Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DBD Plasma Generation
2.3. DBD Plasma Polymerization of NaSS Monomer
2.4. IR and FT-IR Characterization and Analysis
2.5. Hydrophilicity Test Analysis
2.6. Methylene Blue Removal Analysis
3. Results
3.1. Characterization of PSS Using Infrared Spectroscopy
3.2. Formation and Hydrophilic Property of PSS/MBAA and PSS/DVB Polymer Network
3.3. Methylene Blue Water Pollutant Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brandenburg, R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Subedi, D.P.; Joshi, U.M.; Wong, C.S. Dielectric Barrier Discharge (DBD) Plasmas and Their Applications. In Plasma Science and Technology for Emerging Economies: An AAAPT Experience; Rawat, R.S., Ed.; Springer: Singapore, 2017; pp. 693–737. ISBN 978-981-10-4217-1. [Google Scholar]
- Ollegott, K.; Wirth, P.; Oberste-Beulmann, C.; Awakowicz, P.; Muhler, M. Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasma-Catalytic Processes at Atmospheric Pressure. Chem. Ing. Tech. 2020, 92, 1542–1558. [Google Scholar] [CrossRef]
- He, J.; Wen, X.; Wu, L.; Chen, H.; Hu, J.; Hou, X. Dielectric Barrier Discharge Plasma for Nanomaterials: Fabrication, Modification and Analytical Applications. TrAC Trends Anal. Chem. 2022, 156, 116715. [Google Scholar] [CrossRef]
- Lisi, N.; Pasqual Laverdura, U.; Chierchia, R.; Luisetto, I.; Stendardo, S. A Water Cooled, High Power, Dielectric Barrier Discharge Reactor for CO2 Plasma Dissociation and Valorization Studies. Sci. Rep. 2023, 13, 7394. [Google Scholar] [CrossRef]
- Porrang, S.; Rahemi, N.; Davaran, S.; Mahdavi, M.; Hassanzadeh, B.; Gholipour, A.M. Direct Surface Modification of Mesoporous Silica Nanoparticles by DBD Plasma as a Green Approach to Prepare Dual-Responsive Drug Delivery System. J. Taiwan Inst. Chem. Eng. 2021, 123, 47–58. [Google Scholar] [CrossRef]
- Mieles, M.; Harper, S.; Ji, H.-F. Bulk Polymerization of Acrylic Acid Using Dielectric-Barrier Discharge Plasma in a Mesoporous Material. Polymers 2023, 15, 2965. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Cao, M.; Feng, E.; Sohlberg, K.; Ji, H.-F. Polymerization of Solid-State Aminophenol to Polyaniline Derivative Using a Dielectric Barrier Discharge Plasma. Plasma 2020, 3, 187–195. [Google Scholar] [CrossRef]
- Li, Y.; Atif, R.; Chen, K.; Cheng, J.; Chen, Q.; Qiao, Z.; Fridman, G.; Fridman, A.; Ji, H.-F. Polymerization of D-Ribose in Dielectric Barrier Discharge Plasma. Plasma 2018, 1, 144–149. [Google Scholar] [CrossRef]
- Chen, K.; Cao, M.; Qiao, Z.; He, L.; Wei, Y.; Ji, H.-F. Polymerization of Solid-State 2,2′-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Appl. Polym. Mater. 2020, 2, 1518–1527. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, Y.; Pei, X.; Tian, D.; Liu, Z.; Wei, Z.Z.; Ji, H.; Chen, Q. Mechanism and Reactive Species in a Fountain-Strip DBD Plasma for Degrading Perfluorooctanoic Acid (PFOA). Water 2022, 14, 3384. [Google Scholar] [CrossRef]
- Leduc, M.; Guay, D.; Leask, R.L.; Coulombe, S. Cell Permeabilization Using a Non-Thermal Plasma. New J. Phys. 2009, 11, 115021. [Google Scholar] [CrossRef]
- Shekhter, A.B.; Serezhenkov, V.A.; Rudenko, T.G.; Pekshev, A.V.; Vanin, A.F. Beneficial Effect of Gaseous Nitric Oxide on the Healing of Skin Wounds. Nitric Oxide 2005, 12, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Amiri Khoshkar Vandani, S.; Liu, Q.; Lam, Y.; Ji, H.-F. Enhancing Selectivity with Molecularly Imprinted Polymers via Non-Thermal Dielectric Barrier Discharge Plasma. Polymers 2024, 16, 2380. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Friedman, G.; Fridman, A.; Ji, H.-F. Decomposition of Sugars under Non-Thermal Dielectric Barrier Discharge Plasma. Clin. Plasma Med. 2014, 2, 56–63. [Google Scholar] [CrossRef]
- Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. Angew. Chem. 2016, 128, 15344–15348. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Shvydyuk, K.O.; Nunes-Pereira, J.; Páscoa, J.C.; Silva, A.P. Plasma Actuators Based on Alumina Ceramics for Active Flow Control Applications. Ceramics 2024, 7, 192–207. [Google Scholar] [CrossRef]
- Kolbakir, C.; Hu, H.; Liu, Y.; Hu, H. An experimental study on different plasma actuator layouts for aircraft icing mitigation. Aerosp. Sci. Technol. 2020, 107, 106325. [Google Scholar] [CrossRef]
- Omidi, J. Advances and opportunities in wind energy harvesting using plasma actuators: A review. Clean Energy 2024, 8, 197–225. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Rodrigues, F.F.; Nunes-Pereira, J.; Páscoa, J.C.; Lanceros-Mendez, S.; Silva, A.P. Long-lasting ceramic composites for surface dielectric barrier discharge plasma actuators. J. Eur. Ceram. Soc. 2023, 43, 6112–6121. [Google Scholar] [CrossRef]
- Coolbs, P.; Van Vrekhem, S.; De Geyter, N.; Morent, R. The Use of DBD Plasma Treatment and Polymerization for the Enhancement of Biomedical UHMWPE. Thin Solid Films 2014, 572, 251–259. [Google Scholar] [CrossRef]
- Borra, J.-P.; Valt, A.; Arefi-Khonsari, F.; Tatoulian, M. Atmospheric Pressure Deposition of Thin Functional Coatings: Polymer Surface Patterning by DBD and Post-Discharge Polymerization of Liquid Vinyl Monomer from Surface Radicals. Plasma Process. Polym. 2012, 9, 1104–1115. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Van Vlierberghe, S.; Beaurain, A.; Dubruel, P.; Payen, E. Influence of Operating Parameters on Plasma Polymerization of Acrylic Acid in a Mesh-to-Plate Dielectric Barrier Discharge. Prog. Org. Coat. 2011, 70, 336–341. [Google Scholar] [CrossRef]
- Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. Competitive Association of Cations with Poly(Sodium 4-Styrenesulfonate) (PSS) and Heavy Metal Removal from Water by PSS-Assisted Ultrafiltration. Chem. Eng. J. 2018, 344, 155–164. [Google Scholar] [CrossRef]
- Sepulveda, V.R.; Sierra, L.; López, B.L. Low Dispersity and High Conductivity Poly(4-Styrenesulfonic Acid) Membranes Obtained by Inexpensive Free Radical Polymerization of Sodium 4-Styrenesulfonate. Membranes 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, I. Anionic Polymerization. Kinetics, Mechanisms and Synthesis. Organometallics 1982, 1, 1106. [Google Scholar] [CrossRef]
- Kwon, H.J.; Osada, Y.; Gong, J.P. Polyelectrolyte Gels-Fundamentals and Applications. Polym. J. 2006, 38, 1211–1219. [Google Scholar] [CrossRef]
- Das, S.; Banik, M.; Chen, G.; Sinha, S.; Mukherjee, R. Polyelectrolyte Brushes: Theory, Modelling, Synthesis and Applications. Soft Matter 2015, 11, 8550–8583. [Google Scholar] [CrossRef]
- Yuan, W.; Weng, G.-M.; Lipton, J.; Li, C.M.; Van Tassel, P.R.; Taylor, A.D. Weak Polyelectrolyte-Based Multilayers via Layer-by-Layer Assembly: Approaches, Properties, and Applications. Adv. Colloid Interface Sci. 2020, 282, 102200. [Google Scholar] [CrossRef]
- Thünemann, A.F. Polyelectrolyte–Surfactant Complexes (Synthesis, Structure and Materials Aspects). Prog. Polym. Sci. 2002, 27, 1473–1572. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Chen, S.-L.; Krishnan, L.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Ion Exchange Resin/Polystyrene Sulfonate Composite Membranes for PEM Fuel Cells. J. Membr. Sci. 2004, 243, 327–333. [Google Scholar] [CrossRef]
- He, Q.; Wang, X.; Dai, D.; Feng, Y.; Xu, R.; Yan, J.; Wang, P.; Shen, J.; Hu, B. Resource Utilization of Polystyrene Waste by Preparation of High Performance Dispersant for Coal-Water Slurry. Int. J. Coal Prep. Util. 2024, 44, 920–940. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT:PSS-Based Conductive Textiles and Their Applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.E.; Reisch, A.; Markarian, M.Z.; Schlenoff, J.B. Sulfonation of Polystyrene: Toward the “Ideal” Polyelectrolyte. J. Polym. Sci. Part Polym. Chem. 2013, 51, 2416–2424. [Google Scholar] [CrossRef]
- Dalla Valle, C.; Zecca, M.; Rastrelli, F.; Tubaro, C.; Centomo, P. Effect of the Sulfonation on the Swollen State Morphology of Styrenic Cross-Linked Polymers. Polymers 2020, 12, 600. [Google Scholar] [CrossRef]
- Rymsha, K.V.; Yevchuk, I.Y.; Zhyhailo, M.M.; Demchyna, O.I.; Maksymych, V.M.; Ivashchyshyn, F.O. Hydrogels and Their Composites Based on Sulfo-Containing Acrylates: Preparation, Properties, and Proton Conductivity. J. Solid State Electrochem. 2024, 28, 555–563. [Google Scholar] [CrossRef]
- Liu, H.; Gong, B.; Zhou, Y.; Sun, Z.; Wang, X.; Zhao, S. Preparation of High-Capacity Magnetic Polystyrene Sulfonate Sodium Material Based on SI-ATRP Method and Its Adsorption Property Research for Sulfonamide Antibiotics. BMC Chem. 2020, 14, 3. [Google Scholar] [CrossRef]
- Villermaux, J.; Blavier, L. Free Radical Polymerization Engineering—I: A New Method for Modeling Free Radical Homogeneous Polymerization Reactions. Chem. Eng. Sci. 1984, 39, 87–99. [Google Scholar] [CrossRef]
- Pang, K.; Kotek, R.; Tonelli, A. Review of Conventional and Novel Polymerization Processes for Polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. [Google Scholar] [CrossRef]
- Komorowska-Durka, M.; Dimitrakis, G.; Bogdał, D.; Stankiewicz, A.I.; Stefanidis, G.D. A Concise Review on Microwave-Assisted Polycondensation Reactions and Curing of Polycondensation Polymers with Focus on the Effect of Process Conditions. Chem. Eng. J. 2015, 264, 633–644. [Google Scholar] [CrossRef]
- Gauthier, M.A.; Gibson, M.I.; Klok, H.-A. Synthesis of Functional Polymers by Post-Polymerization Modification. Angew. Chem. Int. Ed. 2009, 48, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W.; Wang, A. Effect of Dry Grinding on the Microstructure of Palygorskite and Adsorption Efficiency for Methylene Blue. Powder Technol. 2012, 225, 124–129. [Google Scholar] [CrossRef]
- Kayabaşı, Y.; Erbaş, O. Methylene Blue and Its Importance in Medicine. Demiroglu Sci. Univ. Florence Nightingale J. Med. 2020, 6, 136–145. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Bharti, V.; Vikrant, K.; Goswami, M.; Tiwari, H.; Sonwani, R.K.; Lee, J.; Tsang, D.C.W.; Kim, K.-H.; Saeed, M.; Kumar, S.; et al. Biodegradation of Methylene Blue Dye in a Batch and Continuous Mode Using Biochar as Packing Media. Environ. Res. 2019, 171, 356–364. [Google Scholar] [CrossRef]
- Electrochemical Degradation of Methylene Blue—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1383586606003455?casa_token=DYxwfvFVUQgAAAAA:vjMzUuZGPM6mpqqW_a0wQ90yQ05xxtJsA-4Q6EPyf6awcUdpqqdMpgLOIg9b6BvBvYfgfdUVGw (accessed on 17 September 2024).
- Li, Q.; Li, Y.; Ma, X.; Du, Q.; Sui, K.; Wang, D.; Wang, C.; Li, H.; Xia, Y. Filtration and Adsorption Properties of Porous Calcium Alginate Membrane for Methylene Blue Removal from Water. Chem. Eng. J. 2017, 316, 623–630. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Adsorptive Removal of Organic Pollutant Methylene Blue Using Polysaccharide-Based Composite Hydrogels. Chemosphere 2022, 286, 131890. [Google Scholar] [CrossRef]
- Zammuto, V.; Macrì, A.; Agostino, E.; Ruggeri, L.M.; Caccamo, M.T.; Magazù, S.; Campos, V.L.; Aguayo, P.; Guglielmino, S.; Gugliandolo, C. Enhancement of Biodegradation and Detoxification of Methylene Blue by Preformed Biofilm of Thermophilic Bacilli on Polypropylene Perforated Balls. J. Mar. Sci. Eng. 2024, 12, 1248. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Alharrisa, E.Z.; Lestari, N.D.; Suherman, S. Modified Waste Polystyrene as a Novel Adsorbent for Removal of Methylene Blue from Aqueous Media. Adv. Environ. Technol. 2022, 8, 83–92. [Google Scholar] [CrossRef]
- Kamani, M.; Rahmati, M.; Vandani, S.A.K.; Fard, G.C.; Kamani, M.; Rahmati, M.; Vandani, S.A.K.; Fard, G.C. Investigation of “MCM-22”, “ZSM-12 & 35 COMPOSITE”, and “ZEOLITE AL-MORDENITE & ZSM-39 COMPOSITE” crystals by analysis of characterization techniques. J. Chil. Chem. Soc. 2021, 66, 5332–5338. [Google Scholar] [CrossRef]
Crosslinker | Ratio | MB Removal Rate (%) |
---|---|---|
MBAA | 0.1% | 58.22 |
0.25% | 58.50 | |
0.5% | 63.35 | |
DVB | 0.1% | 58.54 |
0.25% | 63.65 | |
0.5% | 68.83 |
Trial | Filter Paper | MB Removal Rate (%) |
---|---|---|
First | blank | 47.80 |
PSS/DVB(0.5%) | 68.83 | |
Second | blank | 67.70 |
PSS/DVB(0.5%) | 84.41 | |
Third | blank | 74.30 |
PSS/DVB(0.5%) | 95.80 | |
Fourth | blank | 78.50 |
PSS/DVB(0.5%) | 99.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri Khoshkar Vandani, S.; Farhadian, L.; Pennycuick, A.; Ji, H.-F. Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma 2024, 7, 867-876. https://doi.org/10.3390/plasma7040047
Amiri Khoshkar Vandani S, Farhadian L, Pennycuick A, Ji H-F. Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma. 2024; 7(4):867-876. https://doi.org/10.3390/plasma7040047
Chicago/Turabian StyleAmiri Khoshkar Vandani, Samira, Lian Farhadian, Alex Pennycuick, and Hai-Feng Ji. 2024. "Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma" Plasma 7, no. 4: 867-876. https://doi.org/10.3390/plasma7040047
APA StyleAmiri Khoshkar Vandani, S., Farhadian, L., Pennycuick, A., & Ji, H.-F. (2024). Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma, 7(4), 867-876. https://doi.org/10.3390/plasma7040047