, R.V.; Veblen, T.T.; Schoennagel, T.L.; Gartner, M.H. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Busse, M.D.; Riegel, G.M. Response of antelope bitterbrush to repeated prescribed burning in Central Oregon ponderosa pine forests. For. Ecol. Manage. 2009, 257, 904–910. [Google Scholar] [CrossRef]
- Jones, K.W.; Cannon, J.B.; Saavedra, F.A.; Kampf, S.K.; Addington, R.N.; Cheng, A.S.; MacDonald, L.H.; Wilson, C.; Wolk, B. Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado. J. Environ. Manage. 2017, 198, 66–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prentice, I.C.; Kelley, D.I.; Foster, P.N.; Friedlingstein, P.; Harrison, S.P.; Bartlein, P.J. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cy. 2011, 25, 1–13. [Google Scholar] [CrossRef]
- Miller, C.; Landres, P. Exploring Information Needs for Wildland Fire and Fuels Management; Gen. Tech. Rep. RMRS-GTR-127; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2004; p. 36.
- Scott, J.H. Comparison of Crown Fire Modeling Systems Used in Three Fire Management Applications; Res. Pap. RMRS-RP-58; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2006; p. 25.
- Varner, J.M.; Keyes, C.R. Fuels treatments and fire models: errors and corrections. Fire Manag. Today 2009, 69, 47–50. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 1972; p. 40.
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Rothermel, R.C. Predicting Behavior and Size of Crown Fires in the Northern Rocky Mountains; Res. Pap. INT-438; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 1991; p. 46.
- Andrews, P.L. The Rothermel Surface Fire Spread Model and Associated Developments: A Comprehensive Explanation; Gen. Tech. Rep. RMRS-GTR-371; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2018; p. 121.
- Cruz, M.G.; Alexander, M.E. Assessing crown fire potential in coniferous forests of western North America: A critique of current approaches and recent simulation studies. Int. J. Wildl. Fire 2010, 19, 377–398. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Evaluating a model for predicting active crown fire rate of spread using wildfire observations. Can. J. For. Res. 2006, 36, 3015–3028. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Dam, J.E. Using modeled surface and crown fire behavior characteristics to evaluate fuel treatment effectiveness: A caution. For. Sci. 2014, 60, 1000–1004. [Google Scholar] [CrossRef]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning. J. Combust. 2011, 2011, 19. [Google Scholar] [CrossRef]
- Andrews, P.L. BEHAVE: Fire Behavior Prediction and Fuel Modeling System - BURN Subsystem, Part 1; Gen. Tech. Rep. INT-194; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 1986; p. 130.
- Vacchiano, G.; Ascoli, D. An implementation of the rothermel fire spread model in the R programming language. Fire Technol. 2015, 51, 523–535. [Google Scholar] [CrossRef]
- Keyes, C.R.; Varner, J.M. Pitfalls in the silvicultural treatment of canopy fuels. Fire Manag. Today 2006, 66, 46–50. [Google Scholar]
- Steiniger, S.; Bocher, E. An overview on free and open source GIS developments. Int. J. Geogr. Inf. Sci. 2009, 23, 1345–1370. [Google Scholar] [CrossRef]
- Comprehensive R Archive Network. firebehavioR: Prediction of Wildland Fire Behavior and Hazard. Available online: https://cran.r-project.org/web/packages/firebehavioR/ (accessed on 1 January 2019).
- Anderson, H.E. Aids to Determining Fuel Models for Estimating Fire Behavior; Gen. Tech. Rep. INT-122; U.S. Department of Agriculture, Forest Service, Intermountain: Ogden, UT, USA, 1982; p. 22.
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Gen. Tech. Rep. RMRS-GTR-153; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72.
- Scott, J.H.; Reinhardt, E.D. Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior; Res. Pap. RMRS-RP-29; U.S. Department of Agriculture, Forest Service, Rocky: Fort Collins, CO, USA, 2001; p. 59.
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int. J. Wildl. Fire 2003, 12, 39. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Prediction of crown fire behavior in two stands of jack pine. Can. J. For. Res. 1993, 23, 442–449. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; Res. Pap. RMRS-RP-4, Revised 2004; U.S. Department of Agriculture, Forest Service: Ogden, UT, USA, 1998; p. 47.
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Modeling the likelihood of crown fire occurrence in conifer forest stands. For. Sci. 2004, 50, 640–658. [Google Scholar]
- Sharples, J.J.; McRae, R.H.D.; Weber, R.O.; Gill, A.M. A simple index for assessing fuel moisture content. Environ. Model. Softw. 2009, 24, 637–646. [Google Scholar] [CrossRef]
- Sharples, J.J.; McRae, R.H.D.; Weber, R.O.; Gill, A.M. A simple index for assessing fire danger rating. Environ. Model. Softw. 2009, 24, 764–774. [Google Scholar] [CrossRef]
- Keetch, J.J.; Byram, G.M. A Drought Index for Forest Fire Control; Res. Pap. SE-38; U.S. Department of Agriculture, Forest Service, Southeastern Forest: Asheville, NC, USA, 1968; p. 35.
- Skvarina, J.; Mindas, J.; Holecy, J.; Tucek, J. Analysis of the natural and meteorological conditions during two largest forest fire events in the Slovak Paradise National Park. In Proceedings of the International Scientific Workshop on Forest Fires in the Wildland–Urban Interface and Rural Areas in Europe: An Integral Planning and Management Challenge, Athens, Greece, 15–16 May 2003. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Enloe, J.G.; Stroumentova, N.S.; Carolina, N.; Whitfield, P.H.; Aleksandersson, H.; Mescherskaya, A.V.; Karl, T.R. Potential forest fire danger over northern Eurasia: changes during the 20th Century. Glob. Planet. Change 2005, 56, 371–386. [Google Scholar] [CrossRef]
- Goodrick, S.L. Modification of the Fosberg fire weather index to include drought. Int. J. Wildl. Fire 2003, 11, 205. [Google Scholar] [CrossRef]
- Ziegler, J.; Hoffman, C.; Battaglia, M.; Mell, W. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests. For. Ecol. Manage. 2017, 386, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, C.M.; Canfield, J.; Linn, R.R.; Mell, W.; Sieg, C.H.; Pimont, F.; Ziegler, J. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 2016, 52, 221–237. [Google Scholar] [CrossRef]
- Ziegler, J.P.; Hoffman, C.M.; Battaglia, M.A.; Mell, W.E. Stem-maps of forest restoration cuttings in Pinus ponderosa-dominated forests in the interior west, USA. Data 2019, 4, 68. [Google Scholar] [CrossRef]
- NWCG. Glossary of Wildland Fire Terminology; National Wildfire Coordinating Group: Boise, ID, USA, 2011; p. 189.
- Brotons, L.; Aquilué, N.; de Cáceres, M.; Fortin, M.J.; Fall, A. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Sandberg, D.V.; Riccardi, C.L.; Schaaf, M.D. Reformulation of Rothermel’s wildland fire behaviour model for heterogeneous fuelbeds. Can. J. For. Res. 2007, 37, 2438–2455. [Google Scholar] [CrossRef]
- Wang, X.; Wotton, B.M.; Cantin, A.S.; Parisien, M.A.; Anderson, K.; Moore, B.; Flannigan, M.D. cffdrs: An R package for the Canadian Forest Fire Danger Rating System. Ecol. Process. 2017, 6. [Google Scholar] [CrossRef]
- Vitolo, C.; Di Giuseppe, F.; D’Andrea, M. Caliver: An R package for CALIbration and VERification of forest fire gridded model outputs. PLoS ONE 2018, 13, 1–18. [Google Scholar] [CrossRef]
- Comprehensive R Archive Network. PWFSLsmoke: Utilities for Working with Air Quality Monitoring Data. Available online: https://cran.r-project.org/web/packages/PWFSLSmoke/ (accessed on 9 July 2019).
Input | Description |
surfFuel1 | Surface fuel attributes consisting of: the fuel model type, either (“s”)tatic or (“d”)ynamic fuel load transferring; fuel loads (Mg/ha) for litter, 1-hr, 10-hr, 100-hr, live herbaceous, and live woody fuels; surface area-to-volumes (m2/m3) for litter, 1-hr, 10-hr, 100-hr, live herbaceous, and live woody fuels; fuel bed depth (cm); moisture of extinction (%); and heat content (kJ/kg), in order. |
moisture1 | Surface fuel moistures on a dry-weight basis (%) for litter, 1-hr 10-hr, 100-hr, live herbaceous, and live woody fuel classes, in order. Entered as n x 6 data frame. |
crownFuel1 | Canopy fuel attributes consisting of: canopy bulk density (kg/m3); foliar moisture content (“% of dry mass”); canopy base height (m); and canopy fuel load (kg/m2), in order. |
enviro1 | Environmental variables including: topographic slope (“%”); open windspeed (m/min); wind direction, from uphill (°); and wind adjustment factor (0–1), in order. |
rosMult | Crown fire rate of speed (ROS) multiplier, defaults to 1. Array of length one. |
cfbForm | String specifying estimation method for crown fraction burned. Options are “sr” [26], “w” [28], or “f” [29]. |
Output2 | Description |
fireBehavior | Fire behavior summary: fire type, crown fraction burned (%), ROS (m/min), heat per unit area (kW/m2), fireline intensity (kW/m), flame length (m), direction of spread (°), scorch height (m), torching index (m/min), crowning index (m/min), surfacing index (m/min), effective midflame wind speed (m/min), flame residence time (min) |
detailSurface | Surface fire behavior intermediates: potential ROS (m/min), no wind and no slope ROS (m/min), slope factor (-), wind factor (-), characteristic fuel moisture (%), characteristic surface-area-to-volume ratio (m2/m3), bulk density (kg/m3), packing ratio (-), relative packing ratio (-), reaction intensity (kW/m2), heat source (kW/m2), heat sink (kJ/m3) |
detailCrown | Crown fire behavior intermediates: potential ROS (m/min), no wind & no slope ROS (m/min), slope factor (-), wind factor (-), characteristic fuel moisture (%), characteristic SAV (m2/m3), bulk density (kg/m3), packing ratio (-), relative packing ratio (-), reaction intensity (kW/m2), heat source (kW/m2), heat sink (kJ/m3) |
critInit | Critical values for crown fire initiation: fireline intensity (kW/m), flame length (m), surface ROS (m/min), canopy base height (m) |
critActive | Critical values for active crown fire: canopy bulk density (kg/m3), crown fire ROS (R’active) (m/min) |
critCess | Critical values for cessation of crown fire: canopy base height (m), cessation index (O’) (m/min) |
Input | Description |
fsg | Fuel stratum gap (m) |
u10 | Open wind speed, 10 m above the average canopy height (m/min) |
effm | Estimated fine fuel moisture (%) |
sfc | Surface fuel consumed (Mg/ha) |
bbd | Canopy bulk density (kg/m3) |
id | Ignition delay time for a spotting firebrand (min) |
Output | Description |
type | Type of fire (surface, passive or active crown fire) |
pCrown | Probability of crown fire (%) |
cROS | Crown fire rate of spread (m/min) |
sepDist | Minimum distance for a spot fire to not be overrun by an advancing fireline (m) |
Site | Status (Pre/Post-Thinning) | Canopy Bulk Density (kg/m3) | Canopy Base Height (m) | Canopy Fuel Load (kg/m2) |
---|---|---|---|---|
Heil | pre | 0.14 | 3.63 | 0.837 |
post | 0.10 | 3.69 | 0.628 | |
Kaibab | pre | 0.13 | 4.90 | 2.235 |
post | 0.10 | 6.70 | 1.811 | |
MessG | pre | 0.14 | 3.50 | 1.619 |
post | 0.06 | 3.60 | 0.81 | |
Pike | pre | 0.15 | 2.90 | 2.096 |
post | 0.06 | 3.60 | 0.83 | |
RedF | pre | 0.08 | 2.60 | 0.918 |
post | 0.05 | 3.40 | 0.61 | |
Unc | pre | 0.15 | 4.35 | 2.653 |
post | 0.08 | 4.14 | 1.674 | |
Zuni | pre | 0.09 | 3.83 | 0.914 |
post | 0.03 | 4.60 | 0.396 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziegler, J.P.; Hoffman, C.M.; Mell, W. firebehavioR: An R Package for Fire Behavior and Danger Analysis. Fire 2019, 2, 41. https://doi.org/10.3390/fire2030041
Ziegler JP, Hoffman CM, Mell W. firebehavioR: An R Package for Fire Behavior and Danger Analysis. Fire. 2019; 2(3):41. https://doi.org/10.3390/fire2030041
Chicago/Turabian StyleZiegler, Justin P., Chad M. Hoffman, and William Mell. 2019. "firebehavioR: An R Package for Fire Behavior and Danger Analysis" Fire 2, no. 3: 41. https://doi.org/10.3390/fire2030041
APA StyleZiegler, J. P., Hoffman, C. M., & Mell, W. (2019). firebehavioR: An R Package for Fire Behavior and Danger Analysis. Fire, 2(3), 41. https://doi.org/10.3390/fire2030041