1. Introduction
From an electrical point of view, cold plasmas are complex loads to control: for ignition, high voltages are required, and once established at atmospheric pressure, the plasma can easily go into an arc regime (thermal plasma). In dielectric barrier discharge (DBD) [
1] setups, at least one dielectric is placed between the two electrodes that supply the power to the gas. When current flows through the plasma, it also charges the dielectric covering. The dielectric voltages increase, and thus the gas voltage decreases. Through this limiting mechanism, the capacitive character of the dielectric barriers limits the current, and therefore prevents transition into the arc regime. This property makes the DBD particularly appealing for various applications that require low temperatures plasmas such as UV excimer lamps [
2], thin film deposition, surface treatment [
3], flows control [
4] and disinfection [
5]. Our developments are geared toward a DBD UV lamp, an especially easy to use DBD reactor, for which performance is easy to measure with a simple photodetector; nevertheless, the approach proposed, in this paper, is not restricted to this specific DBD application.
The capacitive character of the DBDs requires supplying these setups using an alternative source. Early DBD experiments used sinusoidal voltage sources in frequencies ranging from tens of hertz to tens of megahertz [
1], and later pulsed voltage sources [
2] and voltage-mode resonant converters [
5,
6]. All these solutions suffer from a reduced ability to predict and control the injected power. Considering the DBD electrical lamp model (see
Section 2), it has been established that DBD electrical power is better controlled by its current than its voltage [
7,
8]. Additionally, the UV emission of the bulbs is directly proportional to the current flowing through the gas.
Furthermore, to ignite the discharge at atmospheric pressure, the applied voltage usually reaches several kilovolts. This high alternating voltage is traditionally obtained via amplification using a step-up transformer. Unfortunately, the parasitic elements of the transformer (leakage inductance, inter-turn and inter-winding parasitic capacitance) limit the power transfer:
Parasitic capacitance has very low values (generally some 10 pF), commonly, in the same order of magnitude as those of the DBD. Being parallel to the DBD, it diverts a significant part of the transferred current [
9]. This capacitance avoids controlling the current injected in the discharge. Moreover, it slows down the voltage rise and delays the ignition of the discharge. For example, at 10 kHz, discharges occur each 50 µs (twice in a period). In this case, the plasma ignition is delayed by 10 µs, which is 20% of the operating period [
10]. Therefore, the main problem of the parasitic capacitance concerns the functioning of the discharge, indeed, during this uncontrolled
OFF time, the excited species created by the previous discharge disappear. In some processes, this reduction of the memory effect changes the behavior of the discharge [
3].
Because of the high-voltage transformer, the transferred power and the discharge behavior are far from being optimally controlled. This incited us to investigate supply structures where the transformer could be eliminated. In this domain, many investigations have been conducted over the decades. Basically, resonant circuit properties were able to boost the voltage. Recent works have proposed resonant voltage sources [
11,
12], in which a low-voltage inverter, using common semiconductor switches, was connected to an L-C resonant circuit. Another solution was to supply the DBD directly with a high-voltage inverter. This circuit could use high-voltage gas switches [
13] or semiconductor switches. This last solution is currently used in many applications such as plasma synthetic jet actuators [
14], DBD plasma jet for medical application [
15,
16], or coating application [
17]. Nowadays, researchers commonly use commercial pulsers (DEI or BEHLKE) made with high-voltage switch assemblies [
18]. In these devices, numerous semiconductors are connected in series in order to sustain the high voltage. Some devices also arrange component strings in parallel, in order to increase the maximum current. In all cases, considering controlled switches, all the transistors must be switched rigorously synchronously and the voltage balance between each transistor must be controlled accurately. Until very recently, the series connection was the only solution to sustain high voltage, because a single transistor was unable to hold a voltage higher than 2 kV. Recently, large gap semiconductor research has resulting in the design of SiC DMOSFETs which are able to sustain 10 kV. Their rated voltage level makes them suitable for a wide range of DBD applications. In this paper, we present our evaluation of this technology in the context of a transformerless DBD power supply. To our knowledge, in this scope, only theoretical developments [
19] have been proposed to date, because high-voltage semiconductors have only been available for a few years. The semiconductor devices are 10kV SiC power DMOSFETs, designed by the CREE Company, which are not yet on the market but are similar to those used in [
20]. On this basis, an innovative transformerless pulsed-current source topology is proposed in
Section 2, where the switches are directly connected to the DBD high voltage. This power supply directly controls the energy injected into the discharge during each period; the theoretical approach of this solution was the subject of a previous (2017) publication [
21]. In the current paper, we propose a complete sizing of the power supply and we justify the choice of each component, notably the 10kV SiC MOSFETs [
21] and diodes, as presented in
Section 3. The experimental setup, performance analysis, notably through a power balance, and results are discussed in
Section 3 and
Section 4.
2. Materials and Methods
In this section, we present the proposed transformerless topology: its operating principle, the sizing equations, derived from the analytical equations of the electrical constraints, the selection of high voltage semiconductors and the test bench for experimental investigations.
2.1. DBD Load Properties and Modeling
In a power-supply design approach, modeling of the DBD load is developed below [
22,
23,
24]. The DBD used for the experiments is a cylindrical configuration excimer UV lamp [
2], with two coaxial tubes of quartz (see
Figure 1a) containing a gas mixture (Xe-Cl) and metal electrodes placed (metallic mesh) on the outer walls.
As long as the discharge is not initiated, the voltage is applied to the dielectric and the gas. The capacitance of the two dielectrics in series is defined by
Cdiel and the capacitance of the gas by
Cgas. Generally,
Cgas <<
Cdiel. In the
OFF state, the DBD is equivalent to the series
Ceq capacitance, approximately equal to
Cgas. When the discharge is in the
ON state, we consider that the gas voltage does not change and remains at the breakdown level, ±
Vth (the sign depends on the direction of the current). This assumption is valid when the discharge is a Townsend or glow discharge. It concerns a macroscopic point of view and does not take local phenomena into account, but it is largely sufficient to consider the electrical non-linearity of the plasma. As shown in
Figure 1b, the discharge is modeled by a (
Vgas,
Igas) dipole, that reflects the breakdown mechanism; this dipole is parallel to the gas capacitance
Cgas.
2.2. Operating Principle of the Transformerless Topology
Here, an analytical study of the converter is conducted, in order to present its operating principle. Taking the electrical characteristics of the gas into consideration, to control the power injected into the gas, the
Idbd current flowing through the DBD must be controlled. Because of the capacitive behavior of the device, this current must have an average value of zero. An inductor is placed in series with the DBD and the direction of the current is controlled with the states of the switches. The inductance forms a resonant tank with the DBD and directly controls the current injected into the discharge. On the basis of the switches’ electrical constraints (voltage and current waveforms) described in the following part, the static and dynamic characteristics of both semiconductors can be shown to be those of thyristors. There are no thyristors on the market in the range of the target frequencies (tens of kHz), therefore, this function is synthesized by combining a MOSFET and a diode in series (see
Figure 2b) [
25].
The steady-state operation of the converter presented in
Figure 2a can be divided into six stages, based on, on the one hand, the state of the switches, and on the other hand, the state of the gas. The equivalent circuit of each stage is shown in
Figure 3.
By initiating Th1 (Th2 remaining blocked), a resonant loop is activated; the voltage and current quantities of the discharge are governed by the resonant circuit,
LCgas,
Figure 3a, during a time interval, ∆
toff. As the DBD is initially negatively charged,
Vdbd and
Vgas increase until the discharge is ignited with a positive current (when
Vgas reaches
Vth the breakdown level). From this time, during time interval ∆
ton, the
Vgas voltage remains constant at
+Vth, while the
Vdbd voltage and the
Idbd current are governed by the
LCdiel circuit,
Figure 3b, until the
Idbd current drops to zero. This event causes Th1’s diode to turn OFF. The discharge extinguishes (Sequence (c)) and its voltage does not change until Th2 is initiated.
Subsequently, Th2 is initiated (Th1 remains blocked). The DC power source is not electrically connected to the DBD, but the electrical charges stored on the dielectric are used to ignite a new discharge with a negative current. The DBD and the inductor are short circuited and their waveforms are governed by the same resonant circuit,
LCgas when the discharge is
OFF,
Figure 3d, and
LCdiel when it is ON,
Figure 3e. The waveforms of
Vgas and
Idbd are symmetrical with respect to those obtained in the first half period. Because of the half bridge configuration,
Vdbd voltage is not symmetrical.
2.3. Semiconductor Selection: Analytic Study of the Operation and Sizing Equations
The aim of this section is to find out the values of voltage and current stresses of MOSFETs and diodes used for Th1 and Th2. As can be seen on
Figure 1b:
Figure 4 presents the main waveforms related to the electrical stresses in the semiconductors; these are obtained using a circuit simulator [
26]. When Th1 is closed, the voltage across its terminals is zero; the voltage across Th2 is equal to the power supply voltage
E. The inductance current is in the form of a pulse and the DBD voltage increases. Immediately after the zero crossing of the current in the inductor, several events happen. The thyristor Th1 is blocked and the DBD voltage no longer changes, remaining at its positive value
V+dbd. Then, the inductor voltage V
L is zero because no current flows through it, hence, the DBD voltage is seen by Th2. According to the Equation (1), Th1 supports (
E −
V+dbd); this negative voltage is denoted
V−dbd and is held by the diode D1 of Th1, until the end of the half period.
When Th2 is closed (Th1 remains opened), the DBD is no longer connected to the voltage source. In this case, the E source imposes its voltage to Th1, while there is current flowing through Th2. Now, the DBD voltage decreases. Following the cancelation of the current in the inductor, the blocking voltage of the thyristor Th2 and the DBD voltage remain at V−dbd. The thyristor Th1, then, supports the voltage (E − V−dbd). This positive voltage is V+dbd and is supported by the MOSFET (MOS1) of Th1. To resume, each MOSFET supports a maximum voltage equal to V+dbd and each diode a negative voltage equal to V−dbd. The current through the semiconductors is equal to the current of the DBD. In our case, it is not a limiting parameter.
The converter’s operation is studied from the model shown in
Figure 1b, using the state plan analysis [
27] method, considering steady state conditions. This analysis enables the transient current-voltage characteristic of a resonant circuit to be plotted. Therefore, joint evolutions of the normalized values of the voltage and the DBD’s current are studied. Durations and peak voltages and currents, for operating stages (a) and (b) presented in the previous section, are calculated using trigonometric analysis; using the symmetry of the waveforms, this information allows one to describe the whole period. Calculations are detailed in [
21] and results are summarized in
Table 1 below:
We can also deduce the maximum current:
The duration of the current pulse injected into the DBD is denoted ∆
tpulse. It defines the minimal duration of the half switching period of the MOSFETs as:
∆
tpulse mainly depends on the inductance,
L, and the capacitance of the DBD. Therefore, knowing the DBD’s capacitance enables the inductance,
L, to be sized with respect to Equation (3), using the formula given in
Table 1b. A second advantage of this topology is that the magnitude of the discharge current pulse is also controlled by the value of the inductance. Moreover, the MOSFET’s switching frequency can directly control the power transferred to the discharge (Equation (4)).
2.4. High-Voltage Switch Opportunities
The proposed topology offers the opportunity to implement zero current switching (ZCS) conditions of the MOSFETs at turn OFF, as well as at turn ON. When sizing the inductance L, the pulse duration ∆tpulse is chosen, and therefore defines the moment when the diode spontaneously turns OFF. Then, the turn-OFF control order of the MOSFET is sent 1 µs after ∆tpulse (and always before T/2). With this condition, we are sure that the MOSFET is turned off when there is zero current (ZCS operation). This minimizes the switching losses and requires the discontinuous mode translated by Equation (3).
As seen in previous lines, MOSFETs have to withstand
V+dbd, while the diodes must hold
V−dbd. Preliminary SiC power DMOSFETs from company CREE with a 10 kV maximum drain to source voltage are used [
28]. Series connected low-voltage MOSFETs [
29] have been considered as well, but this solution, which is not presented in this paper, requires static and dynamic voltages balancing. For the diodes, preliminary SiC diodes from CREE, holding up to 10 kV, are used. To limit the parasitic effects that alter the operation described in the previous section, diodes with low parasitic capacitance are favored.
High-voltage switch control, with high-voltage transistors, and especially for Th1 MOSFET in our topology, is very important to isolate the control boards from the power. The DE0 [
30] FPGA board which controls the supply’s operation is connected to the driver cards via optical fibers.
2.5. Experimental Setup and Measurement
Here, the experimental validation of the converter is achieved by using a DBD lamp with an outer diameter of 45 mm, an inner diameter of 20 mm, and length of 60 cm tubes have a 2 mm thickness. This lamp is filled with an Xe-Cl mixture and the gas breakdown voltage is
Vth = 1310 V. This breakdown voltage is not the voltage applied across the terminals of the bulb, it is only the voltage across the gas gap. The applied voltage sums this gas voltage and the dielectrics voltages. To calculate V
th, we use measurements of the electric signals applied to the DBD (
VDBD and
IDBD) and the electrical model of the DBD presented in
Figure 1. The electrical parameters of the bulb are summarized in
Table 2. Measurements and calculations of these data are taken as per the approach set out in [
23,
24]. In the Discussion
Section 4 we compare the performance of the whole system, using this long lamp and a short one (with same tubes diameters), as presented in
Figure 5b.
As shown in
Figure 5, voltages are measured using high-voltage differential probes, TESTEC TT-SI 9010A (Frankfurt, Germany), with a bandwidth of 70 MHz (parasitic capacitance: approximately 12 pF). The discharge current is measured using a 4100 Pearson (Palo Alto, CA, USA) probe with a bandwidth of 20 MHz. Electrical waveforms are observed and recorded using a LECROY Wavesurfer 24XS oscilloscope (Thousand Oaks, CA, USA). The
E voltage source is a 10 kV DC power supply Technix SFRDO-F-2000 (Créteil, France). As seen in
Figure 6, transient current spikes appear when the switches turn ON. These spikes can stress the
E source and, in order to protect it, a classical
LC filter is inserted between the
E source and the switch Th1. Its purpose is to forbid the current spikes to circulate through the
E source, and to force them to flow through the
C capacitor instead.
4. Discussion
To point out the dependence between the losses and the current transferred to the lamp, we compare the performances obtained with the original bulb (60 cm) and with a shorter (15 cm) lamp, the latter can be seen in
Figure 5b and it has the same diameter and the same material as those studied in the first part of this paper. Therefore, the breakdown voltage is not changed, and only the equivalent capacitance of the lamp
Cgas and
Cdiel are modified. The surface in contact with the discharge being lower, current and power transferred to the lamp are lower. In
Figure 10, we show the comparison between the small and the long lamp, concerning the transferred power and MOSFETs’ losses.
As expected, power transferred to the small lamp is lower than that transferred to the long lamp. Interestingly, losses in the power supply present the same value for the both lamps. Consequently, for the same breakdown voltage, current transferred to the discharge does not change losses in the power supply. It is consistent with the observation that the majority of losses is MOSFETs’ turn-ON losses, due to the dissipation of the energy stored in Coss. For a given switch, they depend only on V+dbd, the voltage applied across the switch at turn ON, which rises with the applied voltage E.
Therefore, these switches should be used with a high power DBD. We can conclude that this topology is fitted for a DBD with a small gap (to have relatively low breakdown voltage Vth) and a large area. Here, we work with the lamp having the largest area for a cylindrical configuration, available in our laboratory.
To understand and to try to limit this very high percentage of losses due to the MOSFETs’
Coss, a simulation of the whole system (static converter + DBD device) is performed. It shows that the conduction losses are negligible (less than 1 W). The results of this simulation are consistent with the experiment presented above. As shown in
Figure 11, the MOSFET losses directly depend on the intrinsic capacitance of these semiconductors. In addition, according to the selected topology, these turn-ON losses are also proportional to the switching frequency,
PturnON = k.f.Coss.E2. In the study previously presented in [
27], we showed that all the parasitic capacitances (inductance, voltage probes, diodes, and MOSFET) modified the theoretical value of the transferred power, and that taking advantage of the latter to improve the performances was a possible option. Nevertheless, this was a marginal optimization and power balance point of view needed to be considered. Our present experimental results demonstrate that only the intrinsic capacitance of the MOSFET directly affects the efficiency. The other parasitic capacitances only change the voltage waveform as the frequency and the amplitude of the oscillations, when the discharge turn OFF.
The losses pointed out in
Figure 10 are inherent to our application. Firstly, the
E value cannot be drastically reduced, as sufficient voltage is required to ignite the DBD. Secondly, the frequency range is generally selected according to the dynamics of the chemical and physical mechanisms that take place in the plasma.
Currently, our lamp can receive several thousand Watts. The geometry (and therefore the relatively low capacitance) of our lamp requires a relatively low discharge current (#100 mA). SiC MOSFET used in this study is designed for relatively high current (10 A), whereas the peak current on the presented waveforms do not exceed 1 A, and high-power applications. For classical use of this SIC MOSFET, the turn-ON losses are acceptable. A MOSFET with the same voltage range but with a lower current rating would be more suitable for our case. Indeed, decreasing the current range requires decreasing the MOSFET chip area, and therefore the COSS capacitance. Consequently, turn-ON losses caused by the energy stored in the COSS intrinsic capacitance would be reduced.
In order to improve the efficiency of the system, many directions have been taken. The topology can be modified in order to obtain the zero voltage switching (ZVS) condition, therefore, canceling turn-ON losses. The value of the
Coss intrinsic capacitance must be reduced. Several solutions are possible for this purpose. The first one is do design a 10 kV MOSFET with a lower
Coss, as explained above. This kind of component is unfortunately currently unavailable, and we can assume that the high-voltage/low-current applications (as DBD) are not numerous enough to envisage an industrial development of such a device. A more realistic possibility is to connect MOSFETs in series, as it is done in a commercial switch [
18].
Figure 11 shows the calculated losses with one 10 kV SiC MOSFET and also losses with two 10 kV SiC MOSFET in series. However, in a series connection, the voltage is distributed between the whole components set. MOSFETs with a lower voltage rating and a lower
Coss could be used [
27]. It is important to note that this solution implies an efficient voltage balance of the MOSFETs.
5. Conclusions
The transformerless topology, presented in this paper, has shown to be able to ignite a DBD lamp and to efficiently control the power transferred to the bulb. This first point demonstrates the feasibility of using the available 10 kV SiC MOSFETs to supply a DBD UV lamp, with the usual power level (generally achieved with a transformer in the power chain). The main advantage of this converter is its transformerless operation, with a reduced number of switches (only two). Moreover, with the presented topology, thanks to the inductance directly connected to the DBD, the parasitic capacitance does not directly affect the OFF time and so the behavior of the discharge.
Nevertheless, this topology raises the issue of MOSFET’s intrinsic capacitance. Firstly, this capacitance can cause oscillations, and then overvoltage at the switches terminals when the discharge extinguishes. Secondly, intrinsic capacitance Coss, due to the energy stored there before turn ON, causes significant losses in the MOSFETs.
These losses are a drawback when using the 10 kV SiC MOSFETs presented in this study. However, several solutions can be implemented to use this semiconductor. Firstly, series connection of those 10 kV SiC MOSFETs dividing the equivalent Coss, and thus reducing the losses, have shown to be advantageous for the improvement of the system’s efficiency. Moreover, this solution allows the system to sustain a higher voltage. Secondly, the selected SiC MOSFETs can profitably be considered, provided the power transmitted to the DBD is sufficiently high. It implies generally to consider a DBD with a large surface.
Generally speaking, concerning applications of DBD, the single-chip SiC MOSFET technology which was used in the proposed topology is rather restricted to the niche market of high power DBD, until there is a lower current rating (and lower intrinsic capacitance) transistor available.