Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prukner, V.; Schmidt, J.; Hoffer, P.; Šimek, M. Demonstration of Dynamics of Nanosecond Discharge in Liquid Water Using Four-Channel Time-Resolved ICCD Microscopy. Plasma 2021, 4, 183–200. [Google Scholar] [CrossRef]
- Grosse, K.; Schulz-von der Gathen, V.; von Keudell, A. Nanosecond Pulsed Discharges in Distilled Water: I. Continuum Radiation and Plasma Ignition. Plasma Sources Sci. Technol. 2020, 29, 095008. [Google Scholar] [CrossRef]
- Von Keudell, A.; Grosse, K.; Schulz-von der Gathen, V. Nanosecond Pulsed Discharges in Distilled Water-Part II: Line Emission and Plasma Propagation. Plasma Sources Sci. Technol. 2020, 29, 085021. [Google Scholar] [CrossRef]
- Marinov, I.; Starikovskaia, S.; Rousseau, A. Dynamics of plasma evolution in a nanosecond underwater discharge. J. Phys. D Appl. Phys. 2014, 47, 224017. [Google Scholar] [CrossRef]
- Pongrác, B.; Šimek, M.; Člupek, M.; Babický, V.; Lukeš, P. Spectroscopic characteristics of Hα/oiatomic lines generated by nanosecond pulsed corona-like discharge in Deionized Water. J. Phys. D Appl. Phys. 2018, 51, 124001. [Google Scholar] [CrossRef]
- Bílek, P.; Tungli, J.; Hoder, T.; Šimek, M.; Bonaventura, Z. Electron–Neutral Bremsstrahlung Radiation Fingerprints the Initial Stage of Nanosecond Discharge in Liquid Water. Plasma Sources Sci. Technol. 2021, 30, 04LT01. [Google Scholar] [CrossRef]
- Šimek, M.; Hoffer, P.; Tungli, J.; Prukner, V.; Schmidt, J.; Bílek, P.; Bonaventura, Z. Investigation of the Initial Phases of Nanosecond Discharges in Liquid Water. Plasma Sources Sci. Technol. 2020, 29, 064001. [Google Scholar] [CrossRef]
- Grosse, K.; Held, J.; Kai, M.; Von Keudell, A. Nanosecond plasmas in water: Ignition, cavitation and plasma parameters. Plasma Sources Sci. Technol. 2019, 28, 085003. [Google Scholar] [CrossRef]
- Jüngling, E.; Grosse, K.; von Keudell, A. Propagation of Nanosecond Plasmas in Liquids—Streamer Velocities and Streamer Lengths. J. Vac. Sci. Technol. A 2022, 40, 043003. [Google Scholar] [CrossRef]
- Grosse, K.; Falke, M.; von Keudell, A. Ignition and Propagation of Nanosecond Pulsed Plasmas in Distilled Water—Negative vs Positive Polarity Applied to a Pin Electrode. J. Appl. Phys. 2021, 129, 213302. [Google Scholar] [CrossRef]
- Staack, D.; Fridman, A.; Gutsol, A.; Gogotsi, Y.; Friedman, G. Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy. Angew. Chem. 2008, 120, 8140–8144. [Google Scholar] [CrossRef]
- Seepersad, Y.; Pekker, M.; Shneider, M.N.; Fridman, A.; Dobrynin, D. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. J. Phys. D Appl. Phys. 2013, 46, 355201. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Yang, Y.; Cho, Y.I.; Fridman, A. Non-Equilibrium Plasma in Liquid Water: Dynamics of Generation and Quenching. Plasma Sources Sci. Technol. 2011, 20, 024003. [Google Scholar] [CrossRef]
- Shneider, M.N.; Pekker, M.; Fridman, A. Theoretical study of the initial stage of sub-nanosecond pulsed breakdown in liquid dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1579–1582. [Google Scholar] [CrossRef]
- Seepersad, Y.; Pekker, M.; Shneider, M.N.; Dobrynin, D.; Fridman, A. On the Electrostrictive Mechanism of Nanosecond-Pulsed Breakdown in Liquid Phase. J. Phys. D Appl. Phys. 2013, 46, 162001. [Google Scholar] [CrossRef]
- Starikovskiy, A.Y.; Shneider, M.N. Experimental Study of Cavitation Development in Liquid in Pulsed Non-Uniform Electric Field under the Action of Ponderomotive Forces. arXiv 2024, arXiv:2402.10327. [Google Scholar] [CrossRef]
- Starikovskiy, A. Pulsed Nanosecond Discharge Development in Liquids with Various Dielectric Permittivity Constants. Plasma Sources Sci. Technol. 2013, 22, 012001. [Google Scholar] [CrossRef]
- Dobrynin, D.; Song, Z.; Fridman, A. Optical Characterization of Nanosecond-Pulsed Discharge in Liquid Nitrogen. J. Phys. D Appl. Phys. 2024, 57, 325204. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, A. Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Nitrogen. arXiv 2024, arXiv:2406.02452. [Google Scholar] [CrossRef]
- Song, Z.; Fridman, A.; Dobrynin, D. Effects of liquid properties on the development of nanosecond-pulsed plasma inside of liquid: Comparison of water and liquid nitrogen. J. Phys. D Appl. Phys. 2024, 57, 175203. [Google Scholar] [CrossRef]
- Malyshev, V.L.; Marin, D.F.; Moiseeva, E.F.; Gumerov, N.A.; Akhatov, I.S. Study of the tensile strength of a liquid by molecular dynamics methods. High Temp. 2015, 53, 406–412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrynin, D.; Fridman, A. Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma 2024, 7, 510-516. https://doi.org/10.3390/plasma7030027
Dobrynin D, Fridman A. Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma. 2024; 7(3):510-516. https://doi.org/10.3390/plasma7030027
Chicago/Turabian StyleDobrynin, Danil, and Alexander Fridman. 2024. "Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon" Plasma 7, no. 3: 510-516. https://doi.org/10.3390/plasma7030027
APA StyleDobrynin, D., & Fridman, A. (2024). Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma, 7(3), 510-516. https://doi.org/10.3390/plasma7030027