The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Modes and Characteristics of Combustion
3.2. Composition and Structure of Combustion Products
3.3. Combustion Products after Calcination
3.4. Band Gap Energy and Photocatalytic Activity of ZnO Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozgur, U.; Hofstetter, D.; Morkoc, H. ZnO devices and applications: A review of current status and future prospects. Proc. IEEE 2010, 98, 1255–1268. [Google Scholar] [CrossRef]
- Tabasco-Novelo, C.; May-Crespo, J.; RamírezRincón, J.A.; Forero-Sandoval, I.Y.; Rodríguez-Gattorno, G.; Quintana, P.; Alvarado-Gil, J.J. Effects of sintering on the thermal and optical properties of zinc oxide ceramics. Int. J. Thermophys. 2018, 39, 22. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, L.; Bao, Y.; Zhang, Y.; Wang, J.; Fu, M.; Wu, J.; Ye, D. The applications of morphology controlled ZnO in catalysis. Catalysts 2016, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms, and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H. Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: A review study. J. Water Process Eng. 2022, 47, 102671. [Google Scholar] [CrossRef]
- Al-Sabahi, J.; Bora, T.; Al-Abri, M.; Dutta, J. Controlled defects of zinc oxide nanorods for efficient visible light photocatalytic degradation of phenol. Materials 2016, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Cheng, Z.L.; Ting, K.E.; Yin, X.J. Photocatalytic degradation of phenol using a nanocatalyst: The mechanism and kinetics. J. Catal. 2013, 364275. [Google Scholar] [CrossRef] [Green Version]
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Wang, A.; Teng, Y.; Hu, X.; Wu, L.; Huang, Y.; Luo, Y.; Christie, P. Diphenylarsinic acid contaminated soil remediation by titanium dioxide (P25) photocatalysis: Degradation pathway, optimization of operating parameters and effects of soil properties. Sci. Total Environ. 2016, 541, 348–355. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard Mater. 2008, 156, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Yogendra, K.; Naik, S.; Mahadevan, K.M.; Madhusudhana, N. A comparative study of photocatalytic activities of two different synthesized ZnO composites against Coralene Red F3BS dye in presence of natural solar light. J. Environ. Sci. Res. 2011, 1, 11–15. [Google Scholar]
- Tian, M.; Wang, J.; Sun, R.; Yao, M.; Li, L. Facile synthesis of flower-like TiO2-based composite for adsorption–photocatalytic degradation of high-chroma methylene blue. Catalysts 2021, 11, 515. [Google Scholar] [CrossRef]
- Kumar, N.; Yadav, S.; Mittal, A.; Kumari, K. Photocatalysis by zinc oxide-based nanomaterials. In Nanostructured Zinc Oxide. Synthesis, Properties and Applications; Awasthi, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 393–457. [Google Scholar] [CrossRef]
- Kumari, V.; Mittal, A.; Jindal, J.; Yadav, S.; Kumar, N. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 2019, 13, 1–22. [Google Scholar] [CrossRef]
- Qi, K.; Xing, X.; Zada, A.; Li, M.; Wang, Q.; Liu, S.; Lin, H.; Wang, G. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram. Int. 2020, 46, 1494–1502. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater. Sci. Semicond. Process. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Cernuto, G.; Masciocchi, N.; Cervellino, A.; Colonna, G.M.; Guagliardi, A. Size and shape dependence of the photocatalytic activity of TiO2 nanocrystals: A total scattering Debye function study. J. Am. Chem. Soc. 2011, 133, 3114–3119. [Google Scholar] [CrossRef] [PubMed]
- Sosnin, I.M.; Vlassov, S.; Dorogin, L.M. Application of polydimethylsiloxane in photocatalyst composite materials: A review. React. Funct. Polym. 2021, 158, 104781. [Google Scholar] [CrossRef]
- Ermakova, L.V.; Zhuravlev, V.D.; Khaliullin, S.M.; Vovkotrub, E.G. Thermal analysis of the products of SCS of zinc nitrate with glycine and citric acid. Thermochim. Acta 2020, 695, 178809. [Google Scholar] [CrossRef]
- Patil, K.C.; Hedge, M.S.; Rattan, T.; Aruna, S.T. Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications; World Scientific: Singapore, 2008. [Google Scholar] [CrossRef]
- González-Cortés, L.S.; Imbert, F.E. Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl. Cat. A 2013, 452, 117–131. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.; Rogachev, A.; Manukyan, K. Solution combustion synthesis of nanoscale materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.-C.; Wu, T.Y. Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater. Sci. Eng. B 2004, 111, 197–206. [Google Scholar] [CrossRef]
- Riahi-Noori, N.; Sarraf-Mamoory, R.; Alizadeh, P. Synthesis of ZnO nano powder by a gel combustion method. J. Ceram. Process. Res. 2008, 9, 246–249. [Google Scholar]
- Bolaghi, Z.K.; Hasheminiasari, M.; Masoudpanah, S.M. Solution combustion synthesis of ZnO powders using mixture of fuels in closed system. Ceram. Int. 2018, 44, 12684–12690. [Google Scholar] [CrossRef]
- Khaliullin, S.M.; Zhuravlev, V.D.; Ermakova, L.V.; Buldakova, L.Y.; Yanchenko, M.Y.; Porotnikova, N.M. Solution combustion synthesis of ZnO using binary fuel (glycine + citric acid). Int. J. Self-Prop. High-Temp. Synth. 2019, 28, 226–232. [Google Scholar] [CrossRef]
- Tolossa, W.K.; Shibeshi, P.T. Structural, optical and enhanced antibacterial activities of ZnO and (Co, Fe) co-doped ZnO nanoparticles by sol-gel combustion method. Chem. Phys. Lett. 2022, 795, 139519. [Google Scholar] [CrossRef]
- Jain, S.R.; Adiga, K.C.; Pai Verneker, V.R. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Comb. Flame 1981, 40, 71–79. [Google Scholar] [CrossRef]
- Zak, A.K.; Abrishami, M.E.; Majid, W.H.A.; Yousefi, R.; Hosseini, S.M. Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 2011, 37, 393–398. [Google Scholar] [CrossRef]
- Sarfraz, M.; Ahmed, N.; Shahida, S.; Khan, M.A. Structural optical and magnetic properties of transition metal doped ZnO magnetic nanoparticles synthesized by sol-gel auto-combustion method. Mater. Sci.-Pol. 2019, 37, 0029–0038. [Google Scholar] [CrossRef] [Green Version]
- Vikarchuk, A.A.; Sosnin, I.M.; Stepanov, S.V.; Stepanov, A.S. Nanotechnology for deep sewage treatment of airports from toxic pollution, materials and equipment for its implementation. Vodoochistka. Vodopodgotovka. Vodosnabzhenie 2018, 12, 18–23. [Google Scholar]
- Ouyang, H.; Huang, J.F.; Li, C.; Cao, L.; Fei, J. Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Mater. Lett. 2013, 111, 217–220. [Google Scholar] [CrossRef]
- Bechambi, O.; Sayadi, S.; Najjar, W. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. J. Ind. Eng. Chem. 2015, 32, 201–210. [Google Scholar] [CrossRef]
- Pan, L.; Muhammad, T.; Ma, L.; Huang, Z.-F.; Wang, S.; Wang, L.; Zou, J.-J.; Zhang, X. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B 2016, 189, 181–191. [Google Scholar] [CrossRef]
- Xanthopoulou, G. Catalytic properties of the SHS products. Review. Adv. Sci. Technol. 2010, 63, 287–296. [Google Scholar] [CrossRef]
- Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic compounds in water: Sources, reactivity, toxicity and treatment methods. In Phenolic Compounds–Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., del Garcia-Mateos, M., Eds.; InTechOpen: Rijeka, Croatia, 2017; pp. 419–443. [Google Scholar] [CrossRef]
φ | Calcination Duration (h) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 1 | 2 | 3 | 9 | |
0.25 | 3.233 | 3.246 | 3.242 | 3.249 | 3.252 | 3.249 | 3.242 |
1 | 3.272 | 3.274 | 3.269 | 3.271 | 3.267 | 3.273 | 3.274 |
2 | 3.244 | 3.281 | 3.275 | 3.283 | 3.290 | 3.283 | 3.287 |
The Relative Concentration (%) of Phenol (C/C0) | ||||||
---|---|---|---|---|---|---|
Irridation time (h) | 0 | 1 | 2 | 3 | 4 | 24 |
C/C0 (%) | 100 | 98.4 | 97.5 | 98.3 | 99.0 | 85.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amosov, A.P.; Novikov, V.A.; Kachkin, E.M.; Kryukov, N.A.; Titov, A.A.; Sosnin, I.M.; Merson, D.L. The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol. Ceramics 2022, 5, 928-946. https://doi.org/10.3390/ceramics5040067
Amosov AP, Novikov VA, Kachkin EM, Kryukov NA, Titov AA, Sosnin IM, Merson DL. The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol. Ceramics. 2022; 5(4):928-946. https://doi.org/10.3390/ceramics5040067
Chicago/Turabian StyleAmosov, Aleksandr P., Vladislav A. Novikov, Egor M. Kachkin, Nikita A. Kryukov, Alexander A. Titov, Ilya M. Sosnin, and Dmitry L. Merson. 2022. "The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol" Ceramics 5, no. 4: 928-946. https://doi.org/10.3390/ceramics5040067
APA StyleAmosov, A. P., Novikov, V. A., Kachkin, E. M., Kryukov, N. A., Titov, A. A., Sosnin, I. M., & Merson, D. L. (2022). The Solution Combustion Synthesis of ZnO Powder for the Photodegradation of Phenol. Ceramics, 5(4), 928-946. https://doi.org/10.3390/ceramics5040067