Effect of Inorganic Anions on the Structure of Alkali-Activated Blast Furnace Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Instrumentation
3. Results and Discussion
4. Conclusions
- Anions commonly found in waste, such as nitrates, sulfates, and phosphates, modify the structure and properties of geopolymers.
- The compressive strength of geopolymers is positively impacted by the presence of nitrates or sulfates in the starting mixture but negatively affected by the presence of phosphates.
- Oxyanions likely consume the available alkali activator, thereby hindering the geopolymerization reactions and limiting the quantity of gel produced. Specifically, sulfate ions lead to the precipitation of ettringite, while phosphate ions bind calcium into a separate phase.
- In the case of phosphate ions, a significant decrease in strength may result from microstructural changes and high porosity.
- The effect of nitrates on the structure of AABSF composites is rather neutral.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozhukhova, N.; Kozhukhova, M.; Zhernovskaya, I.; Promakhov, V. The correlation of temperature-mineral phase transformation as a controlling factor of thermal and mechanical performance of fly ash-based alkali-activated binders. Materials 2020, 13, 5181. [Google Scholar] [CrossRef] [PubMed]
- Tarique, O.; Kovtun, M. Novel one-part fly ash alkali-activated cements for ambient applications. Adv. Cem. Res. 2022, 34, 458–471. [Google Scholar] [CrossRef]
- Pacheco Torgal, F.; Castro Gomes, J.; Jalali, S. Alkali activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar]
- Ettahiri, Y.; Bouargane, B.; Fritah, K.; Akhsassi, B.; Pérez-Villarejo, L.; Aziz, A.; Bouna, L.; Benlhachemi, A.; Novais, R.M. A state-of-the-art review of recent advances in porous geopolymer: Applications in adsorption of inorganic and organic contaminants in water. Constr. Build. Mater. 2023, 395, 132269. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Ding, B.; Gu, J.; Ukrainczyk, N.; Cai, J. Development of geopolymer-based composites for geothermal energy applications. J. Clean. Prod. 2023, 419, 138202. [Google Scholar] [CrossRef]
- Tang, J.; Liu, P.; Shang, J.; Fei, Y. Application of CO2-loaded geopolymer in Zn removal from water: A multi-win strategy for coal fly ash disposal, CO2 emission reduction, and heavy metal-contaminated water treatment. Environ. Res. 2023, 237, 117012. [Google Scholar] [CrossRef] [PubMed]
- Paiva, H.; Yliniemi, J.; Illikainen, M.; Rocha, F.; Ferreira, V.M. Mine tailings geopolymers as a waste management solution for a more sustainable habitat. Sustainability 2019, 11, 995. [Google Scholar] [CrossRef]
- Rożek, P.; Król, M.; Knapik, A.; Mozgawa, W. Disposal of bottom ash from the incineration of hazardous waste in two different mineral matrixes. Environ. Prog. Sustain. Energy. 2017, 36, 1074–1082. [Google Scholar] [CrossRef]
- Komljenović, M.; Tanasijević, G.; Džunuzović, N.; Provis, J.L. Immobilization of cesium with alkali-activated blast furnace slag. J. Hazard. Mater. 2020, 388, 121765. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology. Experientia Supplementum; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101. [Google Scholar]
- Ramadan, M.; Habib, A.O.; Hazem, M.M.; Amin, M.S.; Mohsen, A. Synergetic effects of hydrothermal treatment on the behavior of toxic sludge-modified geopolymer: Immobilization of cerium and lead, textural characteristics, and mechanical efficiency. Constr. Build. Mater. 2023, 367, 130249. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Bingxue, Z.; Guarecuco, R.; Thomas, T.; Minghui, Y. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: A critical review. J. Clean. Prod. 2019, 213, 42–58. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Al Bakri Abdullah, M.M.; Abd Rahim, S.Z.; Sadique, M.; Ming, L.Y.; Salleh, M.A.A.M.; Zainol, M.R.R.M.A.; Ghazali, C.M.R. Diverse material based geopolymer towards heavy metals removal: A review. J. Mater. Res. Technol. 2023, 22, 126–156. [Google Scholar] [CrossRef]
- Bouzar, B.; Mamindy-Pajany, Y. Immobilization study of As, Cr, Mo, Pb, Sb, Se and Zn in geopolymer matrix: Application to shooting range soil and biomass fly ash. Int. J. Environ. Sci. Technol. 2023, 20, 11891–11912. [Google Scholar] [CrossRef]
- Qing-Guo Dong, Q.G.; Li, J.; Kang, Z.Q.; Anwar, M.I.; Asad, M.; Miao, B.; Wang, S.; Younas, A. Unlocking the potential: A comprehensive review on blast furnace slag and silica analog adsorbents for sustainable industrial and pharmaceutical pollution control and resource utilization. Emerg. Contam. 2024, 10, 100387. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Z.; Chen, W.; Pei, Y. Codisposal of landfill leachate concentrate and antimony mine soils using a one-part geopolymer system for cationic and anionic heavy metals immobilization. J. Hazard. Mater. 2024, 464, 132909. [Google Scholar] [CrossRef] [PubMed]
- Fermo, P.; Cariati, F.; Pozzi, A.; Demartin, F.; Tettamanti, M.; Collina, E.; Lasagni, M.; Pitea, D.; Puglisi, O.; Russo, U. The analytical characterization of municipal solid waste incinerator fly ash: Methods and preliminary results. Fresenius J. Anal. Chem. 1999, 365, 666–673. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Fedje, K.K. Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manag. 2013, 33, 1403–1410. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Shao, L.; Muhammad, Y.; Wei, Y.; Gao, F.; Wang, X.; Cui, X. Synthesis of Fe2O3-modified porous geopolymer microspheres for highly selective adsorption and solidification of F– from waste-water. Compos. Part B Eng. 2019, 178, 107497. [Google Scholar] [CrossRef]
- Lee, W.K.W.; van Deventer, J.S.J. The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids Surf. A 2002, 211, 115–126. [Google Scholar] [CrossRef]
- Chen, S.; Qi, Y.; Cossa, J.J.; Deocleciano Salomao Dos, S.I. Efficient removal of radioactive iodide anions from simulated wastewater by HDTMA-geopolymer. Prog. Nucl. Energy 2019, 117, 103112. [Google Scholar] [CrossRef]
- Niu, X.; Elakneswaran, Y.; Islam, C.R.; Provis, J.L.; Sato, T. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer. J. Hazard. Mater. 2022, 429, 128373. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. A novel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42– from aqueous solution. Sci. Total Environ. 2019, 695, 133799. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Elakneswaran, Y.; Chaerun, R.I.; Fang, C.; Hiroyoshi, N.; Provis, J.L.; Sato, T. Development of metakaolin-based geopolymer for selenium oxyanions uptake through in-situ ettringite formation. Sep. Purif. Technol. 2023, 324, 124530. [Google Scholar] [CrossRef]
- Tian, Q.; Chen, C.; Wang, M.; Guo, B.; Zhang, H.; Sasaki, K. Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer. Environ. Pollut. 2021, 274, 116509. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, A.; Palomo, A. Fixing arsenic in alkali-activated cementitious matrices. J. Am. Ceram. Soc. 2005, 88, 1122–1126. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly-ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: Kinetic, equilibrium and mechanism analysis. Water Sci. Technol. 2019, 79, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Al-Mashqbeh, A.; Abuali, S.; El-Eswed, B.; Khalili, F.I. Immobilization of toxic inorganic anions (Cr2O72−, MnO4− and Fe(CN)63−) in metakaolin based geopolymers: A preliminary study. Ceram. Int. 2018, 44, 5613–5620. [Google Scholar] [CrossRef]
- Luukkonen, T.; Runtti, H.; Niskanen, M.; Tolonen, E.T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J.; Lassi, U. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers. J. Environ. Manag. 2016, 166, 579–588. [Google Scholar] [CrossRef]
- Arif, M.A.; Abdel-Gawwad, H.A.; Elshimy, A.S.; Seliem, M.K.; Ali, M.A.; Maodaa, S.N.; Federowicz, K.; Mobarak, M.; Bendary, H.I.; Salama, Y.F.; et al. Facile synthesis and characterization of metakaolin/carbonate waste-based geopolymer for Cr(VI) remediation: Experimental and theoretical studies. Inorg. Chim. Acta 2024, 564, 121939. [Google Scholar] [CrossRef]
- Salam, M.A.; Mokhtar, M.; Albukhari, S.M.; Baamer, D.F.; Palmisano, L.; AlHammadi, A.A.; Abukhadra, M.R. Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43−) and ammonium (NH4+) ions; equilibrium properties and realistic study. J. Environ. Manag. 2021, 300, 113723. [Google Scholar] [CrossRef]
- Runtti, H.; Luukkonen, T.; Niskanen, M.; Tuomikoski, S.; Kangas, T.; Tynjälä, P.; Tolonen, E.T.; Sarkkinen, M.; Kemppainen, K.; Rämö, J. Sulphate removal over barium-modified blast-furnace-slag geopolymer. J. Hazard. Mater. 2016, 317, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.K.W.; van Deventer, J.S.J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 2002, 32, 577–584. [Google Scholar] [CrossRef]
- Ofer-Rozovsky, E.; Arbel Haddad, M.; Bar-Nes, G.; Katz, A. The formation of crystalline phases in metakaolin-based geopolymers in the presence of sodium nitrate. J. Mater. Sci. 2016, 51, 4795–4814. [Google Scholar] [CrossRef]
- Desbats-Le Chequer, C.; Frizon, F. Impact of sulfate and nitrate incorporation on potassium- and sodium-based geopolymers: Geopolymerization and materials properties. J. Mater. Sci. 2011, 46, 5657–5664. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Bartzas, G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Appl. Clay Sci. 2013, 73, 103–109. [Google Scholar] [CrossRef]
- Criado, M.; Fernandez, J.A.; Palomo, A. Effect of sodium sulfate on the alkali activation of fly ash. Cem. Concr. Compos. 2010, 32, 589–594. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; van Deventer, J.S.J. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Lee, W.; van Deventer, J.J. Effects of anions on the formation of aluminosilicate gel in geopolymers. Ind. Eng. Chem. Res. 2002, 41, 4550–4558. [Google Scholar] [CrossRef]
- Shi, C.; Day, R.L. A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 1995, 25, 1333–1346. [Google Scholar] [CrossRef]
- Xu, H.; Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Liu, P.; Chen, Y.; Yu, Z.; Lu, Z. Effect of sulfate solution concentration on the deterioration mechanism and physical properties of concrete. Constr. Build. Mater. 2019, 227, 116641. [Google Scholar] [CrossRef]
- Neto, J.A.; De la Torre, A.G.; Kirchheim, A.P. Effects of sulfates on the hydration of Portland cement—A review. Constr. Build. Mater. 2021, 279, 122428. [Google Scholar] [CrossRef]
- Tkaczewska, E.; Kłosek-Wawrzyn, E. Effect of phosphate PO43- ions on cement hydration. CWB 2012, 6, 401–408. [Google Scholar]
- Corinaldesi, V. Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 2012, 35, 778–784. [Google Scholar] [CrossRef]
- Fredericci, C.; Zanotto, E.D.; Ziemath, E.C. Crystallization mechanism and properties of a blast furnace slag glass. J. Non-Cryst. Solids 2000, 273, 64–75. [Google Scholar] [CrossRef]
- Taylor, H.F. Cement Chemistry; Thomas Telford: London, UK, 1997. [Google Scholar]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
- Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Libnau, F.O.; Kvalheim, O.M.; Christy, A.A.; Toft, J. Spectra of water in the near- and mid-infrared region. Vib. Spectrosc. 1994, 7, 243–254. [Google Scholar] [CrossRef]
- Huang, C.K.; Kerr, P.F. Infrared study of the carbonate minerals. Am. Miner. 1960, 45, 311–324. [Google Scholar]
- Mihaylov, M.Y.; Zdravkova, V.R.; Ivanova, E.Z.; Aleksandrov, H.A.; Petkov, P.S.; Vayssilov, G.N.; Hadjiivanov, K.I. Infrared spectra of surface nitrates: Revision of the current opinions based on the case study of ceria. J. Catal. 2021, 394, 245–258. [Google Scholar] [CrossRef]
- Tai, H.; Underwood, A.L. Infrared spectrophotometry of sulfate ion. Anal. Chem. 1957, 29, 1430–1433. [Google Scholar] [CrossRef]
- McMillan, P. Structural studies of silicate glasses and melts—Applications and limitations of Raman spectroscopy. Am. Mineral. 1984, 69, 622–644. [Google Scholar]
- Kirkpatrick, R.J.; Yarger, J.L.; McMillan, P.F.; Yu, P.; Cong, X. Raman spectroscopy of C-S-H, tobermorite, and jennite. Adv. Cem. Based Mater. 1997, 5, 93–99. [Google Scholar] [CrossRef]
- Ortaboy, S.; Li, J.; Geng, G.; Myers, R.J.; Monteiro, P.J.M.; Maboudian, R.; Carraro, C. Effects of CO2 and temperature on the structure and chemistry of C–(A–)S–H investigated by Raman spectroscopy. RSC Adv. 2017, 7, 48925–48933. [Google Scholar] [CrossRef]
- Renaudin, G.; Segni, R.; Mentel, D.; Nedelec, J.-M.; Leroux, F.; Taviot-Gueho, C. A Raman study of the sulfated cement hydrates: Ettringite and monosulfoaluminate. J. Adv. Concr. Technol. 2007, 5, 299–312. [Google Scholar] [CrossRef]
- Losq, C.L.; Neuville, D.R.; Chen, W.; Florian, P.; Massiot, D.; Zhou, Z.; Greaves, G.N. Percolation channels: A universalidea to describe the atomic structure and dynamics of glasses and melts. Sci. Rep. 2017, 7, 16490. [Google Scholar] [CrossRef]
- Stoch, P.; Goj, P.; Ciecińska, M.; Stoch, A. Structural features of 19Al2O3-19Fe2O3-62P2O5 glass from a theoretical and experimental point of view. J. Non-Cryst. Solids 2019, 521, 119499. [Google Scholar] [CrossRef]
- Donnelly, F.C.; Purcell-Milton, F.; Framont, V.; Cleary, O.; Dunne, P.W.; Gun’ko, Y.K. Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem. Commun. 2017, 53, 6657–6660. [Google Scholar] [CrossRef]
- Okada, K.; Kameshima, Y.; Yasumori, A. Chemical shifts of silicon X-ray photoelectron spectra by polymerization structures of silicates. J. Am. Ceram. Soc. 1998, 81, 1970–1972. [Google Scholar] [CrossRef]
- Wagner, C.D.; Passoja, D.E.; Hillery, H.F.; Kinsky, T.G.; Six, H.A.; Jansen, W.T.; Taylor, J.A. Auger and photoelectron line energy relationships in aluminum–oxygen and silicon–oxygen compounds. J. Vac. Sci. Technol. 1982, 21, 933–944. [Google Scholar] [CrossRef]
- Pintori, G.; Cattaruzza, E. XPS/ESCA on glass surfaces: A useful tool for ancient and modern materials. Opt. Mater. 2022, 13, 100108. [Google Scholar] [CrossRef]
- Simonsen, M.E.; Sønderby, C.; Li, Z.; Søgaard, E.G. XPS and FT-IR investigation of silicate polymers. J. Mater. Sci. 2009, 44, 2079–2088. [Google Scholar] [CrossRef]
Sample Name | BFS (g) | Water Glass (mL) | 8 M NaOH (mL) | Sodium Salt (g) |
---|---|---|---|---|
ref | 10.00 | 2.50 | 2.50 | – |
N1 | 10.00 | 2.50 | 2.50 | 0.025 |
N2 | 10.00 | 2.50 | 2.50 | 0.050 |
N3 | 10.00 | 2.50 | 2.50 | 0.075 |
N4 | 10.00 | 2.50 | 2.50 | 0.100 |
N5 | 10.00 | 2.50 | 2.50 | 0.150 |
S1 | 10.00 | 2.50 | 2.50 | 0.025 |
S2 | 10.00 | 2.50 | 2.50 | 0.050 |
S3 | 10.00 | 2.50 | 2.50 | 0.075 |
S4 | 10.00 | 2.50 | 2.50 | 0.100 |
S5 | 10.00 | 2.50 | 2.50 | 0.150 |
P1 | 10.00 | 2.50 | 2.50 | 0.025 |
P2 | 10.00 | 2.50 | 2.50 | 0.050 |
P3 | 10.00 | 2.50 | 2.50 | 0.075 |
P4 | 10.00 | 2.50 | 2.50 | 0.100 |
P5 | 10.00 | 2.50 | 2.50 | 0.150 |
C | O | Si | Al | Na | Ca | Mg | S | P | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Binding energy, eV | 285.0 | 287.3 | 289.6 | 531.4 | 532.7 | 101.9 | 103.1 | 74.1 | 1071.3 | 347.1 | 1303.6 | 169.0 | 132.6 |
Groups/Oxidation state | C–C | C–O | CO32− O–C=O | SiOxy− O–Me | SiOxy SiO2 O=C | SiOxy− | SiO2 | Al3+ | Na+ | Ca2+ | Mg2+ | SO42− | PO43− |
ref. | 23.2 | 1.5 | 11.8 | 34.0 | 7.8 | 2.6 | 2.2 | 0.7 | 11.8 | 4.1 | 0.3 | 0.0 | 0.0 |
N5 | 23.1 | 1.4 | 10.6 | 33.1 | 10.1 | 3.3 | 3.0 | 0.8 | 8.0 | 6.0 | 0.8 | 0.0 | 0.0 |
S5 | 25.3 | 1.4 | 9.8 | 34.2 | 6.3 | 3.3 | 1.7 | 0.9 | 13.6 | 2.8 | 0.4 | 0.4 | 0.0 |
P5 | 18.0 | 1.7 | 9.1 | 36.1 | 3.7 | 5.1 | 2.2 | 0.9 | 17.5 | 4.0 | 1.1 | 0.0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świszcz, D.; Marzec, M.; Mozgawa, W.; Król, M. Effect of Inorganic Anions on the Structure of Alkali-Activated Blast Furnace Slag. Ceramics 2024, 7, 1247-1259. https://doi.org/10.3390/ceramics7030083
Świszcz D, Marzec M, Mozgawa W, Król M. Effect of Inorganic Anions on the Structure of Alkali-Activated Blast Furnace Slag. Ceramics. 2024; 7(3):1247-1259. https://doi.org/10.3390/ceramics7030083
Chicago/Turabian StyleŚwiszcz, Dominika, Mateusz Marzec, Włodzimierz Mozgawa, and Magdalena Król. 2024. "Effect of Inorganic Anions on the Structure of Alkali-Activated Blast Furnace Slag" Ceramics 7, no. 3: 1247-1259. https://doi.org/10.3390/ceramics7030083
APA StyleŚwiszcz, D., Marzec, M., Mozgawa, W., & Król, M. (2024). Effect of Inorganic Anions on the Structure of Alkali-Activated Blast Furnace Slag. Ceramics, 7(3), 1247-1259. https://doi.org/10.3390/ceramics7030083