Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prukner, V.; Schmidt, J.; Hoffer, P.; Šimek, M. Demonstration of Dynamics of Nanosecond Discharge in Liquid Water Using Four-Channel Time-Resolved ICCD Microscopy. Plasma 2021, 4, 183–200. [Google Scholar] [CrossRef]
- Grosse, K.; Schulz-von der Gathen, V.; von Keudell, A. Nanosecond Pulsed Discharges in Distilled Water: I. Continuum Radiation and Plasma Ignition. Plasma Sources Sci. Technol. 2020, 29, 095008. [Google Scholar] [CrossRef]
- Von Keudell, A.; Grosse, K.; Schulz-von der Gathen, V. Nanosecond Pulsed Discharges in Distilled Water-Part II: Line Emission and Plasma Propagation. Plasma Sources Sci. Technol. 2020, 29, 085021. [Google Scholar] [CrossRef]
- Marinov, I.; Starikovskaia, S.; Rousseau, A. Dynamics of plasma evolution in a nanosecond underwater discharge. J. Phys. D Appl. Phys. 2014, 47, 224017. [Google Scholar] [CrossRef]
- Pongrác, B.; Šimek, M.; Člupek, M.; Babický, V.; Lukeš, P. Spectroscopic characteristics of Hα/oiatomic lines generated by nanosecond pulsed corona-like discharge in Deionized Water. J. Phys. D Appl. Phys. 2018, 51, 124001. [Google Scholar] [CrossRef]
- Bílek, P.; Tungli, J.; Hoder, T.; Šimek, M.; Bonaventura, Z. Electron–Neutral Bremsstrahlung Radiation Fingerprints the Initial Stage of Nanosecond Discharge in Liquid Water. Plasma Sources Sci. Technol. 2021, 30, 04LT01. [Google Scholar] [CrossRef]
- Šimek, M.; Hoffer, P.; Tungli, J.; Prukner, V.; Schmidt, J.; Bílek, P.; Bonaventura, Z. Investigation of the Initial Phases of Nanosecond Discharges in Liquid Water. Plasma Sources Sci. Technol. 2020, 29, 064001. [Google Scholar] [CrossRef]
- Grosse, K.; Held, J.; Kai, M.; Von Keudell, A. Nanosecond plasmas in water: Ignition, cavitation and plasma parameters. Plasma Sources Sci. Technol. 2019, 28, 085003. [Google Scholar] [CrossRef]
- Jüngling, E.; Grosse, K.; von Keudell, A. Propagation of Nanosecond Plasmas in Liquids—Streamer Velocities and Streamer Lengths. J. Vac. Sci. Technol. A 2022, 40, 043003. [Google Scholar] [CrossRef]
- Grosse, K.; Falke, M.; von Keudell, A. Ignition and Propagation of Nanosecond Pulsed Plasmas in Distilled Water—Negative vs Positive Polarity Applied to a Pin Electrode. J. Appl. Phys. 2021, 129, 213302. [Google Scholar] [CrossRef]
- Staack, D.; Fridman, A.; Gutsol, A.; Gogotsi, Y.; Friedman, G. Nanoscale Corona Discharge in Liquids, Enabling Nanosecond Optical Emission Spectroscopy. Angew. Chem. 2008, 120, 8140–8144. [Google Scholar] [CrossRef]
- Seepersad, Y.; Pekker, M.; Shneider, M.N.; Fridman, A.; Dobrynin, D. Investigation of Positive and Negative Modes of Nanosecond Pulsed Discharge in Water and Electrostriction Model of Initiation. J. Phys. D Appl. Phys. 2013, 46, 355201. [Google Scholar] [CrossRef]
- Starikovskiy, A.; Yang, Y.; Cho, Y.I.; Fridman, A. Non-Equilibrium Plasma in Liquid Water: Dynamics of Generation and Quenching. Plasma Sources Sci. Technol. 2011, 20, 024003. [Google Scholar] [CrossRef]
- Shneider, M.N.; Pekker, M.; Fridman, A. Theoretical study of the initial stage of sub-nanosecond pulsed breakdown in liquid dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1579–1582. [Google Scholar] [CrossRef]
- Seepersad, Y.; Pekker, M.; Shneider, M.N.; Dobrynin, D.; Fridman, A. On the Electrostrictive Mechanism of Nanosecond-Pulsed Breakdown in Liquid Phase. J. Phys. D Appl. Phys. 2013, 46, 162001. [Google Scholar] [CrossRef]
- Starikovskiy, A.Y.; Shneider, M.N. Experimental Study of Cavitation Development in Liquid in Pulsed Non-Uniform Electric Field under the Action of Ponderomotive Forces. arXiv 2024, arXiv:2402.10327. [Google Scholar] [CrossRef]
- Starikovskiy, A. Pulsed Nanosecond Discharge Development in Liquids with Various Dielectric Permittivity Constants. Plasma Sources Sci. Technol. 2013, 22, 012001. [Google Scholar] [CrossRef]
- Dobrynin, D.; Song, Z.; Fridman, A. Optical Characterization of Nanosecond-Pulsed Discharge in Liquid Nitrogen. J. Phys. D Appl. Phys. 2024, 57, 325204. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, A. Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Nitrogen. arXiv 2024, arXiv:2406.02452. [Google Scholar] [CrossRef]
- Song, Z.; Fridman, A.; Dobrynin, D. Effects of liquid properties on the development of nanosecond-pulsed plasma inside of liquid: Comparison of water and liquid nitrogen. J. Phys. D Appl. Phys. 2024, 57, 175203. [Google Scholar] [CrossRef]
- Malyshev, V.L.; Marin, D.F.; Moiseeva, E.F.; Gumerov, N.A.; Akhatov, I.S. Study of the tensile strength of a liquid by molecular dynamics methods. High Temp. 2015, 53, 406–412. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrynin, D.; Fridman, A. Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma 2024, 7, 510-516. https://doi.org/10.3390/plasma7030027
Dobrynin D, Fridman A. Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma. 2024; 7(3):510-516. https://doi.org/10.3390/plasma7030027
Chicago/Turabian StyleDobrynin, Danil, and Alexander Fridman. 2024. "Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon" Plasma 7, no. 3: 510-516. https://doi.org/10.3390/plasma7030027
APA StyleDobrynin, D., & Fridman, A. (2024). Positive- and Negative-Polarity Nanosecond-Pulsed Cryogenic Plasma in Liquid Argon. Plasma, 7(3), 510-516. https://doi.org/10.3390/plasma7030027