Operation of Large RF Driven Negative Ion Sources for Fusion at Pressures below 0.3 Pa
Abstract
:1. Introduction
- An important factor is the strength of the magnetic field in the plasma generation region. For example, in the RF prototype source it is difficult to sustain the plasma if the magnetic field in the RF driver has a strength of more than ≈1 mT [6].
- The low-pressure operational limit correlates with the geometry of the ion source. Comparing results obtained at different arc driven ion sources, a general reduction of the low-pressure limit with an increasing ratio of the ion source volume to the plasma loss area is found [23]. This may indicate that racetrack-shaped RF drivers, as foreseen for the European DEMO, allow operation with lower filling pressures compared to circular drivers. Additionally, it was demonstrated that the minimum pressure is lower for the large RF-driven ELISE ion source where a higher gas flow is needed for a given pressure compared to the small RF prototype source [24].
- Modelling RF sources using a fluid code [25] points out that much higher electron energies are needed in the driver region for sustaining the plasma when the product of gas density times effective source dimension decreases below a certain threshold value; for the RF prototype source, this threshold is ≈2 × 1018 m−2.
2. The ELISE Test Facility
3. Operation of the RF-Driven Source at Pressures below 0.3 Pa
3.1. Lowest Possible Operational Pressure
- A second row of external permanent magnets is added downstream the first row in 16 cm axial distance. This second row of magnets modifies the magnetic field lines mainly in close vicinity to the horizontal edges of the PG (see Figure 2b).
- The central IPG return conductor is disconnected, i.e., the IPG return current is distributed evenly between the two outermost return conductors. As illustrated in Figure 2c, this modification affects the magnetic field lines, the field gradients and locally also the field strength in the RF drivers and in the source volume close to them.
3.2. Plasma Oscillations at Low Operational Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemsworth, R.S.; Boilson, D.; Blatchford, P.; Dalla Palma, M.; Chitarin, G.; Esch, H.P.L.; Geli, F.; Dremel, M.; Graceffa, J.; Marcuzzi, D. Overview of the design of the ITER heating neutral beam injectors. New J. Phys. 2017, 19, 025005. [Google Scholar] [CrossRef]
- Heinemann, B.; Fantz, U.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Bonomo, F.; Fröschle, M.; Nocentini, R.; Riedl, R. Towards large and powerful radio frequency driven negative ion sources for fusion. New J. Phys. 2017, 19, 015001. [Google Scholar] [CrossRef]
- Toigo, V.; Piovan, R.; Dal Bello, S.; Gaio, E.; Luchetta, A.; Pasqualotto, R.; Zaccaria, P.; Bigi, M.; Chitarin, G.; Marcuzzi, D.; et al. The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors. New J. Phys. 2017, 19, 085004. [Google Scholar] [CrossRef] [Green Version]
- Hemsworth, R.; Decamps, H.; Graceffa, J.; Schunke, B.; Tanaka, M.; Dremel, M.; Tanga, A.; De Esch, H.P.L.; Geli, F.; Milnes, J.; et al. Status of the ITER heating neutral beam system. Nucl. Fusion 2009, 49, 045006. [Google Scholar] [CrossRef] [Green Version]
- Krylov, A.; Hemsworth, R. Gas flow and related beam losses in the ITER neutral beam injector. Fusion Eng. Des. 2006, 81, 2239. [Google Scholar] [CrossRef]
- Fantz, U.; Schiesko, L.; Wünderlich, D. Plasma expansion across a transverse magnetic field in a negative hydrogen ion source for fusion. Plasma Sources Sci. Technol. 2014, 23, 044002. [Google Scholar] [CrossRef]
- Fantz, U.; Falter, H.D.; Franzen, P.; Wünderlich, D.; Berger, M.; Lorenz, A.; Kraus, W.; Mcneely, P.; Riedl, R.; Speth, E. Spectroscopy—A powerful diagnostic tool in source development. Nucl. Fusion 2006, 46, S297. [Google Scholar] [CrossRef] [Green Version]
- Franzen, P.; Schiesko, L.; Fröschle, M.; Wünderlich, D.; Fantz, U.; NNBI-Team. Magnetic Filter Field Dependence of the Performance of the RF Driven IPP Prototype Source for Negative Hydrogen Ions. Plasma Phys. Control. Fusion 2011, 53, 115006. [Google Scholar] [CrossRef] [Green Version]
- Zohm, H. On the Minimum Size of DEMO. Fusion Sci. Technol. 2017, 58, 613. [Google Scholar] [CrossRef]
- Federici, G.; Biel, W.; Gilbert, M.R.; Kemp, R.; Taylor, N.; Wenninger, R. European DEMO design strategy and consequences for materials. Nucl. Fusion 2017, 57, 092002. [Google Scholar] [CrossRef] [Green Version]
- Fantz, U.; Hopf, C.; Friedl, R.; Cristofaro, S.; Heinemann, B.; Lishev, S.; Mimo, A. Technology developments for a beam source of an NNBI system for DEMO. Fusion Eng. Des. 2018, 136, 340. [Google Scholar] [CrossRef] [Green Version]
- Agostinetti, P.; Franke, T.; Fantz, U.; Hopf, C.; Mantel, N.; Tran, M.Q. RAMI evaluation of the beam source for the DEMO neutral beam injectors. Fusion Eng. Des. 2020, 159, 111628. [Google Scholar] [CrossRef]
- Surrey, E.; Holmes, A. The beam driven plasma neutralizer. AIP Conf. Proc. 2013, 1515, 532. [Google Scholar]
- Turner, I.; Holmes, A.J.T. Model for a beam driven plasma neutraliser based on ITER beam geometry. Fusion Eng. Des. 2019, 149, 111327. [Google Scholar] [CrossRef]
- Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M.Q. Conceptual design of the beam source for the DEMO Neutral Beam Injectors. New J. Phys. 2016, 18, 125002. [Google Scholar] [CrossRef] [Green Version]
- Faircloth, D.; Lawrie, S. An overview of negative hydrogen ion sources for accelerators. New J. Phys. 2018, 20, 025007. [Google Scholar] [CrossRef] [Green Version]
- Fantz, U.; Wünderlich, D. A novel diagnostic technique for H-(D-) densities in negative hydrogen ion sources. New J. Phys. 2006, 8, 301. [Google Scholar] [CrossRef]
- Fruchtman, A. Neutral gas depletion in low temperature plasma. J. Phys. D 2017, 50, 473002. [Google Scholar] [CrossRef] [Green Version]
- Mcneely, P.; Wünderlich, D.; The NNBI-Team. Neutral depletion in an H- source operated at high RF power and low input gas flow. Plasma Sources Sci. Technol. 2011, 20, 045005. [Google Scholar] [CrossRef]
- Fubiani, G.; Garrigues, L.; Hagelaar, G.J.M.; Kohen, N.; Boeuf, J.P. Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source. New J. Phys. 2017, 19, 015002. [Google Scholar] [CrossRef]
- Tsumori, K.; Ikeda, K.; Nakano, H.; Kisaki, M.; Geng, S.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Serianni, G.; et al. Negative ion production and beam extraction processes in a large ion source (invited). Rev. Sci. Instrum. 2016, 87, 02B936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, A.; Hiratsuka, J.; Umeda, N.; Hanada, M.; Kashiwagi, M.; Yoshida, M.; Ichikawa, M.; Nishikiori, R.; Watanabe, K.; Tobari, H.; et al. Development of long-pulse high-power-density negative ion beams with a multi-aperture multi-grid accelerator. Fusion Eng. Des. 2017, 123, 236. [Google Scholar] [CrossRef]
- Inoue, T.; Hemsworth, R.; Kulygin, V.; Okumura, Y. ITER R&D: Auxiliary Systems: Neutral Beam Heating and Current Drive System. Fusion Eng. Des. 2001, 55, 291. [Google Scholar]
- Franzen, P.; Heinemann, B.; Fantz, U.; Wünderlich, D.; Kraus, W.; Fröschle, M.; Martens, C.; Riedl, R.; Nocentini, R.; Masiello, A.; et al. Commissioning and first results of the ITER-relevant negative ion beam test facility ELISE. Fusion Eng. Des. 2013, 88, 3132. [Google Scholar] [CrossRef] [Green Version]
- Boeuf, J.P.; Hagelaar, G.J.M.; Sarrailh, P.; Fubiani, G.; Kohen, N. Model of an inductively coupled negative ion source: II. Application to an ITER type source. Plasma Sources Sci. Technol. 2011, 20, 015002. [Google Scholar] [CrossRef]
- Hanada, M.; Seki, T.; Takado, N.; Inoue, T.; Mizuno, T.; Hatayama, A.; Kashiwagi, M.; Sakamoto, K.; Taniguchi, M.; Watanabe, K. The origin of beam non-uniformity in a large Cs-seeded negative ion source. Nucl. Fusion 2006, 46, S318. [Google Scholar] [CrossRef]
- Takado, N.; Tobari, H.; Inoue, T.; Hanatani, J.; Hatayama, A.; Hanada, M.; Kashiwagi, M.; Sakamoto, K. Numerical analysis of the production profile of H0 atoms and subsequent H− ions in large negative ion sources. J. Appl. Phys. 2008, 103, 053302. [Google Scholar] [CrossRef]
- Mcneely, P.; Dudin, S.V.; Christ-Koch, S.; Fantz, U. A Langmuir probe system for high power RF-driven negative ion sources on high potential. Plasma Sources Sci. Technol. 2009, 18, 014011. [Google Scholar] [CrossRef]
- Briefi, S.; Fantz, U. Spectroscopic investigations of the ion source at BATMAN upgrade. AIP Conf. Proc. 2018, 2052, 040005. [Google Scholar]
- Belchenko, Y.; Dimov, G.I.; Dudnikov, V.G. A powerful injector of neutrals with a surfaceplasma source of negative ions. Nucl. Fusion 1974, 14, 113. [Google Scholar] [CrossRef]
- Dudnikov, V. Development and Applications of Negative Ion Sources; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Speth, E.; Falter, H.D.; Franzen, P.; Fantz, U.; Bandyopadhyay, M.; Christ, S.; Encheva, A.; Fröschle, M.; Holtum, D.; Heinemann, B.; et al. Overview of the RF source development programme at IPP Garching. Nucl. Fusion 2006, 46, S220. [Google Scholar] [CrossRef] [Green Version]
- Tsumori, K.; Nakano, H.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Shibuya, M.; Asano, E.; et al. Spatial distribution of the charged particles and potentials during beam extraction in a negative-ion source. Rev. Sci. Instrum. 2012, 83, 02B116. [Google Scholar] [CrossRef]
- Heinemann, B.; Falter, H.D.; Fantz, U.; Franzen, P.; Fröschle, M.; Kraus, W.; Martens, C.; Nocentini, R.; Riedl, R.; Speth, E. The negative ion source test facility ELISE. Fusion Eng. Des. 2011, 86, 768. [Google Scholar] [CrossRef]
- Masiello, A.; Agarici, G.; Bonicelli, T.; Simon, M.; Antoni, V.; De Esch, H.P.L.; De Lorenzi, A.; Dremel, M.; Franzen, P.; Hemsworth, R.; et al. European programme towards the 1 MeV ITER NB injector. Fusion Eng. Des. 2009, 84, 1276. [Google Scholar] [CrossRef]
- Masiello, A.; Agarici, G.; Bonicelli, T.; Fantini, F.; Gagliardi, M.; Paolucci, M.; Simon, M.; Wikus, P.; Agostinetti, P.; Bigi, M.; et al. Symmetries and Asymmetries in the Divertor Detachment in ASDEX Upgrade. In Proceedings of the 24th IAEA Fusion Energy Conference, San Diego, CA, USA, 8–13 October 2012. [Google Scholar]
- Schiesko, L.; Mcneely, P.; Franzen, P.; Fantz, U.; NNBI-Team. Magnetic field dependence of the plasma properties in a negative hydrogen ion source for fusion. Plasma Phys. Control. Fusion 2012, 54, 105002. [Google Scholar] [CrossRef]
- Fröschle, M.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Schiesko, L.; Wünderlich, D.; NNBI-Team. Magnetic filter field for ELISE—Concepts and design. Fusion Eng. Des. 2013, 88, 1015. [Google Scholar] [CrossRef] [Green Version]
- Wünderlich, D.; Kraus, W.; Fröschle, M.; Riedl, R.; Fantz, U.; Heinemann, B.; NNBI-Team. Influence of the magnetic field topology on the performance of the large area negative hydrogen ion source test facility ELISE. Plasma Phys. Control. Fusion 2016, 58, 125005. [Google Scholar] [CrossRef]
- Tera Analysis Ltd. QuickField: A New Approach to Field Modeling. Available online: https://quickfield.com/ (accessed on 8 March 2021).
- Franzen, P.; Fantz, U.; Wünderlich, D.; Heinemann, B.; Riedl, R.; Kraus, W.; Fröschle, M.; Ruf, B.; Nocentini, R.; NNBI-Team. Progress of the ELISE test facility: Results of caesium operation with low RF power. Nucl. Fusion 2015, 55, 053005. [Google Scholar] [CrossRef]
- Nocentini, R.; Fantz, U.; Fröschle, M.; Heinemann, B.; Kraus, W.; Riedl, R.; Wünderlich, D. Preparation of the ELISE test facility for long-pulse extraction of negative ion beams. Fusion Eng. Des. 2017, 123, 263. [Google Scholar] [CrossRef]
- Lishev, S.; Schiesko, L.; Wünderlich, D.; Wimmer, C.; Fantz, U. Fluid-model analysis on discharge structuring in the RF-driven prototype ion-source for ITER NBI. Plasma Sources Sci. Technol. 2018, 27, 125008. [Google Scholar] [CrossRef]
- Mimo, A.; Nakano, H.; Wimmer, C.; Wünderlich, D.; Fantz, U.; Tsumori, K. Cavity ring-down spectroscopy system for the evaluation of negative hydrogen ion density at the ELISE test facility. Rev. Sci. Instrum. 2020, 91, 013510. [Google Scholar] [CrossRef]
- Coupland, J.R.; Green, T.S.; Hammond, D.P.; Riviere, A.C. A Study of the Ion Beam Intensity and Divergence Obtained from a Single Aperture Three Electrode Extraction System. Rev. Sci. Instrum. 1973, 44, 1258. [Google Scholar] [CrossRef]
- Haba, Y.; Nagaoka, K.; Tsumori, K.; Kisaki, M.; Nakano, H.; Ikeda, K.; Fujiwara, Y.; Kamio, S.; Yoshimura, S.; Osakabe, M. Development of a dual beamlet monitor system for negative ion beam measurements. Rev. Sci. Instrum. 2018, 89, 123303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nighan, W.L.; Wiegand, W.J. Influence of negative-ion processes on steady-state properties and striations in molecular gas discharges. Phys. Rev. A 1974, 10, 922. [Google Scholar] [CrossRef]
- Descoeudres, A.; Sansonnens, L.; Hollenstein, C. Attachment-induced ionization instability in electronegative capacitive RF discharges. Plasma Sources Sci. Technol. 2003, 12, 152. [Google Scholar] [CrossRef]
- Dudnikov, V.; Bollinger, D.; Faircloth, D.; Lawrie, S. Potential for improving of the compact surface plasma sources. AIP Conf. Proc. 2013, 1515, 369. [Google Scholar]
- Boeuf, J.P.; Chaudhury, B.; Garrigues, L. Physics of a magnetic filter for negative ion sources. I. Collisional transport across the filter in an ideal, 1D filter. Phys. Plasmas 2012, 19, 113509. [Google Scholar] [CrossRef]
- Mochalskyy, S.; Fantz, U.; Wünderlich, D.; Minea, T. Comparison of ONIX simulation results with experimental data from the BATMAN testbed for the study of negative ion extraction. Nucl. Fusion 2016, 56, 106025. [Google Scholar] [CrossRef] [Green Version]
- Taccogna, F.; Minelli, P. PIC modeling of negative ion sources for fusion. New J. Phys. 2017, 19, 015012. [Google Scholar] [CrossRef] [Green Version]
- Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U. Studies of the Cs Dynamics in Large Ion Sources using the CsFlow3D Code. AIP Conf. Proc. 2018, 2052, 040009. [Google Scholar]
- Kraus, W.; Schiesko, L.; Wimmer, C.; Fantz, U.; Heinemann, B. Performance of the BATMAN RF source with a large racetrack shaped driver. AIP Conf. Proc. 2017, 1869, 030006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wünderlich, D.; Riedl, R.; Fröschle, M.; Fantz, U.; Heinemann, B. Operation of Large RF Driven Negative Ion Sources for Fusion at Pressures below 0.3 Pa. Plasma 2021, 4, 172-182. https://doi.org/10.3390/plasma4010010
Wünderlich D, Riedl R, Fröschle M, Fantz U, Heinemann B. Operation of Large RF Driven Negative Ion Sources for Fusion at Pressures below 0.3 Pa. Plasma. 2021; 4(1):172-182. https://doi.org/10.3390/plasma4010010
Chicago/Turabian StyleWünderlich, Dirk, Rudi Riedl, Markus Fröschle, Ursel Fantz, and Bernd Heinemann. 2021. "Operation of Large RF Driven Negative Ion Sources for Fusion at Pressures below 0.3 Pa" Plasma 4, no. 1: 172-182. https://doi.org/10.3390/plasma4010010
APA StyleWünderlich, D., Riedl, R., Fröschle, M., Fantz, U., & Heinemann, B. (2021). Operation of Large RF Driven Negative Ion Sources for Fusion at Pressures below 0.3 Pa. Plasma, 4(1), 172-182. https://doi.org/10.3390/plasma4010010