Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications
Abstract
1. Introduction
2. Physical and Chemical Properties of Diatom-Derived Silica
3. The Application of Diatomaceous Biosilica in Cement
4. Diatomaceous Biosilica Applications in Batteries and Catalytic Reactions: Environmental Positive Impacts
5. Industrial Applications: Healthcare, Biotechnology, and Food Industry Applications
6. Nanotechnology and Advanced Materials
7. Challenges, Limitations, and Future Directions and Research Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saoud, H.A.A.L.; Sprynskyy, M.; Pashaei, R.; Kawalec, M.; Pomastowski, P.; Buszewski, B. Diatom Biosilica: Source, Physical-chemical Characterization, Modification, and Application. J. Sep. Sci. 2022, 45, 3362–3376. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ostadi, H.; Jiang, K. Three-Dimensional Surface Reconstruction of Diatomaceous Frustules. Anal. Biochem. 2010, 403, 63–66. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, M.; Liu, J.; Hui, G.; Chen, X.; Feng, C. The Art of Exploring Diatom Biosilica Biomaterials: From Biofabrication Perspective. Adv. Sci. 2024, 11, e2304695. [Google Scholar] [CrossRef] [PubMed]
- Mock, T.; Otillar, R.P.; Strauss, J.; McMullan, M.; Paajanen, P.; Schmutz, J.; Salamov, A.; Sanges, R.; Toseland, A.; Ward, B.J.; et al. Evolutionary Genomics of the Cold-Adapted Diatom Fragilariopsis Cylindrus. Nature 2017, 541, 536–540. [Google Scholar] [CrossRef]
- Gordon, R.; Drum, R.W. The Chemical Basis of Diatom Morphogenesis. Int. Rev. Cytol. 1994, 150, 243–372. [Google Scholar]
- Kammerlander, K.K.K.; Köhler, L.; Huittinen, N.; Bok, F.; Steudtner, R.; Oschatz, C.; Vogel, M.; Stumpf, T.; Brunner, E. Sorption of Europium on Diatom Biosilica as Model of a “Green” Sorbent for f-Elements. Appl. Geochem. 2021, 126, 104823. [Google Scholar] [CrossRef]
- Hildebrand, M. Diatoms, Biomineralization Processes, and Genomics. Chem. Rev. 2008, 108, 4855–4874. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Sun, X.W. Diatom Silica as an Emerging Biomaterial for Energy Conversion and Storage. In Diatom Nanotechnology: Progress and Emerging Applications; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 175–200. [Google Scholar]
- Aggrey, P.; Nartey, M.; Kan, Y.; Cvjetinovic, J.; Andrews, A.; Salimon, A.I.; Dragnevski, K.I.; Korsunsky, A.M. On the Diatomite-Based Nanostructure-Preserving Material Synthesis for Energy Applications. RSC Adv. 2021, 11, 31884–31922. [Google Scholar] [CrossRef]
- Rea, I.; Terracciano, M.; Chandrasekaran, S.; Voelcker, N.H.; Dardano, P.; Martucci, N.M.; Lamberti, A.; De Stefano, L. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Res. Lett. 2016, 11, 405. [Google Scholar] [CrossRef]
- Wali, Z.; Tyagi, R.; Tiwari, A. Harnessing Nature’s Nano-Architects: Diatom Biosilica in Biomedical Innovations. J. Drug Deliv. Sci. Technol. 2025, 107, 106799. [Google Scholar] [CrossRef]
- Zobi, F. Diatom Biosilica in Targeted Drug Delivery and Biosensing Applications: Recent Studies. Micro 2022, 2, 342–360. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, J.; Jiang, Y.; Jiang, X.; Zhang, D. Preparation of Biosilica Structures from Frustules of Diatoms and Their Applications: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2013, 97, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Panwar, V.; Dutta, T. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS Appl. Bio Mater. 2019, 2, 2295–2316. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.H. Biomaterials and Bioceramics—Part 1: Traditional, Natural, and Nano; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–45. [Google Scholar]
- Antoniac, I.V.; Lesci, I.G.; Blajan, A.I.; Vitioanu, G.; Antoniac, A. Bioceramics and Biocomposites from Marine Sources. Key Eng. Mater. 2016, 672, 276–292. [Google Scholar] [CrossRef]
- Kröger, N.; Lorenz, S.; Brunner, E.; Sumper, M. Self-Assembly of Highly Phosphorylated Silaffins and Their Function in Biosilica Morphogenesis. Science 1979 2002, 298, 584–586. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Singh, M.; Paul, S.; Kar, S.; Bagchi, T.; Chavali, M.; Chandrasekhar, K. Sustainable Bio-Applications of Diatom Silica as Nanoarchitectonic Material. In Algae Refinery: Up-and Downstream Processes; CRC Press: Boca Raton, FL, USA, 2023; pp. 161–186. [Google Scholar] [CrossRef]
- Yadav, M.; Dwibedi, V.; Sharma, S.; George, N. Biogenic Silica Nanoparticles from Agro-Waste: Properties, Mechanism of Extraction and Applications in Environmental Sustainability. J. Environ. Chem. Eng. 2022, 10, 108550. [Google Scholar] [CrossRef]
- Kesharwani, K.; Sharma, S.; Kautu, A.; Tripathi, S.K.; Kumar, V.; Joshi, K.B. Diatoms. In Diatom Cultivation for Biofuel, Food and High-Value Products; Wiley: Hoboken, NJ, USA, 2025; pp. 79–114. [Google Scholar]
- Kooistra, W.H.C.F.; Pohl, G. Diatom Frustule Morphology and Its Biomimetic Applications in Architecture and Industrial Design; Springer: Berlin/Heidelberg, Germany, 2015; pp. 75–102. [Google Scholar]
- Min, K.H.; Kim, D.H.; Youn, S.; Pack, S.P. Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review. Int. J. Mol. Sci. 2024, 25, 2023. [Google Scholar] [CrossRef]
- Pandit, P.; Rananaware, P.; D’Souza, A.; Kurkuri, M.D.; Brahmkhatri, V. Functionalized Diatom Biosilica Decorated with Nanoparticles: Synthesis, Characterization, Catalytic Oxidation, and Dye Scavenging Applications. J. Porous Mater. 2022, 29, 1369–1383. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, T.; Dong, H.; Yang, B.; Li, X.; Li, X.; Wu, Y.; Xu, K. Diatom-Inspired Nanoscale Heterogeneous Assembly Strategy for Constructing Thermal Insulating Wood-Based Aerogels with Exceptional Strength, Resilience, Degradability, and Flame Retardancy. ACS Nano 2025, 19, 6826–6839. [Google Scholar] [CrossRef]
- Lee, J.; Park, E.; Fujisawa, A.; Lee, H. Diatom Silica/Polysaccharide Elastomeric Hydrogels: Adhesion and Interlocking Synergy. ACS Appl. Mater. Interfaces 2021, 13, 21703–21713. [Google Scholar] [CrossRef]
- Jarrett, H.; Wade, M.; Kraai, J.; Rorrer, G.L.; Wang, A.X.; Tan, H. Evaporation-Based Microfluidic Pump Using Super-Hydrophilic Diatom Biosilica Thin Films. In Proceedings of the ASME 2019 Heat Transfer Summer Conference, Bellevue, WA, USA, 13–17 July 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019. [Google Scholar]
- Kröger, N.; Poulsen, N. Diatoms—From Cell Wall Biogenesis to Nanotechnology. Annu. Rev. Genet. 2008, 42, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, J.; Van Eynde, E.; De Canck, E.; Lenaerts, S.; Verberckmoes, A.; Van Der Voort, P. Titania-Functionalized Diatom Frustules as Photocatalyst for Indoor Air Purification. Appl. Catal. B 2018, 226, 303–310. [Google Scholar] [CrossRef]
- Lehman, S.E.; Larsen, S.C. Zeolite and Mesoporous Silica Nanomaterials: Greener Syntheses, Environmental Applications and Biological Toxicity. Environ. Sci. Nano 2014, 1, 200–213. [Google Scholar] [CrossRef]
- Reid, A.; Buchanan, F.; Julius, M.; Walsh, P.J. A Review on Diatom Biosilicification and Their Adaptive Ability to Uptake Other Metals into Their Frustules for Potential Application in Bone Repair. J. Mater. Chem. B 2021, 9, 6728–6737. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yang, Y.; Li, T.; Lyu, S.; Chen, F.; Li, M.; Zhang, C.; Li, D.; Sun, D. Superhydrophobic Shape-Stable Phase-Change Materials Based on Artificially Cultured Diatom Frustule-Derived Porous Ceramics. ACS Sustain. Chem. Eng. 2022, 10, 11977–11989. [Google Scholar] [CrossRef]
- Babiarczuk, B.; Lewandowski, D.; Kierzek, K.; Detyna, J.; Jones, W.; Kaleta, J.; Krzak, J. Mechanical Properties of Silica Aerogels Controlled by Synthesis Parameters. J. Non Cryst. Solids 2023, 606, 122171. [Google Scholar] [CrossRef]
- Bragato, C.; Mazzotta, R.; Persico, A.; Bengalli, R.; Ornelas, M.; Gomes, F.; Bonfanti, P.; Mantecca, P. Biocompatibility Analysis of Bio-Based and Synthetic Silica Nanoparticles during Early Zebrafish Development. Int. J. Mol. Sci. 2024, 25, 5530. [Google Scholar] [CrossRef]
- Rea, I.; Terracciano, M.; De Stefano, L. Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Adv. Healthc. Mater. 2017, 6. [Google Scholar] [CrossRef]
- Jain, R.; Dhali, S.; Nigam, H.; Malik, A.; Malik, H.K.; Satyakam, R. Recovery of Diatom Bio-Silica Using Chemical, Thermal, and Plasma Treatment. Bioresour. Technol. Rep. 2022, 18. [Google Scholar] [CrossRef]
- Saha, A.; Narula, K.; Mishra, P.; Biswas, G.; Bhakta, S. A Facile Cost-Effective Electrolyte-Assisted Approach and Comparative Study towards the Greener Synthesis of Silica Nanoparticles. Nanoscale Adv. 2023, 5, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.L.; Beatty, D.N.; Srubar, W.V. Diatom Biosilica as a Supplementary Cementitious Material. npj Mater. Sustain. 2024, 2, 39. [Google Scholar] [CrossRef]
- Kipsanai, J.J.; Wambua, P.M.; Namango, S.S.; Amziane, S. A Review on the Incorporation of Diatomaceous Earth as a Geopolymer-Based Concrete Building Resource. Materials 2022, 15, 7130. [Google Scholar] [CrossRef]
- Thangaian, K.; Hua, W.; Aga Karlsen, J.T.; Nylund, I.-E.; Nilsson, S.; Ericson, T.; Hahlin, M.; Svensson, A.M.; Blanco, M.V. Species-Dependent Nanostructured Diatom-SiO2 Anodes: A Sustainable Option for Optimizing Electrode Performance. ACS Sustain. Resour. Manag. 2024, 1, 767–777. [Google Scholar] [CrossRef]
- Luo, J.L.; Cai, J.; Gong, D.; Zhang, J.T. Analysis on Component of Cultured Diatoms and Their Application as Li-Ion Battery Anodes. ChemistrySelect 2023, 8, e202300366. [Google Scholar] [CrossRef]
- Renman, V.; Blanco, M.V.; Norberg, A.N.; Vullum-Bruer, F.; Svensson, A.M. Electrochemical Activation of a Diatom-Derived SiO2/C Composite Anode and Its Implementation in a Lithium Ion Battery. Solid State Ion. 2021, 371, 115766. [Google Scholar] [CrossRef]
- Blanco, M.V.; Renman, V.; Vullum-Bruer, F.; Svensson, A.M. Nanostructured Diatom Earth SiO2 Negative Electrodes with Superior Electrochemical Performance for Lithium Ion Batteries. RSC Adv. 2020, 10, 33490–33498. [Google Scholar] [CrossRef]
- Norberg, A.N.; Wagner, N.P.; Kaland, H.; Vullum-Bruer, F.; Svensson, A.M. Silica from Diatom Frustules as Anode Material for Li-Ion Batteries. RSC Adv. 2019, 9, 41228–41239. [Google Scholar] [CrossRef]
- Nowak, A.P.; Sprynskyy, M.; Brzozowska, W.; Lisowska-Oleksiak, A. Electrochemical Behavior of a Composite Material Containing 3D-Structured Diatom Biosilica. Algal Res. 2019, 41, 101538. [Google Scholar] [CrossRef]
- Nowak, A.P.; Sprynskyy, M.; Wojtczak, I.; Trzciński, K.; Wysocka, J.; Szkoda, M.; Buszewski, B.; Lisowska-Oleksiak, A. Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes. Materials 2020, 13, 1673. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, H.; Shen, Z.; Yang, K.; Xia, J.; Yuan, P.; Nie, Z.; Liu, H.; Xie, J. Developing a Novel Lithium-Ion Battery Anode Material via Thiol Functionalization of Diatom Frustules plus Ag Modification. iScience 2024, 27, 108850. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, H.; Xie, W.; Shen, Z.; Xia, J.; Nie, Z.; Xie, J. Diatom Frustules Decorated with Co Nanoparticles for the Advanced Anode of Li-Ion Batteries. Small 2023, 19, e2300707. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, H.; Chen, Y.; Liu, H.; Yu, R.; Zheng, X.; Li, Y.; Zhu, J.; Xia, J.; Wang, J. A Diatom Frustule-Based Mn2SiO4@C@SiO2 Multilayer-Structure Composite as a High-Performance Anode Electrode Material for Lithium-Ion Batteries. RSC Appl. Interfaces 2025, 2, 200–209. [Google Scholar] [CrossRef]
- Campbell, B.; Ionescu, R.; Tolchin, M.; Ahmed, K.; Favors, Z.; Bozhilov, K.N.; Ozkan, C.S.; Ozkan, M. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-Ion Battery Anode. Sci. Rep. 2016, 6, 33050. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.J.; Wang, T.; Tran, D.N.H.; Dong, F.; Zhang, Y.X.; Losic, D. Morphology-Controlled MnO2 Modified Silicon Diatoms for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A Mater. 2017, 5, 10856–10865. [Google Scholar] [CrossRef]
- Sun, X.W.; Zhang, Y.X.; Losic, D. Diatom Silica, an Emerging Biomaterial for Energy Conversion and Storage. J. Mater. Chem. A Mater. 2017, 5, 8847–8859. [Google Scholar] [CrossRef]
- Pan, J.; Yu, X.; Dong, J.; Zhao, L.; Liu, L.; Liu, J.; Zhao, X.; Liu, L. Diatom-Inspired TiO2 -PANi-Decorated Bilayer Photothermal Foam for Solar-Driven Clean Water Generation. ACS Appl. Mater. Interfaces 2021, 13, 58124–58133. [Google Scholar] [CrossRef]
- Gholami, P.; Khataee, A.; Bhatnagar, A.; Vahid, B. Synthesis of N-Doped Magnetic WO3−x @Mesoporous Carbon Using a Diatom Template and Plasma Modification: Visible-Light-Driven Photocatalytic Activities. ACS Appl. Mater. Interfaces 2021, 13, 13072–13086. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Macdonald, T.J.; Gerson, A.R.; Nann, T.; Voelcker, N.H. Boron-Doped Silicon Diatom Frustules as a Photocathode for Water Splitting. ACS Appl. Mater. Interfaces 2015, 7, 17381–17387. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Szczyglewska, P.; Wojtczak, I.; Nowak, I.; Witkowski, A.; Buszewski, B.; Feliczak-Guzik, A. Diatom Biosilica Doped with Palladium(II) Chloride Nanoparticles as New Efficient Photocatalysts for Methyl Orange Degradation. Int. J. Mol. Sci. 2021, 22, 6734. [Google Scholar] [CrossRef]
- Zhao, H.; Dong, J.; Xie, Y.; Meng, L.; Shen, S.; Chen, J.-G.; Hu, D.; Yang, G. Construction of Thin-Shell TiO2 Vesicles Inspired by the Shell-Deposition of Diatoms for Chlorophyll-Sensitized Photocatalyst. Solid State Sci. 2024, 152, 107520. [Google Scholar] [CrossRef]
- Mao, L.; Liu, J.; Zhu, S.; Zhang, D.; Chen, Z.; Chen, C. Sonochemical Fabrication of Mesoporous TiO2 inside Diatom Frustules for Photocatalyst. Ultrason. Sonochem. 2014, 21, 527–534. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, D.; Li, Y.; Shao, J.; Xie, J.; Sun, Y.; Yan, Z.; Wang, J. Diatom-Templated TiO2 with Enhanced Photocatalytic Activity: Biomimetics of Photonic Crystals. Appl. Phys. A 2013, 113, 327–332. [Google Scholar] [CrossRef]
- Kumari, S.; Min, K.H.; Kanth, B.K.; Jang, E.K.; Pack, S.P. Production of TiO2-Deposited Diatoms and Their Applications for Photo-Catalytic Degradation of Aqueous Pollutants. Biotechnol. Bioprocess Eng. 2020, 25, 758–765. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Hu, Z. Hydraulic Retention Time Governed the Micro/Nanostructures of Titanium-Incorporated Diatoms and Their Photocatalytic Activity. Environ. Pollut. 2024, 345, 123398. [Google Scholar] [CrossRef] [PubMed]
- Putri, R.M.; Almunadya, N.S.; Amri, A.F.; Afnan, N.T.; Nurachman, Z.; Devianto, H.; Saputera, W.H. Structural Characterization of Polycrystalline Titania Nanoparticles on C. striata Biosilica for Photocatalytic POME Degradation. ACS Omega 2022, 7, 44047–44056. [Google Scholar] [CrossRef]
- Wang, B.; de Godoi, F.C.; Sun, Z.; Zeng, Q.; Zheng, S.; Frost, R.L. Synthesis, Characterization and Activity of an Immobilized Photocatalyst: Natural Porous Diatomite Supported Titania Nanoparticles. J. Colloid Interface Sci. 2015, 438, 204–211. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Hu, Z. Selective Removal of Pharmaceuticals and Personal Care Products from Water by Titanium Incorporated Hierarchical Diatoms in the Presence of Natural Organic Matter. Water Res. 2021, 189, 116628. [Google Scholar] [CrossRef] [PubMed]
- Afsharpour, M.; Amoee, S. Porous Biomorphic Silica@ZnO Nanohybrids as the Effective Photocatalysts under Visible Light. Environ. Sci. Pollut. Res. 2022, 29, 49784–49795. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Yang, D.-P.; Chen, S.; Huang, J.; Li, Z. Cu2-XS Loaded Diatom Nanocomposites as Novel Photocatalysts for Efficient Photocatalytic Degradation of Organic Pollutants. Catal. Today 2019, 335, 228–235. [Google Scholar] [CrossRef]
- Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.W.; Hauchecorne, B.; Lenaerts, S. Biotemplated Diatom Silica-Titania Materials for Air Purification. Photochem. Photobiol. Sci. 2013, 12, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Golubeva, A.; Roychoudhury, P.; Dąbek, P.; Pałczyńska, J.; Pryshchepa, O.; Piszczek, P.; Pomastowski, P.; Gloc, M.; Dobrucka, R.; Feliczak-Guzik, A.; et al. A Novel Effective Bio-Originated Methylene Blue Adsorbent: The Porous Biosilica from Three Marine Diatom Strains of Nanofrustulum spp. (Bacillariophyta). Sci. Rep. 2023, 13, 9168. [Google Scholar] [CrossRef]
- Yu, Y.; Addai-Mensah, J.; Losic, D. Chemical Functionalization of Diatom Silica Microparticles for Adsorption of Gold (III) Ions. J. Nanosci. Nanotechnol. 2011, 11, 10349–10356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, T.; Zhang, Z.; Xu, L.; Zhang, C. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells. PLoS ONE 2015, 10, e0123395. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Addai-Mensah, J.; Losic, D. Functionalized Diatom Silica Microparticles for Removal of Mercury Ions. Sci. Technol. Adv. Mater. 2012, 13, 015008. [Google Scholar] [CrossRef] [PubMed]
- Squire, K.; Kong, X.; LeDuff, P.; Rorrer, G.L.; Wang, A.X. Photonic Crystal Enhanced Fluorescence Immunoassay on Diatom Biosilica. J. Biophotonics 2018, 11, e201800009. [Google Scholar] [CrossRef]
- Selvaraj, V.; Muthukumar, A.; Nagamony, P.; Chinnuswamy, V. Detection of Typhoid Fever by Diatom-Based Optical Biosensor. Environ. Sci. Pollut. Res. 2018, 25, 20385–20390. [Google Scholar] [CrossRef]
- Esfandyari, J.; Shojaedin-Givi, B.; Hashemzadeh, H.; Mozafari-Nia, M.; Vaezi, Z.; Naderi-Manesh, H. Capture and Detection of Rare Cancer Cells in Blood by Intrinsic Fluorescence of a Novel Functionalized Diatom. Photodiagnosis Photodyn. Ther. 2020, 30, 101753. [Google Scholar] [CrossRef]
- Maher, S.; Kumeria, T.; Wang, Y.; Kaur, G.; Fathalla, D.; Fetih, G.; Santos, A.; Habib, F.; Evdokiou, A.; Losic, D.; et al. From the Mine to Cancer Therapy: Natural and Biodegradable Theranostic Silicon Nanocarriers from Diatoms for Sustained Delivery of Chemotherapeutics. Adv. Healthc. Mater. 2016, 5, 2667–2678. [Google Scholar] [CrossRef]
- Saxena, A.; Dutta, A.; Kapoor, N.; Kumar, A.; Tiwari, A. Envisaging Marine Diatom Thalassiosira Weissflogii as a “SMART” Drug Delivery System for Insoluble Drugs. J. Drug Deliv. Sci. Technol. 2022, 68, 102983. [Google Scholar] [CrossRef]
- Kong, X.; Squire, K.; Li, E.; LeDuff, P.; Rorrer, G.L.; Tang, S.; Chen, B.; McKay, C.P.; Navarro-Gonzalez, R.; Wang, A.X. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica with In-Situ Growth Plasmonic Nanoparticles. IEEE Trans. Nanobiosci. 2016, 15, 828–834. [Google Scholar] [CrossRef]
- Vona, D.; Flemma, A.; Piccapane, F.; Cotugno, P.; Cicco, S.R.; Armenise, V.; Vicente-Garcia, C.; Giangregorio, M.M.; Procino, G.; Ragni, R. Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae. Mar. Drugs 2023, 21, 438. [Google Scholar] [CrossRef]
- Bariana, M.; Aw, M.S.; Kurkuri, M.; Losic, D. Tuning Drug Loading and Release Properties of Diatom Silica Microparticles by Surface Modifications. Int. J. Pharm. 2013, 443, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Reichinger, D.; Reithofer, M.; Hohagen, M.; Drinic, M.; Tobias, J.; Wiedermann, U.; Kleitz, F.; Jahn-Schmid, B.; Becker, C.F.W. A Biomimetic, Silaffin R5-Based Antigen Delivery Platform. Pharmaceutics 2023, 15, 121. [Google Scholar] [CrossRef]
- Youn, S.; Ki, M.R.; Min, K.H.; Abdelhamid, M.A.A.; Pack, S.P. Antimicrobial and Hemostatic Diatom Biosilica Composite Sponge. Antibiotics 2024, 13, 714. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, J.; Shao, K.; Su, C.; Bi, S.; Mu, Y.; Zhang, K.; Cao, Z.; Wang, X.; Chen, X.; et al. A Composite Sponge Based on Alkylated Chitosan and Diatom-Biosilica for Rapid Hemostasis. Int. J. Biol. Macromol. 2021, 182, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhen, L.; Ren, F.; Campbell, J.; Rorrer, G.L.; Wang, A.X. Ultra-Sensitive Immunoassay Biosensors Using Hybrid Plasmonic-Biosilica Nanostructured Materials. J. Biophotonics 2015, 8, 659–667. [Google Scholar] [CrossRef]
- Kamińska, A.; Sprynskyy, M.; Winkler, K.; Szymborski, T. Ultrasensitive SERS Immunoassay Based on Diatom Biosilica for Detection of Interleukins in Blood Plasma. Anal. Bioanal. Chem. 2017, 409, 6337–6347. [Google Scholar] [CrossRef]
- Korkmaz, A.; Kenton, M.; Aksin, G.; Kahraman, M.; Wachsmann-Hogiu, S. Inexpensive and Flexible SERS Substrates on Adhesive Tape Based on Biosilica Plasmonic Nanocomposites. ACS Appl. Nano Mater. 2018, 1, 5316–5326. [Google Scholar] [CrossRef]
- Kong, X.; Li, E.; Squire, K.; Liu, Y.; Wu, B.; Cheng, L.; Wang, A.X. Plasmonic Nanoparticles-decorated Diatomite Biosilica: Extending the Horizon of On-chip Chromatography and Label-free Biosensing. J. Biophotonics 2017, 10, 1473–1484. [Google Scholar] [CrossRef]
- Barberia-Roque, L.; Viera, M.; Bellotti, N. Hygienic Coatings with Nano-Functionalized Diatomaceous Earth by Equisetum Giganteum—Mediated Green Synthesis. Nano-Struct. Nano-Objects 2023, 36, 101055. [Google Scholar] [CrossRef]
- Tenge, B.; Muiru, W.; Linguya, S.; Schwake- Anduschus, C.; Kimenju, J.W.; Amata, R.L. Management of Aflatoxins in Maize during Storage Using Plant Products and Diatomaceous Earth. Cogent Food Agric. 2024, 10, 2423245. [Google Scholar] [CrossRef]
- Ghobara, M.; El-Sheekh, M.; Hamed, A.F.; Abdelhamid, M.A.A.; Pack, S.P. Diatom Nanostructured Biosilica. In Value-Added Products from Algae; Springer International Publishing: Cham, Switzerland, 2024; pp. 461–492. [Google Scholar]
- Noshirvani, N.; Le Coz, C.; Gardrat, C.; Ghanbarzadeh, B.; Coma, V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules 2024, 29, 4664. [Google Scholar] [CrossRef]
- Kang, S.; Woo, Y.; Seo, Y.; Yoo, D.; Kwon, D.; Park, H.; Lee, S.D.; Yoo, H.Y.; Lee, T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024, 16, 1171. [Google Scholar] [CrossRef] [PubMed]
- Aw, M.S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Porous Silica Microshells from Diatoms as Biocarrier for Drug Delivery Applications. Powder Technol. 2012, 223, 52–58. [Google Scholar] [CrossRef]
- Cicco, S.R.; Vona, D.; Leone, G.; De Giglio, E.; Bonifacio, M.A.; Cometa, S.; Fiore, S.; Palumbo, F.; Ragni, R.; Farinola, G.M. In Vivo Functionalization of Diatom Biosilica with Sodium Alendronate as Osteoactive Material. Mater. Sci. Eng. C 2019, 104, 109897. [Google Scholar] [CrossRef]
- Lockett, V.N.; Gustafson, J.G.; Lowenthal, M.D.; Ray, W.J. Diatomaceous Energy Storage Devices. U.S. Patent US11066306B2, 20 July 2021. [Google Scholar]
Fundamental Aspects of Materials | Diatom-Derived Silica | Commercial/Synthetic Porous Silica |
---|---|---|
Origin and Structure | Rigid cell walls of diatoms, composed mainly of silica (SiO2), with intricate, ordered nanostructures and unique species-specific designs [27] | Produced through chemical processes (e.g., sol-gel, pyrolysis), the structure can be tailored but typically lacks complex morphology [28] |
Porosity and Surface Area | Naturally high surface area and porosity with varied pore sizes and shapes based on species, providing unique adsorption properties [14] | Engineered for high surface areas and porosity; more uniform and less complex pore size distribution compared to diatoms [29] |
Biocompatibility and Environmental Impact | Generally, more biocompatible and environmentally friendly, suitable for food, cosmetics, and pharmaceuticals, with fewer environmental concerns [14] | Some can be biocompatible, but manufacturing may involve harmful chemicals and a larger environmental footprint [30] |
Mechanical Properties | Unique combination of strength and lightweight characteristics, suitable for applications like filtration and lightweight fillers [31,32] | Mechanical properties vary widely; they may lack the structural uniqueness and strength of diatom frustules [33] |
Functionality and Application | Provides functional benefits in bio-sensing, drug delivery, and catalyst carriers, leveraging natural properties [12] | Tailored for specific functionalities but may lack the biological interactions or specific surface functionalities of diatoms [34] |
Cost and Availability | Availability and cost are influenced by diatom species abundance and harvesting methods, often more costly due to extraction and processing [35,36] | Produced at larger scales, often more cost-effective depending on production processes [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Trindade, L.G.; Bürck, M.; de Souza, E.L.; Zanchet, L.; Assis, M.; Braga, A.R.C. Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications. Ceramics 2025, 8, 62. https://doi.org/10.3390/ceramics8020062
da Trindade LG, Bürck M, de Souza EL, Zanchet L, Assis M, Braga ARC. Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications. Ceramics. 2025; 8(2):62. https://doi.org/10.3390/ceramics8020062
Chicago/Turabian Styleda Trindade, Letícia Guerreiro, Monize Bürck, Eduarda Lemos de Souza, Letícia Zanchet, Marcelo Assis, and Anna Rafaela Cavalcante Braga. 2025. "Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications" Ceramics 8, no. 2: 62. https://doi.org/10.3390/ceramics8020062
APA Styleda Trindade, L. G., Bürck, M., de Souza, E. L., Zanchet, L., Assis, M., & Braga, A. R. C. (2025). Diatomaceous Biosilica: A Multifunctional Resource for Biomedicine and Sustainable Applications. Ceramics, 8(2), 62. https://doi.org/10.3390/ceramics8020062