Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ceramic Sample Preparation
2.2. Test Facility
2.3. Numerical Simulation
2.4. Material Investigation
3. Test Conditions
4. Results and Discussion
4.1. Heat Transfer and Behavior of HfB2-SiC Material under Exposure to Supersonic Flow of Dissociated CO2
4.2. Investigation of HfB2-SiC Material after Exposure to Supersonic Flow of Dissociated CO2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPS | Thermal protection system |
UHTC | Ultrahigh-temperature ceramic material |
ICP | Inductively Coupled Plasma |
CW | Cold wall |
COD | Crystallography Open Database |
SEM | Scanning electron microscopy |
SE2 | Secondary electron |
ESB | Energy-selective backscattered |
HF | High Frequency |
References
- Laub, B.; Venkatapathy, E. Thermal protection system technology and facility needs for demanding future planetary missions. In Proceedings of the Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal, 6–9 October 2003; Volume 544, pp. 239–247. [Google Scholar]
- Swanson, T.; Motil, B.; Chandler, F.; Bruce, W.; Dinsmore, C.; Kostyk, C.; Lysek, M.; Rickman, S.; Stephan, R. NASA Technology Roadmaps TA 14: Thermal Management Systems; National Aeronautics and Space Administration: Washington, DC, USA, 2015; Volume 21, p. 2019. [Google Scholar]
- Venkatapathy, E.; Ellerby, D.; Gage, P.; Prabhu, D.; Gasch, M.; Kazemba, C.; Kellerman, C.; Langston, S.; Libben, B.; Mahzari, M.; et al. Entry system technology readiness for ice-giant probe missions. Space Sci. Rev. 2020, 216, 22. [Google Scholar] [CrossRef]
- Simonenko, E.; Sevast’Yanov, D.; Simonenko, N.; Sevast’Yanov, V.; Kuznetsov, N. Promising ultra-high-temperature ceramic materials for aerospace applications. Russ. J. Inorg. Chem. 2013, 58, 1669–1693. [Google Scholar] [CrossRef]
- Bianco, G.; Nisar, A.; Zhang, C.; Boesl, B.; Agarwal, A. A critical analysis of the parameters affecting the oxidation behavior of ultra-high-temperature diboride ceramics. J. Am. Ceram. Soc. 2022, 105, 1939–1953. [Google Scholar] [CrossRef]
- Han, T.; Huang, J.; Sant, G.; Neithalath, N.; Kumar, A. Predicting mechanical properties of ultrahigh temperature ceramics using machine learning. J. Am. Ceram. Soc. 2022, 105, 6851–6863. [Google Scholar] [CrossRef]
- Jin, X.; He, R.; Zhang, X.; Hu, P. Ablation behavior of ZrB2–SiC sharp leading edges. J. Alloys Compd. 2013, 566, 125–130. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, S.; Hao, Y.; Yang, Y.; Xu, C. Mechanical properties and fracture behavior of ultrahigh temperature ceramics at ultrahigh temperatures. Ceram. Int. 2023, 49, 28532. [Google Scholar] [CrossRef]
- Nisar, A.; Hassan, R.; Agarwal, A.; Balani, K. Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems. Ceram. Int. 2022, 48, 8852–8881. [Google Scholar] [CrossRef]
- Zhao, K.; Ye, F.; Cheng, L.; Yang, J.; Chen, X. An Overview of Ultra-High Temperature Ceramic for Thermal Insulation: Structure and Composition Design with Thermal Conductivity Regulation. J. Eur. Ceram. Soc. 2023, 43, 7241–7262. [Google Scholar] [CrossRef]
- Meng, J.; Fang, H.; Wang, H.; Wu, Y.; Wei, C.; Li, S.; Geng, X.; Li, X.; Zhang, J.; Wen, G.; et al. Effects of refractory metal additives on diboride-based ultra-high temperature ceramics: A review. Int. J. Appl. Ceram. Technol. 2023, 20, 1350–1370. [Google Scholar] [CrossRef]
- Sonber, J.; Murthy, T.C.; Majumdar, S.; Kain, V. Processing of ZrB-and HfB-Based Ultra-High Temperature Ceramic Materials: A Review. Mater. Perform. Charact. 2021, 10, 89–121. [Google Scholar] [CrossRef]
- Savino, R.; Criscuolo, L.; Di Martino, G.D.; Mungiguerra, S. Aero-thermo-chemical characterization of ultra-high-temperature ceramics for aerospace applications. J. Eur. Ceram. Soc. 2018, 38, 2937–2953. [Google Scholar] [CrossRef]
- Silvestroni, L.; Mungiguerra, S.; Sciti, D.; Di Martino, G.D.; Savino, R. Effect of hypersonic flow chemical composition on the oxidation behavior of a super-strong UHTC. Corros. Sci. 2019, 159, 108125. [Google Scholar] [CrossRef]
- Golla, B.R.; Mukhopadhyay, A.; Basu, B.; Thimmappa, S.K. Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 2020, 111, 100651. [Google Scholar] [CrossRef]
- Kováčová, Z.; Orovčík, L.; Sedláček, J.; Bača, L.; Dobročka, E.; Kitzmantel, M.; Neubauer, E. The effect of YB4 addition in ZrB2-SiC composites on the mechanical properties and oxidation performance tested up to 2000 °C. J. Eur. Ceram. Soc. 2020, 40, 3829–3843. [Google Scholar] [CrossRef]
- Mungiguerra, S.; Cecere, A.; Savino, R.; Saraga, F.; Monteverde, F.; Sciti, D. Improved aero-thermal resistance capabilities of ZrB2-based ceramics in hypersonic environment for increasing SiC content. Corros. Sci. 2021, 178, 109067. [Google Scholar] [CrossRef]
- Squire, T.H.; Marschall, J. Material property requirements for analysis and design of UHTC components in hypersonic applications. J. Eur. Ceram. Soc. 2010, 30, 2239–2251. [Google Scholar] [CrossRef]
- Monteverde, F.; Savino, R. ZrB2–SiC sharp leading edges in high enthalpy supersonic flows. J. Am. Ceram. Soc. 2012, 95, 2282–2289. [Google Scholar] [CrossRef]
- Astapov, A.; Zhestkov, B.; Senyuev, I.; Shtapov, V. Methodology of studying high-velocity plasma flow impact on high-temperature materials. AIP Conf. Proc. 2023, 2549, 210009. [Google Scholar]
- Kolesnikov, A.; Kuznetsov, N.; Muravyeva, T.; Nagornov, I.; Sakharov, V.; Sevastyanov, V.; Simonenko, E.; Simonenko, N.; Chaplygin, A.; Shcherbakova, O. Investigation of Heat Transfer to HfB2-SiC-Based Ceramics in Underexpanded Dissociated-Nitrogen Flows and Analysis of the Surface. Fluid Dyn. 2022, 57, 513–523. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Kolesnikov, A.F.; Chaplygin, A.V.; Lysenkov, A.S.; Nagornov, I.A.; Mokrushin, A.S.; Kuznetsov, N.T. Investigation of the Effect of Supersonic Flow of Dissociated Nitrogen on ZrB2–HfB2–SiC Ceramics Doped with 10 vol.% Carbon Nanotubes. Materials 2022, 15, 8507. [Google Scholar] [CrossRef] [PubMed]
- Monteverde, F.; Savino, R. Stability of ultra-high-temperature ZrB2–SiC ceramics under simulated atmospheric re-entry conditions. J. Eur. Ceram. Soc. 2007, 27, 4797–4805. [Google Scholar] [CrossRef]
- Savino, R.; Fumo, M.D.S.; Silvestroni, L.; Sciti, D. Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J. Eur. Ceram. Soc. 2008, 28, 1899–1907. [Google Scholar] [CrossRef]
- Alosime, E.M.; Alsuhybani, M.S.; Almeataq, M.S. The oxidation behavior of ZrB2-SiC ceramic composites fabricated by plasma spray process. Materials 2021, 14, 392. [Google Scholar] [CrossRef] [PubMed]
- Hash, B. Planetary Mission Entry Vehicles Quick Reference Guide, Technical Report, version 4.1; NASA: Washington, DC, USA, 2003. [Google Scholar]
- Girija, A.P.; Lu, Y.; Saikia, S.J. Feasibility and mass-benefit analysis of aerocapture for missions to Venus. J. Spacecr. Rocket. 2020, 57, 58–73. [Google Scholar] [CrossRef]
- Dutta, S.; Smith, B.; Prabhu, D.; Venkatapathy, E. Mission sizing and trade studies for low ballistic coefficient entry systems to Venus. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–14. [Google Scholar]
- Simonenko, E.P.; Kolesnikov, A.F.; Chaplygin, A.V.; Kotov, M.A.; Yakimov, M.Y.; Lukomskii, I.V.; Galkin, S.S.; Shemyakin, A.N.; Solovyov, N.G.; Lysenkov, A.S.; et al. Oxidation of Ceramic Materials Based on HfB2-SiC under the Influence of Supersonic CO2 Jets and Additional Laser Heating. Int. J. Mol. Sci. 2023, 24, 13634. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, E.; Simonenko, N.; Papynov, E.; Gridasova, E.; Sevastyanov, V.; Kuznetsov, N. Production of HfB2–SiC (10–65 vol% SiC) ultra-high-temperature ceramics by hot pressing of HfB2–(SiO2–C) composite powder synthesized by the sol–gel method. Russ. J. Inorg. Chem. 2018, 63, 1–15. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Gordeev, A.N.; Kolesnikov, A.F.; Sevastyanov, V.G.; Kuznetsov, N.T. Behavior of HfB2–30 vol% SiC UHTC obtained by sol–gel approach in the supersonic airflow. J. Sol-Gel Sci. Technol. 2019, 92, 386–397. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Gordeev, A.N.; Kolesnikov, A.F.; Lysenkov, A.S.; Nagornov, I.A.; Sevastyanov, V.G.; Kuznetsov, N.T. The effects of subsonic and supersonic dissociated air flow on the surface of ultra-high-temperature HfB2-30 vol% SiC ceramics obtained using the sol-gel method. J. Eur. Ceram. Soc. 2020, 40, 1093–1102. [Google Scholar] [CrossRef]
- Simonenko, E.; Simonenko, N.; Kolesnikov, A.; Chaplygin, A.; Sakharov, V.; Lysenkov, A.; Nagornov, I.; Kuznetsov, N. Effect of 2 vol% Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air. Russ. J. Inorg. Chem. 2022, 67, 2050–2061. [Google Scholar] [CrossRef]
- Shapkin, N.; Papynov, E.; Shichalin, O.; Buravlev, I.Y.; Simonenko, E.; Simonenko, N.; Zavjalov, A.; Belov, A.; Portnyagin, A.; Gerasimenko, A.; et al. Spark plasma sintering-reactive synthesis of SiC and SiC–HfB2 ceramics based on natural renewable raw materials. Russ. J. Inorg. Chem. 2021, 66, 629–637. [Google Scholar] [CrossRef]
- Simonenko, E.; Simonenko, N.; Kolesnikov, A.; Chaplygin, A.; Lysenkov, A.; Nagornov, I.; Sevastyanov, V.; Kuznetsov, N. Modification of HfB2–30% SiC UHTC with Graphene (1 Vol%) and Its Influence on the Behavior in a Supersonic Air Jet. Russ. J. Inorg. Chem. 2021, 66, 1405–1415. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Kolesnikov, A.F.; Chaplygin, A.V.; Lysenkov, A.S.; Nagornov, I.A.; Simonenko, T.L.; Gubin, S.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow. J. Eur. Ceram. Soc. 2022, 42, 30–42. [Google Scholar] [CrossRef]
- Gordeev, A. Overview of Characteristics and Experiments in IPM Plasmatrons. VKI, RTO AVT/VKI Special Course on Measurement Techniques for High Enthalpy Plasma Flows, 1999. Available online: https://apps.dtic.mil/sti/citations/ADP010736 (accessed on 16 April 2024).
- Pyatt, E. Some consideration of the errors of brightness and two-colour types of spectral radiation pyrometer. Br. J. Appl. Phys. 1954, 5, 264. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Lukomskii, I.; Sakharov, V.; Chaplygin, A. Experimental and numerical modeling of heat transfer to graphite surface in underexpanded dissociated-nitrogen jets. Fluid Dyn. 2021, 56, 897–905. [Google Scholar] [CrossRef]
- Gordeev, A.; Kolesnikov, A.; Yakushin, M. Effect of surface catalytic activity on nonequilibrium heat transfer in a subsonic jet of dissociated nitrogen. Fluid Dyn. 1985, 20, 478–484. [Google Scholar] [CrossRef]
- Sanson, F.; Villedieu, N.; Panerai, F.; Chazot, O.; Congedo, P.M.; Magin, T.E. Quantification of uncertainty on the catalytic property of reusable thermal protection materials from high enthalpy experiments. Exp. Therm. Fluid Sci. 2017, 82, 414–423. [Google Scholar] [CrossRef]
- Afonina, N.; Gromov, V.; Sakharov, V. Hightemp technique of high temperature gas flows numerical simulation. In Proceedings of the Fifth European Symposium on Aerothermodynamics for Space Vehicles (ESA SP-563), Cologne, Germany, 8–11 November 2004; Volume 563, p. 323. [Google Scholar]
- Gordeev, A.N.; Kolesnikov, A.F.; Sakharov, V.I. Flow and heat transfer in underexpanded nonequilibrium jets of carbon dioxide: Experiment and numerical simulation. High Temp. 2015, 53, 272–278. [Google Scholar] [CrossRef]
- Gurvich, L.; Veits, I.; Medvedev, V.; Khachkuruzov, G.; Yungman, V.; Bergman, G. Thermodynamic Properties of Individual Substances: Handbook; Izd. Akademiia Nauk SSSR: Moscow, Russia, 1978. [Google Scholar]
- Ibragimova, L.; Smekhov, G.; Shatalov, O. Dissociation rate constants of diatomic molecules under thermal equilibrium conditions. Fluid Dyn. 1999, 34, 153–157. [Google Scholar] [CrossRef]
- Losev, S.; Makarov, V.; Pogosbekyan, M.Y. Model of the physico-chemical kinetics behind the front of a very intense shock wave in air. Fluid Dyn. 1995, 30, 299–309. [Google Scholar] [CrossRef]
- Park, C.; Howe, J.T.; Jaffe, R.L.; Candler, G.V. Review of chemical-kinetic problems of future NASA missions. II-Mars entries. J. Thermophys. Heat Transf. 1994, 8, 9–23. [Google Scholar] [CrossRef]
- Losev, S.; Makarov, V.; Pogosbekyan, M.J.; Shatalov, O.P.; Nikol’sky, V.S. Thermochemical Nonequilibrium Kinetic Models in Strong Shock Waves in Air. In Proceedings of the 6th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Colorado Springs, CO, USA, 20–23 June 1994. AIAA Paper. [Google Scholar]
- Saad, A.A.; Martinez, C.; Trice, R.W. Radiation heat transfer during hypersonic flight: A review of emissivity measurement and enhancement approaches of ultra-high temperature ceramics. Int. J. Ceram. Eng. Sci. 2023, 5, e10171. [Google Scholar] [CrossRef]
- Biasetto, L.; Manzolaro, M.; Andrighetto, A. Emissivity measurements of opaque gray bodies up to 2000 C by a dual-frequency pyrometer. Eur. Phys. J. A 2008, 38, 167–171. [Google Scholar] [CrossRef]
- Purpura, C. Methods for the Material Spectral Emissivity Evaluation by Dual-Color Pyrometer in a Hypersonic Plasma Test Facility. IEEE J. Miniaturization Air Space Syst. 2020, 2, 92–97. [Google Scholar] [CrossRef]
- Sani, E.; Meucci, M.; Mercatelli, L.; Jafrancesco, D.; Sans, J.L.; Silvestroni, L.; Sciti, D. Optical properties of boride ultrahigh-temperature ceramics for solar thermal absorbers. J. Photonics Energy 2014, 4, 045599. [Google Scholar] [CrossRef]
- Holleck, H. Legierungsverhalten von HfB2 mit uran-und übergangsmetalldiboriden. J. Nucl. Mater. 1967, 21, 14–20. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G.; Wyckoff, R.W. Crystal Structures; Interscience Publishers: New York, NY, USA, 1963; Volume 1, pp. 85–237. [Google Scholar]
- Henderson, S.J.; Shebanova, O.; Hector, A.L.; McMillan, P.F.; Weller, M.T. Structural variations in pyrochlore-structured Bi2Hf2O7, Bi2Ti2O7 and Bi2Hf2-xTixO2 solid solutions as a function of composition and temperature by neutron and X-ray diffraction and Raman spectroscopy. Chem. Mater. 2007, 19, 1712–1722. [Google Scholar]
- Li, J.; Lenosky, T.J.; Först, C.J.; Yip, S. Thermochemical and mechanical stabilities of the oxide scale of ZrB2+ SiC and oxygen transport mechanisms. J. Am. Ceram. Soc. 2008, 91, 1475–1480. [Google Scholar] [CrossRef]
- Parthasarathy, T.; Rapp, R.; Opeka, M.; Cinibulk, M. Modeling oxidation kinetics of SiC-containing refractory diborides. J. Am. Ceram. Soc. 2012, 95, 338–349. [Google Scholar]
- Zhang, X.H.; Hu, P.; Han, J.C. Structure evolution of ZrB2–SiC during the oxidation in air. J. Mater. Res. 2008, 23, 1961–1972. [Google Scholar] [CrossRef]
- Eakins, E.; Jayaseelan, D.D.; Lee, W.E. Toward oxidation-resistant ZrB2-SiC ultra high temperature ceramics. Metall. Mater. Trans. A 2011, 42, 878–887. [Google Scholar] [CrossRef]
- Simonenko, E.; Simonenko, N.; Gordeev, A.; Kolesnikov, A.; Lysenkov, A.; Nagornov, I.; Sevast’yanov, V.; Kuznetsov, N. Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65 vol%) by a Supersonic Air Flow. Russ. J. Inorg. Chem. 2020, 65, 606–615. [Google Scholar] [CrossRef]
- Simonenko, E.; Simonenko, N.; Gordeev, A.; Kolesnikov, A.; Papynov, E.; Shichalin, O.; Tal’skikh, K.Y.; Gridasova, E.; Avramenko, V.; Sevastyanov, V.; et al. Impact of a supersonic dissociated air flow on the surface of HfB2–30 vol% SiC UHTC produced by the Sol–Gel method. Russ. J. Inorg. Chem. 2018, 63, 1484–1493. [Google Scholar] [CrossRef]
- Tkachev, S.; Manghnani, M.; Niilisk, A.; Aarik, J.; Mändar, H. Raman and Brillouin scattering spectroscopy studies of atomic layer-deposited ZrO2 and HfO2 thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2434–2438. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhou, B.; Li, Q.; Jiang, Z.; Wang, W.; Ma, W.; Zhang, X. Elastic and vibrational properties of monoclinic HfO2 from first-principles study. J. Phys. D Appl. Phys. 2012, 45, 125304. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, H.; Zhang, X.; Su, Q.; Jiang, Z. The simulated vibrational spectra of HfO2 polymorphs. J. Phys. Appl. Phys. 2014, 47, 115502. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Raza, M.A.; Bae, J.H. Liquid Capacitor Based on Hafnium Oxide. Key Eng. Mater. 2019, 801, 211–216. [Google Scholar] [CrossRef]
- Manoun, B.; Downs, R.T.; Saxena, S.K. A high-pressure Raman spectroscopic study of hafnon, HfSiO2. Am. Mineral. 2006, 91, 1888–1892. [Google Scholar] [CrossRef]
- Grüneberger, A.M.; Schmidt, C.; Jahn, S.; Rhede, D.; Loges, A.; Wilke, M. Interpretation of Raman spectra of the zircon–hafnon solid solution. Eur. J. Mineral. 2016, 28, 721–733. [Google Scholar] [CrossRef]
- Niu, J.; Lu, Z.; Nan, S.; Wu, X.; Qin, S.; Liu, Y.; Li, W. Phase transition of hafnon, HfSiO4, at high pressure. J. Am. Ceram. Soc. 2023, 106, 6292–6300. [Google Scholar] [CrossRef]
- Estevenon, P.; Kaczmarek, T.; Rafiuddin, M.R.; Welcomme, E.; Szenknect, S.; Mesbah, A.; Moisy, P.; Poinssot, C.; Dacheux, N. Soft hydrothermal synthesis of hafnon, HfSiO4. Cryst. Growth Des. 2020, 20, 1820–1828. [Google Scholar] [CrossRef]
- Nakashima, S.i.; Harima, H. Raman investigation of SiC polytypes. Phys. Status Solidi A 1997, 162, 39–64. [Google Scholar] [CrossRef]
- Ghosh, D.; Subhash, G.; Orlovskaya, N. Measurement of scratch-induced residual stress within SiC grains in ZrB2–SiC composite using micro-Raman spectroscopy. Acta Mater. 2008, 56, 5345–5354. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G. Thermodynamic analysis of ZrB2–SiC oxidation: Formation of a SiC-depleted region. J. Am. Ceram. Soc. 2007, 90, 143–148. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Maximum generator anode power supply, kW | 72 |
Frequency, MHz | 1.76 |
Discharge channel diameter, mm | 80 |
Stagnation pressure, Pa | |
Gas mass flow rate, g/s | |
Possible working gases | Air, N2, CO2, Ar and their mixtures |
Device | Type | Temperature Range | Spectral Range | Accuracy |
---|---|---|---|---|
Tandem VS-415U | Brightness thermal imager | 1000 °C…2300 °C | 0.8 to 1.0 * µm | ±20 °C |
AST Swift 350 PL | Brightness pyrometer | 350 °C…3500 °C | 2.0 to 2.6 µm | ±0.5% of the measured value + 1 °C |
Mikron M770S | Spectral-ratio pyrometer | 1000 °C…3000 °C | 2 bands ∼1 µm | ±15 °C |
Parameter | Value |
---|---|
Total pressure, Pa | 5874 |
Velocity, m/s | 1193 |
Temperature, K | 5449 |
Total enthalpy, MJ/kg | 14.63 |
O | C | O2 | CO | CO2 |
0.432003 | 0.53010 | |||
O+ | C+ | CO+ | O2+ | C2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaplygin, A.V.; Simonenko, E.P.; Kotov, M.A.; Sakharov, V.I.; Lukomskii, I.V.; Galkin, S.S.; Kolesnikov, A.F.; Lysenkov, A.S.; Nagornov, I.A.; Mokrushin, A.S.; et al. Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma. Plasma 2024, 7, 300-315. https://doi.org/10.3390/plasma7020017
Chaplygin AV, Simonenko EP, Kotov MA, Sakharov VI, Lukomskii IV, Galkin SS, Kolesnikov AF, Lysenkov AS, Nagornov IA, Mokrushin AS, et al. Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma. Plasma. 2024; 7(2):300-315. https://doi.org/10.3390/plasma7020017
Chicago/Turabian StyleChaplygin, Aleksey V., Elizaveta P. Simonenko, Mikhail A. Kotov, Vladimir I. Sakharov, Ilya V. Lukomskii, Semen S. Galkin, Anatoly F. Kolesnikov, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, and et al. 2024. "Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma" Plasma 7, no. 2: 300-315. https://doi.org/10.3390/plasma7020017
APA StyleChaplygin, A. V., Simonenko, E. P., Kotov, M. A., Sakharov, V. I., Lukomskii, I. V., Galkin, S. S., Kolesnikov, A. F., Lysenkov, A. S., Nagornov, I. A., Mokrushin, A. S., Simonenko, N. P., Kuznetsov, N. T., Yakimov, M. Y., Shemyakin, A. N., & Solovyov, N. G. (2024). Short-Term Oxidation of HfB2-SiC Based UHTC in Supersonic Flow of Carbon Dioxide Plasma. Plasma, 7(2), 300-315. https://doi.org/10.3390/plasma7020017