The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation
Abstract
:1. Introduction
- Pillared clay minerals;
- Semiconductors supported on clay minerals;
- Strategies and synthesis routes for obtaining oxide–clay mineral materials;
- Properties of oxide–clay mineral-based photocatalysts;
- Target contaminants treated by semiconductors supported on clay minerals.
2. Clay Minerals Features
3. TiO2 Supported onto Different Clay Minerals
4. Other Semiconductors Supported onto Different Clay Minerals
5. Routes of Synthesis and Influence of the Experimental Parameters
6. Pillared Clay Minerals for Photodegradation Process
7. Advantages and Disadvantages of Photocatalysts Supported on Clay Minerals
8. Future Perspectives
9. Conclusion Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 1999, 53, 51–59. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, J.-M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Honorio, L.M.C.; De Oliveira, A.L.M.; Filho, E.C.D.S.; Osajima, J.A.; Hakki, A.; Macphee, D.E.; Dos Santos, I.M.G. Supporting the photocatalysts on ZrO2: An effective way to enhance the photocatalytic activity of SrSnO3. Appl. Surf. Sci. 2020, 528, 146991. [Google Scholar] [CrossRef]
- Szczepanik, B. Photocatalytic Degradation of Organic Contaminants over Clay-TiO2 Nanocomposites: A Review. Appl. Clay Sci. 2017, 141, 227–239. [Google Scholar] [CrossRef]
- Alamdari, S.; Ghamsari, M.S.; Afarideh, H.; Mohammadi, A.; Geranmayeh, S.; Tafreshi, M.J.; Ehsani, M.H.; Ara, M.H.M. Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt. Mater. 2019, 92, 243–250. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, R.; Xie, Y.; Liu, Y. Photocatalytic degradation of aflatoxin B1 by activated carbon supported TiO2 catalyst. Food Control 2019, 100, 183–188. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Yang, M. TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J. Colloid Interface Sci. 2017, 508, 500–507. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, W.V.; Morais, A.S.; Honorio, L.; Trigueiro, P.; Almeida, L.; Garcia, R.R.P.; Viana, B.; Furtini, M.B.; Silva-Filho, E.C.; Osajima, J.A. TiO2 Immobilized on Fibrous Clay as Strategies to Photocatalytic Activity. Mater. Res. 2020, 23, 1–10. [Google Scholar] [CrossRef]
- Miranda, M.O.; Viana, B.C.; Honório, L.M.; Trigueiro, P.; Fonseca, M.G.; Franco, F.; Osajima, J.A.; Silva-Filho, E.C. Oxide-Clay Mineral as Photoactive Material for Dye Discoloration. Minerals 2020, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Bergaya, F.; Jaber, M.; Lambert, J. Environmental Silicate Nano-Biocomposites; Green Energy and Technology; Avérous, L., Pollet, E., Eds.; Springer: London, UK, 2012; Volume 50, ISBN 978-1-4471-4101-3. [Google Scholar]
- Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 2018, 18, 1085–1104. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1. [Google Scholar]
- Santos, S.S.; França, D.B.; Castellano, L.R.; Trigueiro, P.; Filho, E.C.S.; Santos, I.M.; Fonseca, M.G. Novel modified bentonites applied to the removal of an anionic azo-dye from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2019, 585, 124152. [Google Scholar] [CrossRef]
- Santos, S.S.; Pereira, M.B.; Almeida, R.K.; Souza, A.G.; Fonseca, M.G.; Jaber, M. Silylation of leached-vermiculites following reaction with imidazole and copper sorption behavior. J. Hazard. Mater. 2016, 306, 406–418. [Google Scholar] [CrossRef]
- Li, X.; Peng, K.; Chen, H.; Wang, Z. TiO2 nanoparticles assembled on kaolinites with different morphologies for efficient photocatalytic performance. Sci. Rep. 2018, 8, 11663. [Google Scholar] [CrossRef] [Green Version]
- Papoulis, D. Halloysite based nanocomposites and photocatalysis: A Review. Appl. Clay Sci. 2018, 168, 164–174. [Google Scholar] [CrossRef]
- Prasad, C.; Tang, H.; Liu, Q.Q.; Zulfiqar, S.; Shah, S.; Bahadur, I. An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications. J. Mol. Liq. 2019, 289, 111114. [Google Scholar] [CrossRef]
- da Rocha, M.C.; Braz, E.M.D.A.; Honório, L.M.C.; Trigueiro, P.; Fonseca, M.G.; Silva-Filho, E.C.; Carrasco, S.M.; Polo, M.S.; Iborra, C.V.; Osajima, J.A. Understanding the effect of UV light in systems containing clay minerals and tetracycline. Appl. Clay Sci. 2019, 183, 105311. [Google Scholar] [CrossRef]
- Pardo, L.; Domínguez-Maqueda, M.; Cecilia, J.A.; Rodríguez, M.P.; Osajima, J.; Moriñigo, M.; Franco, F. Adsorption of Salmonella in Clay Minerals and Clay-Based Materials. Minerals 2020, 10, 130. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Hitzky, E.; Aranda, P.; Darder, M.; Rytwo, G. Hybrid materials based on clays for environmental and biomedical applications. J. Mater. Chem. 2010, 20, 9306–9321. [Google Scholar] [CrossRef]
- Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay mineral adsorbents for heavy metal removal from wastewater: A review. Environ. Chem. Lett. 2019, 17, 629–654. [Google Scholar] [CrossRef]
- Wu, A.; Wang, D.; Wei, C.; Zhang, X.; Liu, Z.; Feng, P.; Ou, X.; Qiang, Y.; Garcia, H.; Niu, J. A comparative photocatalytic study of TiO2 loaded on three natural clays with different morphologies. Appl. Clay Sci. 2019, 183, 105352. [Google Scholar] [CrossRef]
- Bello, M.M.; Raman, A.A.A. Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. Environ. Chem. Lett. 2019, 17, 1125–1142. [Google Scholar] [CrossRef]
- Osajima, J.A.; Sá, A.S.; Honorio, L.M.C.; Trigueiro, P.; Pinto, L.I.F.; Oliveira, J.A.; Furtini, M.B.; Bezerra, R.D.S.; Alcantara, A.C.S.; Silva-Filho, E.C. Au@Ag bimetallic nanoparticles deposited on palygorskite in the presence of TiO2 for enhanced photodegradation activity through synergistic effect. Environ. Sci. Pollut. Res. 2021, 28, 23995–24007. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2014, 5, 1360–1384. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Aranda, P.; Akkari, M.; Khaorapapong, N.; Ogawa, M. Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J. Nanotechnol. 2019, 10, 1140–1156. [Google Scholar] [CrossRef]
- Kibanova, D.; Trejo, M.; Destaillats, H.; Cervinisilva, J. Synthesis of hectorite–TiO2 and kaolinite–TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants. Appl. Clay Sci. 2009, 42, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Manova, E.; Aranda, P.; Martín-Luengo, M.A.; Letaïef, S.; Ruiz-Hitzky, E. New titania-clay nanostructured porous materials. Microporous Mesoporous Mater. 2010, 131, 252–260. [Google Scholar] [CrossRef]
- Paul, B.; Martens, W.; Frost, R.L. Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Appl. Clay Sci. 2012, 57, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Papoulis, D.; Komarneni, S.; Nikolopoulou, A.; Tsolis-Katagas, P.; Panagiotaras, D.; Kacandes, H.; Zhang, P.; Yin, S.; Sato, T.; Katsuki, H. Palygorskite- and Halloysite-TiO2 nanocomposites: Synthesis and photocatalytic activity. Appl. Clay Sci. 2010, 50, 118–124. [Google Scholar] [CrossRef]
- Papoulis, D.; Panagiotaras, D.; Tsigrou, P.; Christoforidis, K.; Petit, C.; Apostolopoulou, A.; Stathatos, E.; Komarneni, S.; Koukouvelas, I. Halloysite and sepiolite—TiO2 nanocomposites: Synthesis characterization and photocatalytic activity in three aquatic wastes. Mater. Sci. Semicond. Process. 2018, 85, 1–8. [Google Scholar] [CrossRef]
- Aranda, P.; Kun, R.; Martín-Luengo, M.A.; Letaïef, S.; Dékány, I.; Ruiz-Hitzky, E. Titania−Sepiolite Nanocomposites Prepared by a Surfactant Templating Colloidal Route. Chem. Mater. 2007, 20, 84–91. [Google Scholar] [CrossRef]
- Morais, A.; Oliveira, W.V.; de Oliveira, V.V.; Honorio, L.M.; Araujo, F.P.; Bezerra, R.D.; Fechine, P.B.; Viana, B.C.; Furtini, M.B.; Silva-Filho, E.C.; et al. Semiconductor supported by palygorskite and layered double hydroxides clays to dye discoloration in solution by a photocatalytic process. J. Environ. Chem. Eng. 2019, 7, 103431. [Google Scholar] [CrossRef]
- Alfred, M.; Omorogie, M.O.; Bodede, O.; Moodley, R.; Ogunlaja, A.; Adeyemi, O.G.; Günter, C.; Taubert, A.; Iermak, I.; Eckert, H.; et al. Solar-active clay-TiO2 nanocomposites prepared via biomass assisted synthesis: Efficient removal of ampicillin, sulfamethoxazole and artemether from water. Chem. Eng. J. 2020, 398, 125544. [Google Scholar] [CrossRef]
- Lacerda, E.H.C.; Monteiro, F.C.; Kloss, J.R.; Fujiwara, S.T. Bentonite clay modified with Nb2O5: An efficient and reused photocatalyst for the degradation of reactive textile dye. J. Photochem. Photobiol. A Chem. 2020, 388, 112084. [Google Scholar] [CrossRef]
- Caglar, B.; Guner, E.K.; Keles, K.; Özdokur, K.V.; Cubuk, O.; Coldur, F.; Caglar, S.; Topcu, C.; Tabak, A. Fe3O4 nanoparticles decorated smectite nanocomposite: Characterization, photocatalytic and electrocatalytic activities. Solid State Sci. 2018, 83, 122–136. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, W.; Chen, J.; Wang, X.; Gao, B.; Wang, G. Ag3PO4/rectorite nanocomposites: Ultrasound-assisted preparation, characterization and enhancement of stability and visible-light photocatalytic activity. Ultrason. Sonochem. 2017, 34, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Valášková, M.; Tokarský, J.; Pavlovský, J.; Prostějovský, T.; Kočí, K. α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties. Materials 2019, 12, 1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, F.P.; Trigueiro, P.; Honório, L.M.C.; Furtini, M.B.; Oliveira, D.M.; Almeida, L.C.; Garcia, R.R.P.; Viana, B.C.; Silva-Filho, E.C.; Osajima, J.A. A novel green approach based on ZnO nanoparticles and polysaccharides for photocatalytic performance. Dalton Trans. 2020, 49, 16394–16403. [Google Scholar] [CrossRef] [PubMed]
- Araujo, F.P.; Trigueiro, P.; Honório, L.M.; Oliveira, D.M.; Almeida, L.C.; Garcia, R.P.; Lobo, A.O.; Cantanhêde, W.; Silva-Filho, E.C.; Osajima, J.A. Eco-friendly synthesis and photocatalytic application of flowers-like ZnO structures using Arabic and Karaya Gums. Int. J. Biol. Macromol. 2020, 165, 2813–2822. [Google Scholar] [CrossRef] [PubMed]
- Goktas, A.; Modanlı, S.; Tumbul, A.; Kilic, A. Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 2021, 893, 162334. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Ajala, A.O.; Mohammed, A.K. Application of TiO2 and ZnO Nanoparticles Immobilized on Clay in Wastewater Treatment: A Review; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 10, ISBN 0123456789. [Google Scholar]
- Peng, H.; Liu, X.; Tang, W.; Ma, R. Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Sci. Rep. 2017, 7, 2250. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.J.; Das, S.; Rahman, A.H.; Das, B.; Jayabalan, R.; Behera, S.K.; Suar, M.; Tamhankar, A.J.; Mishra, A.; Lundborg, C.S.; et al. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J. Colloid Interface Sci. 2018, 530, 610–623. [Google Scholar] [CrossRef]
- Liu, J.; Dong, M.; Zuo, S.; Yu, Y. Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Appl. Clay Sci. 2009, 43, 156–159. [Google Scholar] [CrossRef]
- Hadjltaief, H.B.; Galvez, M.E.; Ben Zina, M.; Da Costa, P. TiO2/clay as a heterogeneous catalyst in photocatalytic/photochemical oxidation of anionic reactive blue 19. Arab. J. Chem. 2019, 12, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
- Gombos, E.D.; Krakkó, D.; Záray, G.; Illés, A.; Dóbé, S.; Szegedi, Á. Laponite immobilized TiO2 catalysts for photocatalytic degradation of phenols. J. Photochem. Photobiol. A Chem. 2019, 387, 112045. [Google Scholar] [CrossRef]
- El Gaidoumi, A.; Rodríguez, J.M.D.; Melián, E.P.; González-Díaz, O.M.; Santos, J.A.N.; El Bali, B.; Kherbeche, A. Synthesis of sol-gel pyrophyllite/TiO2 heterostructures: Effect of calcination temperature and methanol washing on photocatalytic activity. Surf. Interfaces 2018, 14, 19–25. [Google Scholar] [CrossRef]
- Belver, C.; Bedia, J.; Rodriguez, J. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants. J. Hazard. Mater. 2017, 322, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Belver, C.; Han, C.; Rodriguez, J.; Dionysiou, D. Innovative W-doped titanium dioxide anchored on clay for photocatalytic removal of atrazine. Catal. Today 2017, 280, 21–28. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Amara, A.B.H.; Ruiz-Hitzky, E. Clay-Nanoarchitectures as Photocatalysts by In Situ Assembly of ZnO Nanoparticles and Clay Minerals. J. Nanosci. Nanotechnol. 2018, 18, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Akkari, M.; Aranda, P.; Belver, C.; Bedia, J.; Amara, A.B.H.; Ruiz-Hitzky, E. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Appl. Clay Sci. 2018, 156, 104–109. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Y.; Zhang, L.; Yang, Z.; Zhang, Q.; Cui, H.; Zhu, X.; Wang, J.; Chen, J.; Wang, K. Palygorskite supported BiVO4 photocatalyst for tetracycline hydrochloride removal. Appl. Clay Sci. 2017, 137, 249–258. [Google Scholar] [CrossRef]
- Huo, C.; Yang, H. Preparation and enhanced photocatalytic activity of Pd–CuO/palygorskite nanocomposites. Appl. Clay Sci. 2013, 74, 87–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H. Co3O4 nanoparticles on the surface of halloysite nanotubes. Phys. Chem. Miner. 2012, 39, 789–795. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Guo, Y.; Wang, X.; Li, X. Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(VI) and RhB. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123624. [Google Scholar] [CrossRef]
- Wang, J.; Fan, J.; Li, J.; Wu, X.; Zhang, G. Ultrasound assisted synthesis of Bi2NbO5F/rectorite composite and its photocatalytic mechanism insights. Ultrason. Sonochem. 2018, 48, 404–411. [Google Scholar] [CrossRef]
- Wang, X.; Mu, B.; Hui, A.; Wang, A. Comparative study on photocatalytic degradation of Congo red using different clay mineral/CdS nanocomposites. J. Mater. Sci. Mater. Electron. 2019, 30, 5383–5392. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Y.; Shen, Z.; Yao, L.; Tang, D.; Zhang, S.; Wang, S.; Hu, B.; Zhao, G.; Wang, X. Application of aluminosilicate clay mineral-based composites in photocatalysis. J. Environ. Sci. 2022, 115, 190–214. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.D.S.; Rodrigues, W.V.; Oliveira, V.V.; Braga, A.D.N.S.; da Silva, R.T.; França, A.A.C.; da Paz, E.C.; Osajima, J.A.; Filho, E.C.D.S. Modification of kaolinite from Pará/Brazil region applied in the anionic dye photocatalytic discoloration. Appl. Clay Sci. 2018, 168, 295–303. [Google Scholar] [CrossRef]
- Zyoud, A.H.; Asaad, S.; Zyoud, S.H.; Zyoud, S.H.; Helal, M.H.; Qamhieh, N.; Hajamohideen, A.; Hilal, H.S. Raw clay supported ZnO nanoparticles in photodegradation of 2-chlorophenol under direct solar radiations. J. Environ. Chem. Eng. 2020, 8, 104227. [Google Scholar] [CrossRef]
- Tun, P.P.; Wang, J.; Khaing, T.T.; Wu, X.; Zhang, G. Fabrication of functionalized plasmonic Ag loaded Bi2O3/montmorillonite nanocomposites for efficient photocatalytic removal of antibiotics and organic dyes. J. Alloys Compd. 2019, 818, 152836. [Google Scholar] [CrossRef]
- Karaeyvaz, M.C.; Balci, S. One pot synthesis of aluminum pillared intercalated layered clay supported silicotungstic acid (STA/Al-PILC) catalysts. Microporous Mesoporous Mater. 2021, 323, 111193. [Google Scholar] [CrossRef]
- Gil, A.; Gandía, L.M.; Vicente, M.A. Recent Advances in the Synthesis and Catalytic Applications of Pillared Clays. Catal. Rev.-Sci. Eng. 2000, 42, 145–212. [Google Scholar] [CrossRef]
- Bergaya, F.; Aouad, A.; Mandalia, T. Chapter 7.5 Pillared Clays and Clay Minerals. Dev. Clay Sci. 2006, 1, 393–421. [Google Scholar] [CrossRef]
- Pandey, P.; Saini, V.K. Pillared interlayered clays: Sustainable materials for pollution abatement. Environ. Chem. Lett. 2018, 17, 721–727. [Google Scholar] [CrossRef]
- Gil, A.; Vicente, M.A. Progress and perspectives on pillared clays applied in energetic and environmental remediation processes. Curr. Opin. Green Sustain. Chem. 2019, 21, 56–63. [Google Scholar] [CrossRef]
- Yang, J.-H.; Piao, H.; Vinu, A.; Elzatahry, A.A.; Paek, S.-M.; Choy, J.-H. TiO2-pillared clays with well-ordered porous structure and excellent photocatalytic activity. RSC Adv. 2014, 5, 8210–8215. [Google Scholar] [CrossRef]
- Abdennouri, M.; Baâlala, M.; Galadi, A.; El Makhfouk, M.; Bensitel, M.; Nohair, K.; Sadiq, M.; Boussaoud, A.; Barka, N. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab. J. Chem. 2016, 9, S313–S318. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-S.; Lee, D.-K. Low-temperature catalytic aqueous phase oxidation of microcystin-LR with iron-doped TiO2 pillared clay catalysts. Environ. Technol. 2020, 42, 3546–3553. [Google Scholar] [CrossRef] [PubMed]
- Hadj Bachir, D.; Khalaf, H.; Ferroukhi, S.; Boutoumi, Y.; Schnee, J.; Gaigneaux, E.M. Preparation and Characterization of TiO2 Pillared Clay: Effect of Palladium and Photosensitizer on Photocatalytic Activity. Res. J. Chem. Environ. 2019, 24, 60–73. [Google Scholar]
- González, B.; Trujillano, R.; Vicente, M.A.; Rives, V.; Korili, S.A.; Gil, A. Photocatalytic degradation of trimethoprim on doped Ti-pillared montmorillonite. Appl. Clay Sci. 2019, 167, 43–49. [Google Scholar] [CrossRef]
- Silva, A.S.; Kalmakhanova, M.S.; Massalimova, B.K.; Sgorlon, J.G.; Luis, D.D.T.J.; Gomes, H.T. Wet Peroxide Oxidation of Paracetamol Using Acid Activated and Fe/Co-Pillared Clay Catalysts Prepared from Natural Clays. Catalysts 2019, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Zhu, R.; Zhu, J.; Liang, X.; Liu, Y.; Xu, Y.; He, H. Ag3PO4 immobilized on hydroxy-metal pillared montmorillonite for the visible light driven degradation of acid red 18. Catal. Sci. Technol. 2016, 6, 4116–4123. [Google Scholar] [CrossRef]
- Baloyi, J.; Ntho, T.; Moma, J. Synthesis of highly active and stable Al/Zr pillared clay as catalyst for catalytic wet oxidation of phenol. J. Porous Mater. 2018, 26, 583–597. [Google Scholar] [CrossRef]
- Bouna, L.; Rhouta, B.; Amjoud, M.; Maury, F.; Lafont, M.-C.; Jada, A.; Senocq, F.; Daoudi, L. Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl. Clay Sci. 2011, 52, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Akkari, M.; Aranda, P.; Ben Rhaiem, H.; Amara, A.B.H.; Ruiz-Hitzky, E. ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Appl. Clay Sci. 2016, 131, 131–139. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Liang, T.; Sun, Q.; Wang, H. Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies. Chem. Eng. Sci. 2018, 183, 231–239. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, M.; Lu, R.; Yan, C. Simultaneous adsorption-photocatalytic treatment with TiO2-Sep nanocomposites for in situ remediation of sodium pentachlorophenol contaminated aqueous and soil. Environ. Sci. Pollut. Res. 2022, 29, 39557–39566. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, Z.A.; Lahcene, D.; Benaissa, T. Adsorption and Photocatalytic Degradation of Crystal Violet Dye under Sunlight Irradiation Using Natural and Modified Clays by Zinc Oxide. Chem. Methodol. 2022, 6, 661–676. [Google Scholar] [CrossRef]
- Lazaar, K.; Chargui, H.; Pullar, R.; Hajjaji, W.; Moussi, B.; Labrincha, J.; Rocha, F.; Jamoussi, F. Efficiency of natural clay and titania P25 composites in the decolouring of methylene blue (MB) from aqueous solutions: Dual adsorption and photocatalytic processes. Arab. J. Geosci. 2021, 14, 400. [Google Scholar] [CrossRef]
- Chkirida, S.; Zari, N.; Achour, R.; Hassoune, H.; Lachehab, A.; Qaiss, A.E.K.; Bouhfid, R. Highly synergic adsorption/photocatalytic efficiency of Alginate/Bentonite impregnated TiO2 beads for wastewater treatment. J. Photochem. Photobiol. A Chem. 2021, 412, 113215. [Google Scholar] [CrossRef]
- Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Photocatalytic discolorization of methyl orange solution by Pt modified TiO2 loaded on natural zeolite. Dye. Pigment. 2008, 77, 327–334. [Google Scholar] [CrossRef]
- van Grieken, R.; Aguado, J.; López-Muñoz, M.; Marugán, J. Synthesis of size-controlled silica-supported TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 2002, 148, 315–322. [Google Scholar] [CrossRef]
- Martins, A.C.; Cazetta, A.L.; Pezoti, O.; de Souza, J.R.B.; Zhang, T.; Pilau, E.; Asefa, T.; Almeida, V.C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 2017, 43, 4411–4418. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef]
Photocatalyst | Synthesis Method | Conditions of Photocatalytic Reaction | Pollutant | Ref. |
---|---|---|---|---|
TiO2/montmorillonite | Solvothermal (190 °C/2 h) | Mercury lamp (500 W, ~365 nm), MB (1.0 × 10−4, 100 mL), photocatalyst (50 mg) | Methylene blue (MB) | [51] |
TiO2/kaolinite | Impregnation method (500 °C/3 h) | Artificial solar light or UV-lamp (UV-A (365 nm), Black-Ray B 100 W UV-lamp, V-100AP series); RB19 (75 mg L−1, 200 mL); photocatalyst (100 mg) | Reactive blue 19 (RB19) | [52] |
TiO2/Laponite | Hydrothermal (500 °C/12 h) (500 °C/3 h) | GHO436T5L type lamp irradiating in the UV-C region at 254 nm with 13 W UV-radiant and GHO245T6L/4-UVA type lamp irradiating in the 316–400 nm range with 4.6 W UV power; phenol (5 × 10−5 M), photocatalyst (0.1–0.4 g L−1) | Phenol or 2,4,6-trichloro phenol (TCP) | [53] |
TiO2/pyrophyllite | Sol–gel (450–850 °C/4 h) | UV illumination; phenol (50 mg. L−1, 200 mL); photocatalyst (1.0 g L−1) | Phenol | [54] |
Zr doped TiO2/Cloisite | Sol–gel (500 °C/4 h) | 765–250 W m−2 Xe lamp (61–24 W m−2 from 300 to 400 nm, 1.4 × 1020–5.5 × 1019 photons m−2s−1); Antipyrine (10 mg L−1, 200 mL); photocatalyst (250 mg L−1) | Antipyrine | [55] |
W doped TiO2/Cloisite | Sol–gel (500 °C/4 h) | Solar lamp (300 W Xenon lamp, Newport Corporation); Atrazine (2.5 mg L−1, 10 mL); photocatalyst (0.25 g L−1) | Atrazine | [56] |
TiO2/sepiolite | Colloidal route (500 °C/6 h) | Hg arc lamp (150 W, 280–600 nm); phenol (0.5 mmol L−1, 375 mL) | Phenol | [38] |
ZnO/smectite | Colloidal route (500 °C/2 h) (500 °C/4 h) | 300 W UV lamp (Osram Ultra Vitalux 240 V 300 W E27 UVA/UVB); ibuprofen (10 ppm, 100 mL); photocatalyst (25 mg) | Ibuprofen | [57] |
ZnO/sepiolite | Colloidal route (500 °C/1 h) (500 °C/4 h) | Xe lamp and a Solar ID65 filter that cuts off the UV light contribution at 320 nm, fixing the irradiation intensity at 450 W m−2; target compound (10 mg L−1); photocatalyst (250 mg L−1) | Ibuprofen (IBU),acetaminophen (ACE) and antipyrine (ANT) | [58] |
BiVO4/palygorskite | Hydrothermal (400 °C/4 h) | 500-W Xe lamp, 540 nm; TC (30 mg L−1, 50 mL); photocatalyst (50 mg) | Tetracycline (TC) | [59] |
Pd-CuO/palygorskite | Precipitation method (60 °C/4 h) | UV light (2 × 15 W UV tubes predominantly emitting at 365 nm); MO (25 ppm, 100 mL); photocatalyst (50 mg) | Methyl orange dye (MO) | [60] |
Fe3O4/smectite | Precipitation method (50 °C/48 h) | UVA lamp (350 nm); RhB (100 mg L−1); photocatalyst (0.5–2 g L−1) | Rhodamine B (RhB) | [42] |
Co3O4/halloysite | Ultrasonic-assisted method (50 °C/3 h) | UV radiation source was a 60 W high-pressure mercury lamp; MB (200 mg L−1, 200 mL); photocatalyst (50 mg) | Methylene blue (MB) | [61] |
g-C3N4/Na-bentonite | Ultrasonic-assisted method (550 °C/2 h) | 350 W xenon lamp visible-light irradiation (λ > 420 nm); RhB (20 ppm, 100 mL) and/or Cr(VI) (50 ppm, 100 mL); photocatalyst (1 g L−1) | Rhodamine B (RhB) and hexavalent chromium (Cr(VI)) | [62] |
Bi2NbO5F/rectorite | Ultrasonic-assisted method (60 °C/24 h) | UV lamp (λ = 254 nm, 20 W, 0.524 mWcm−2); RhB (5 mg L−1, 100 mL); photocatalyst (0.1 g L−1) | Rhodamine B (RhB) | [63] |
CdS/clay minerals | Hydrothermal (180 °C/6 h) | 300 W xenon lamp (providing visible light ≥ 400 nm); CR (30 mg L−1, 50 mL); photocatalyst (30 mg) | Congo red dye (CR) | [64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, W.; Trigueiro, P.; Marinho, T.; Honorio, L.M.; Silva-Filho, E.C.; Furtini, M.B.; Cecília, J.A.; Fonseca, M.G.; Osajima, J. The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation. Ceramics 2022, 5, 862-882. https://doi.org/10.3390/ceramics5040063
Freitas W, Trigueiro P, Marinho T, Honorio LM, Silva-Filho EC, Furtini MB, Cecília JA, Fonseca MG, Osajima J. The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation. Ceramics. 2022; 5(4):862-882. https://doi.org/10.3390/ceramics5040063
Chicago/Turabian StyleFreitas, Walber, Pollyana Trigueiro, Thiago Marinho, Luzia M. Honorio, Edson C. Silva-Filho, Marcelo B. Furtini, Juan A. Cecília, Maria G. Fonseca, and Josy Osajima. 2022. "The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation" Ceramics 5, no. 4: 862-882. https://doi.org/10.3390/ceramics5040063
APA StyleFreitas, W., Trigueiro, P., Marinho, T., Honorio, L. M., Silva-Filho, E. C., Furtini, M. B., Cecília, J. A., Fonseca, M. G., & Osajima, J. (2022). The Role of Clay Mineral-Derived Photocatalysts in Insights of Remediation. Ceramics, 5(4), 862-882. https://doi.org/10.3390/ceramics5040063