Evaluation of Internal Adaptation of Different CAD/CAM Endocrown Materials: A Comparative Microcomputed Tomography Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Selection and Pre-Scanning
2.2. Model Preparation
2.3. Post-Scanning
2.4. Sample Size Calculation
2.5. Die Duplication
2.6. Grouping and Material Selection
2.7. Milling Process
2.8. Cementation Process
2.9. Thermocycling
2.10. µ CT Scanning
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Clinical Significance
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedrez-Porto, J.A.; de Oliveira da Rosa, W.L.; da Silva, A.F.; Münchow, E.A.; Pereira-Cenci, T. Endocrown restorations: A systematic review and meta-analysis. J. Dent. 2016, 52, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Magne, P. ‘It should not be about aesthetics but tooth conserving dentistry’. Interview by Ruth Doherty. Br. Dent. J. 2012, 213, 189–191. [Google Scholar] [PubMed]
- Biacchi, G.R.; Mello, B.; Basting, R.T. The endocrown: An alternative approach for restoring extensively damaged molars. J. Esthet. Restor. Dent. 2017, 29, 404–412. [Google Scholar] [CrossRef]
- Al-Dabbagh, R.A. Survival and success of endocrowns: A systematic review and meta-analysis. J. Prosthet. Dent. 2021, 125, 415.e1–415.e9. [Google Scholar] [CrossRef] [PubMed]
- Fennis, W.M.; Kuijs, R.H.; Roeters, F.J.; Creugers, N.H.; Kreulen, C.M. A randomized controlled trial of the composite endocrown: 5-year follow-up. J. Dent. 2019, 86, 40–45. [Google Scholar]
- Fages, M.; Bennasar, B. The endocrown: A different type of all-ceramic reconstruction for molars. J. Can. Dent. Assoc. 2013, 79, d140. [Google Scholar] [PubMed]
- El Ghoul, W.A.; Özcan, M.; Ounsi, H.; Tohme, H.; Salameh, Z. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. J. Prosthet. Dent. 2020, 123, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, J.; Varadan, P.; Balaji, L.; Rajan, M.; Kalaiselvam, R.; Saeralaathan, S.; Ganesh, A. Fracture resistance of resin based and lithium disilicate endocrowns. Which is better?—A systematic review of in-vitro studies. Biomater. Investig. Dent. 2021, 8, 104–111. [Google Scholar]
- Awada, A.; Nathanson, D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J. Prosthet. Dent. 2015, 114, 587–593. [Google Scholar] [CrossRef]
- Zoidis, P.; Bakiri, E.; Polyzois, G. Using modified polyetheretherketone (PEEK) as an alternative material for endocrown restorations: A short-term clinical report. J. Prosthet. Dent. 2017, 117, 335–339. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Silikas, N.; Salim, N.A.; Al-Nasrawi, S.; Satterthwaite, J.D. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed. Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Arnetzl, G.V.; Holly, L.; Arnetzl, G. Lava ultimate resin nano ceramic for CAD/ CAM: Customization case study. Int. J. Comput. Dent. 2012, 15, 159–164, (In English and German). [Google Scholar] [PubMed]
- Palacios, T.; Tarancón, S.; Abad, C.; Pastor, J.Y. Saliva Influence on the Mechanical Properties of Advanced CAD/CAM Composites for Indirect Dental Restorations. Polymers 2021, 13, 808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abduo, J.; Lyons, K.; Swain, M. Fit of zirconia fixed partial denture: A systematic review. J. Oral Rehabil. 2010, 37, 866–876. [Google Scholar] [CrossRef]
- Mansi, Z.M.; Al-Shamma, A.M.; Saleh, A.R. Assessment of marginal adaptation of indirect zirconia crown restorations using self-adhesive resin cements modified with polylysine antibacterial particles. J. Bagh. Coll. Dent. 2024, 36, 50–56. [Google Scholar] [CrossRef]
- Ekici, Z.; Kılıçarslan, M.A.; Bilecenoğlu, B.; Ocak, M. Micro-CT evaluation of the marginal and internal fit of crown and inlay restorations fabricated via different digital scanners belonging to the same CAD-CAM system. Int. J. Prosthodont. 2021, 34, 381–389. [Google Scholar] [CrossRef]
- Al-Hassiny, A.; Végh, D.; Bányai, D.; Végh, Á.; Géczi, Z.; Borbély, J.; Hermann, P.; Hegedüs, T. User Experience of Intraoral Scanners in Dentistry: Transnational Questionnaire Study. Int. Dent. J. 2023, 73, 754–759. [Google Scholar] [CrossRef]
- Hashem, R.M. Marginal fit and fracture resistance of advanced lithium disilicate occlusal veneer with different preparation designs. Egypt Dent. J. 2023, 69, 2115–2125. [Google Scholar] [CrossRef]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar] [CrossRef]
- Felton, D.A.; Kanoy, B.E.; Bayne, S.C.; Wirthman, G.P. Effect of in vivo crown margin discrepancies on periodontal health. J. Prosthet. Dent. 1991, 65, 357–364. [Google Scholar] [CrossRef]
- Jacobs, M.S.; Windeler, A.S. An investigation of dental luting cement solubility as a function of the marginal gap. J. Prosthet. Dent. 1991, 65, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Knoernschild, K.L.; Campbell, S.D. Periodontal tissue responses after insertion of artificial crowns and fixed partial dentures. J. Prosthet. Dent. 2000, 84, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Hassouneh, L.; Jum’ah, A.; Ferrari, M.; Wood, D.J. A Micro-computed Tomography Analysis of Marginal and Internal Fit of Endocrowns Fabricated from Three CAD/CAM Materials. Oper Dent. 2023, 48, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Wang, H.; Mo, J.; Ling, Z.; Zeng, Y.; Zhang, Y.; Wang, J.; Yan, W. Effect of virtual cement space and restorative materials on the adaptation of CAD-CAM endocrowns. BMC Oral Health 2022, 22, 580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abduljawad, D.E.; Rayyan, M.R. Marginal and internal fit of lithium disilicate endocrowns fabricated using conventional, digital, and combination techniques. J. Esthet. Restor. Dent. 2022, 34, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Topkara, C.; Keleş, A. Examining the adaptation of modified endocrowns prepared with CAD-CAM in maxillary and mandibular molars: A microcomputed tomography study. J. Prosthet. Dent. 2022, 127, 744–749. [Google Scholar] [CrossRef]
- Shin, Y.; Park, S.; Park, J.W.; Kim, K.M.; Park, Y.B.; Roh, B.D. Evaluation of the marginal and internal discrepancies of CAD-CAM endocrowns with different cavity depths: An in vitro study. J. Prosthet. Dent. 2017, 117, 109–115. [Google Scholar]
- Mörmann, W.H.; Stawarczyk, B.; Ender, A.; Sener, B.; Attin, T.; Mehl, A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J. Mech. Behav. Biomed. Mater. 2013, 20, 113–125. [Google Scholar]
- Saglam, G.; Cengiz, S.; Karacaer, O. Marginal adaptation and fracture resistance of feldspathic and polymer-infiltrated ceramic network CAD/CAM endocrowns for maxillary premolars. Niger. J. Clin. Pract. 2020, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Valcanaia, A.; Neiva, G.; Mehl, A.; Fasbinder, D. Three-Dimensional Digital Evaluation of the Fit of Endocrowns Fabricated from Different CAD/CAM Materials. J. Prosthodont. 2019, 28, e504–e509. [Google Scholar] [CrossRef]
- Hajimahmoudi, M.; Raseipour, S.; Mroue, M.; Ghodsi, S. Evaluation of Marginal and Internal Fit of CAD/CAM Endocrowns with Different Cavity Tapers. Int. J. Prosthodont. 2023, 36, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Hiraba, H.; Nishio, K.; Takeuchi, Y.; Ito, T.; Yamamori, T.; Kamimoto, A. Application of one-piece endodontic crowns fabricated with CAD-CAM system to molars. Jpn. Dent. Sci. Rev. 2024, 60, 81–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yun, M.J.; Jeon, Y.C.; Jeong, C.M.; Huh, J.B. Comparison of the fit of cast gold crowns fabricated from the digital and the conventional impression techniques. J. Adv. Prosthodont. 2017, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghian, M.; Khaledi, A.A.; Mosaddad, S.A.; Dabiri, S.; Giti, R.; Kadkhodae, F.; Gholami, S. The internal and marginal adaptation of lithium disilicate endocrowns fabricated using intra and extraoral scanners: An in-vitro study. PLoS ONE 2024, 19, e0301361. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jalalian, E.; Zarbakhsh, A.; Khorshidi, S.; Golalipour, S.; Mohammadnasl, S.; Sayyari, M. Comparative analysis of endocrown fracture resistance and marginal adaptation: CAD/CAM technology using lithium disilicate vs. zirconia-reinforced lithium silicate ceramics. Saudi Dent. J. 2024, 36, 353–358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El Ghoul, W.; Özcan, M.; Silwadi, M.; Salameh, Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J. Esthet. Restor. Dent. 2019, 31, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Gaintantzopoulou, M.D.; El-Damanhoury, H.M. Effect of preparation depth on the marginal and internal adaptation of computer-aided design/computerassisted manufacture endocrowns. Oper Dent. 2016, 41, 607–616. [Google Scholar] [CrossRef]
- Kokubo, Y.; Nagayama, Y.; Tsumita, M.; Ohkubo, C.; Fukushima, S.; Vult von Steyern, P. Clinical marginal and internal gaps of in-ceram crowns fabricated using the GN-I system. J. Oral Rehabil. 2005, 32, 753–758. [Google Scholar] [CrossRef]
- Grenade, C.; Mainjot, A.; Vanheusden, A. Fit of single tooth zirconia copings: Comparison between various manufacturing processes. J. Prosthet. Dent. 2011, 105, 249–255. [Google Scholar] [CrossRef]
- Nakamura, T.; Dei, N.; Kojima, T.; Wakabayashi, K. Marginal and internal fit of CEREC 3 CAD/CAM all-ceramic crowns. Int. J. Prosthodont. 2003, 16, 244–248. [Google Scholar]
- Contrepois, M.; Soenen, A.; Bartala, M.; Laviole, O. Marginal adaptation of ceramic crowns: A systematic review. J. Prosthet. Dent. 2013, 110, 447–454.e10. [Google Scholar] [CrossRef] [PubMed]
- Cho, L.; Choi, J.; Yi, Y.J.; Park, C.J. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns. J. Prosthet. Dent. 2004, 91, 554–560. [Google Scholar] [CrossRef]
Group | Material | Description | Modulus of Elasticity | CAD/CAM Blocks |
---|---|---|---|---|
I | Cerec Blocks | Feldspathic ceramic block: SiO2 56–64%, Al2O3 20–23%, Na2O, K2O, CaO, TiO2. | 45.0 GPa | |
II | Lava Ultimate | 80 wt% nano-filled resin composite. | 12.8 GPa | |
III | PICN Vita Enamic | A 25% volume polymer network and a 75% volume ceramic network make up PICN. | 30 GPa | |
IV | Celtra Duo lithium silicate/zirconia | A total of 10% soluble zirconia in a silica-based glass matrix lithium silicate/zirconia. | 70.4 Gpa | |
V | Cerec Tessera | Advanced lithium disilicate glass ceramic is composed of two crystals (lithium disilicate and Virgilite) that are fixed in a glassy zirconia matrix. | 27–30 GPa |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. |
---|---|---|---|---|---|
Corrected Model | 0.139 | 14 | 0.010 | 3.556 | 0.000 |
Intercept | 3.445 | 1 | 3.445 | 1231.926 | 0.000 |
groups | 0.026 | 4 | 0.007 | 2.353 | 0.055 |
location | 0.089 | 2 | 0.045 | 15.943 | 0.000 |
groups * location | 0.024 | 8 | 0.003 | 1.061 | 0.392 |
Error | 0.587 | 210 | 0.003 | ||
Total | 4.171 | 225 | |||
Corrected Total | 0.726 | 224 |
ANOVA | Bonferroni Post Hoc | |||||||
---|---|---|---|---|---|---|---|---|
Group and Material | Marginal | Axial Walls | Pulpal Floor | F Score | p-Value | Marginal vs. Axial Walls | Axial Walls vs. Pulpal Floor | Marginal vs. Pulpal Floor |
Group I Cerec Blocks | 130.93 ± 70.61 | 121.40 ± 50.92 | 180.00 ± 77.54 | 3.27 | 0.048 | 0.921 | 0.055 | 0.126 |
Group II Lava Ultimate | 101.47 ± 36.14 | 102.47 ± 41.15 | 141.47 ± 58.04 | 3.68 | 0.034 | 0.998 | 0.064 | 0.056 |
Group III PICN Vita Enamic | 115.27 ± 28.55 | 114.33 ± 34.44 | 125.07 ± 40.45 | 0.44 | 0.649 | 0.997 | 0.678 | 0.723 |
Group IV Celtra Duo lithium Silicate | 101.40 ± 37.50 | 84.53 ± 41.60 | 154.87 ± 79.67 | 6.40 | 0.004 | 0.692 | 0.004 | 0.033 |
Group V Cerec Tessera | 93.07 ± 26.26 | 125.27 ± 68.41 | 157.87 ± 53.54 | 5.735 | 0.006 | 0.224 | 0.216 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, W.; Saleh, A.R.; Almaslamani, M. Evaluation of Internal Adaptation of Different CAD/CAM Endocrown Materials: A Comparative Microcomputed Tomography Study. Ceramics 2025, 8, 33. https://doi.org/10.3390/ceramics8020033
Saad W, Saleh AR, Almaslamani M. Evaluation of Internal Adaptation of Different CAD/CAM Endocrown Materials: A Comparative Microcomputed Tomography Study. Ceramics. 2025; 8(2):33. https://doi.org/10.3390/ceramics8020033
Chicago/Turabian StyleSaad, Wala, Abdul Rahman Saleh, and Manal Almaslamani. 2025. "Evaluation of Internal Adaptation of Different CAD/CAM Endocrown Materials: A Comparative Microcomputed Tomography Study" Ceramics 8, no. 2: 33. https://doi.org/10.3390/ceramics8020033
APA StyleSaad, W., Saleh, A. R., & Almaslamani, M. (2025). Evaluation of Internal Adaptation of Different CAD/CAM Endocrown Materials: A Comparative Microcomputed Tomography Study. Ceramics, 8(2), 33. https://doi.org/10.3390/ceramics8020033