Late Pleistocene Low-Altitude Atlantic Palaeoglaciation and Palaeo-ELA Modelling: Insights from Serra da Cabreira, NW Iberia
Abstract
1. Introduction
Study Area
2. Materials and Methods
2.1. Geomorphological Mapping
2.2. Palaeoglacial Modelling
2.3. Palaeo-ELA Calculations
2.4. Regional Palaeo-ELA of the NW Iberian Mountains
3. Results
3.1. Landforms Distribution
3.2. Geomorphological Survey
3.2.1. Soutinho Valley
3.2.2. Gaviões Valley
3.2.3. Azevedas Valley
3.3. Palaeoglacial Reconstruction
3.4. Palaeo-ELA Estimates
4. Discussion
4.1. Geological and Geomorphological Controls on Glaciation
4.2. Maritime Influence, Continentality and Palaeoglacial Equilibrium-Lines in NW Iberia
4.3. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, P.D.; Woodward, J.C. Quaternary Glaciation in the Mediterranean Mountains: A New Synthesis; Geological Society: London, UK, 2016. [Google Scholar] [CrossRef]
- Allard, J.L.; Hughes, P.D.; Woodward, J.C. Heinrich Stadial aridity forced Mediterranean-wide glacier retreat in the last cold stage. Nat. Geosci. 2021, 14, 197–205. [Google Scholar] [CrossRef]
- Hughes, P.D.; Braithwaite, R.J. Application of a degree-day model to reconstruct Pleistocene glacial climates. Quat. Res. 2008, 69, 110–116. [Google Scholar] [CrossRef]
- Ohmura, A.; Funk, M. Climate at the equilibrium line of glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Rea, B.R.; Pellitero, R.; Spagnolo, M.; Hughes, P.; Ivy-Ochs, S.; Renssen, H.; Ribolini, A.; Bakke, J.; Lukas, S.; Braithwaite, R.J. Atmospheric circulation over Europe during the Younger Dryas. Sci. Adv. 2020, 6, 50. [Google Scholar] [CrossRef]
- Pearce, D.; Ely, J.; Barr, I.; Boston, C. Section 3.4.9: Glacier Reconstruction. In Geomorphological Techniques; Cook, S., Clarke, L., Nield, J., Eds.; Online Edition; British Society for Geomorphology: London, UK, 2017; Available online: http://geomorphology.org.uk/sites/default/files/chapters/3.4.9_Glacier%20Reconstruction-min_0.pdf (accessed on 25 November 2025).
- Palacios, D.; Hughes, P.D.; García-Ruiz, J.M.; Andrés, N. European Glacial Landscapes Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Brugger, K.A.; Goldstein, B.S. Paleoglacier reconstruction and late Pleistocene equilibrium-line altitudes, southern Sawatch Range, Colorado. Spec. Pap. Geol. Soc. Am. 1999, 337, 103–112. [Google Scholar] [CrossRef]
- Oien, R.P.; Rea, B.R.; Spagnolo, M.; Barr, I.D.; Bingham, R.G. Testing the area-altitude balance ratio (AABR) and accumulation-area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. J. Glaciol. 2021, 68, 357–368. [Google Scholar] [CrossRef]
- Ohmura, A.; Boettcher, M. Climate on the equilibrium line altitudes of glaciers: Theoretical background behind Ahlmann’s P/T diagram. J. Glaciol. 2018, 64, 489–505. [Google Scholar] [CrossRef]
- Vieira, G.; Palacios, D.; Andrés, N.; Mora, C.; Vázquez Selem, L.; Woronko, B.; Soncco, C.; Úbeda, J.; Goyanes, G. Penultimate Glacial Cycle glacier extent in the Iberian Peninsula: New evidence from the Serra da Estrela (Central System, Portugal). Geomorphology 2021, 388, 107781. [Google Scholar] [CrossRef]
- Rodríguez-Mena, M.; Fernández-Fernández, J.M.; Tanarro, L.M.; Zamorano, J.J.; Palacios, D.; García, J.M.; Peña, J.L.J.L.; Martí, C.; Gómez, A.; Constante, A.; et al. Legenda. J. Maps 2013, 8, 5. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Reber, R.; Kubik, P.W.; Zahno, C.; Schlüchter, C. Glacier response to the change in atmospheric circulation in the eastern Mediterranean during the Last Glacial Maximum. Quat. Geochronol. 2014, 19, 27–41. [Google Scholar] [CrossRef]
- Boers, N.; Ghil, M.; Rousseau, D.D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard–Oeschger cycles. Proc. Natl. Acad. Sci. USA 2018, 115, E11005–E11014. [Google Scholar] [CrossRef] [PubMed]
- Oliva, M.; Palacios, D.; Fernández-Fernández, J.M.; Andrés, N.; Cacho, I.; Cañedo, D.G.; Carrasco, R.M.; Celis, A.G.; Domínguez-Cuesta, M.J.; García-Hernández, C.; et al. Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Janco, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pérez Alberti, A.; Valcárcel Díaz, M. Caracterización y distribución espacial del glaciarismo pleistoceno en el Noroeste de la Península Ibérica. In Las Huellas Glaciares las Montañas Españolas; Universidad de Santiago de Compostela: Galicia, Spain, 1998; pp. 17–54. [Google Scholar]
- Pérez-Alberti, A.; Díaz, M.V.; Chao, R.B. Pleistocene glaciation in Spain. In Developments in Quaternary Sciences; Ehlers, J., Gibbard, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, Pt 1, pp. 389–394. [Google Scholar] [CrossRef]
- Perez-Alberti, A.; Rodríguez Guitán, M. Periglacial Forms and Block Deposits and Present Periglacial Phenomena in Sierras Septentrionales and Sierras Orientales of Galicia (NW Iberian Peninsula). In La Evolución del Paisaje en las Montañas del Entorno de los Caminos Jacobeos; Consellería de Relacións Institucionais e Portavoz do Goberno: Xunta de Galicia, Spain, 1993; ISBN 84-453-0885-8. [Google Scholar]
- Oliva, M.; Palacios, D.; Fernandez-Fernandez, J.M.; Rodriguez-Rodriguez, L.; Garcia-Ruiz, J.M.; Andres, N.; Carrasco, R.M.; Pedraza, J.; Pérez-Alberti, A.; Valcarcel, M.; et al. Late Quaternary glacial phases in the Iberian Peninsula. Earth-Sci. Rev. 2019, 192, 564–600. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, L.; Jiménez-Sánchez, M.; Domínguez-Cuesta, M.J.; González-Lemos, S. The glaciers around Lake Sanabria. In Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 335–351. [Google Scholar] [CrossRef]
- Redondo-Vega, J.M.; Santos-González, J.; González-Gutiérrez, R.B.; Gómez-Villar, A. The glaciers of the Montes de León. In Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 315–333. [Google Scholar] [CrossRef]
- Santos-González, J.; Redondo-Vega, J.M.; González-Gutiérrez, R.B.; Gómez-Villar, A. Applying the AABR method to reconstruct equilibrium-line altitudes from the last glacial maximum in the Cantabrian Mountains (SW Europe). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 387, 185–199. [Google Scholar] [CrossRef]
- Serrano, E.; González-Trueba, J.J.; Pellitero, R.; González-García, M.; Gómez-Lende, M. Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain). Geomorphology 2013, 196, 65–82. [Google Scholar] [CrossRef]
- Trigo, R.M.; Pozo-Vázquez, D.; Osborn, T.J.; Castro-Díez, Y.; Gámiz-Fortis, S.; Esteban-Parra, M.J. North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int. J. Climatol. 2004, 24, 925–944. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Morán-Tejeda, E.; Lorenzo-Lacruz, J.; Kenawy, A.; Beniston, M. Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Glob. Planet. Change 2011, 77, 62–76. [Google Scholar] [CrossRef]
- Bohm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M.B.; Deininger, M. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 2015, 517, 73–76. [Google Scholar] [CrossRef]
- Barker, S.; Diz, P.; Vautravers, M.J.; Pike, J.; Knorr, G.; Hall, I.R.; Broecker, W.S. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 2009, 457, 1097–1102. [Google Scholar] [CrossRef]
- Nesje, A.; Jansen, E.; Birks, H.J.B.; Bjune, A.E.; Bakke, J.; Andersson, C.; Dahl, S.O.; Kristensen, D.K.; Lauritzen, S.E.; Lie, Ø.; et al. Holocene Climate Variability in the Northern North Atlantic Region: A Review of Terrestrial and Marine Evidence. In The Nordic Seas: An Integrated Perspective; American Geophysical Union: Washington, DC, USA, 2013; Volume 158, pp. 289–322. [Google Scholar] [CrossRef]
- Ehlers, J.; Gibbard, P. Quaternary Glaciations Extent and Chronology Part I: Europe. Volume I. 2008. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:QUATERNARY+GLACIATIONS+EXTENT+AND+CHRONOLOGY#1 (accessed on 15 April 2023).
- Daveau, S.; Devy-Vareta, N. Gelifraction, nivation et glaciation d’abri de la Serra da Cabreira (Portugal). Actas 1a Reunião do Quaternário Ibérico Atas 1985, 1, 75–84. [Google Scholar]
- Pérez-Alberti, A. The glaciers of the Peneda, Amarela, and Gerês-Xurés massifs. In Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 397–416. [Google Scholar] [CrossRef]
- Santos, J.; Santos-González, J.; Blanca González-Gutiérrez, R.; Assunção, A. Timing of deglaciation in the Serra do Gerês Mountains (NW Portugal National Park) based on AMS dating. Geol. Soc. Am. Abstr. Programs 2023, 55, 4. [Google Scholar] [CrossRef]
- Ferreira, B. A Glaciação Plistocénica da Serra do Gerês-Vestígios Geomorfológicos e Sedimentológicos. Finisterra 1999, XXXV, 39–68. [Google Scholar]
- Coudé-Gaussen, G. Les Serras da Peneda et do Gerês; Memórias do Centro de Estudos Geográficos; Centro de Estudos Geográficos: Lisbon, Portugal, 1981. [Google Scholar]
- Santos, J.; Cunha, L.; Vieira, A.; Bento-Gonçalves, A. Genesis of the Alto Vez Glacial Valley Pleistocene Moraines, Peneda Mountains, Northwest Portugal Caracterização E Génese Das Moreias Plistocénicas Do Vale Glaciário Do Alto Vez, Serra Da Peneda, Noroeste De Portugal; Associação Portuguesa de Geomorfólogos (APGEOM): Porto, Portugal, 2013; pp. 57–62. [Google Scholar]
- Santos, J.; Santos-González, J.; Redondo-Vega, J.M. Till-Fabric analysis and origin of late Quaternary moraines in the Serra da Peneda Mountains, NW Portugal. Phys. Geogr. 2015, 36, 1–18. [Google Scholar] [CrossRef]
- Figueira, E.; Gomes, A.; Costa, J. Cartografia geomorfológica glaciária e delimitação da paleoglaciação da Serra Amarela. Comun. Geológicas 2025, 112, 135–139. [Google Scholar] [CrossRef]
- Figueira, E.; Gomes, A.; Pérez-Alberti, A. Pleistocene Glaciations of the Northwest of Iberia: Glacial Maximum Extent, Ice Thickness, and ELA of the Soajo Mountain. Land 2023, 12, 1226. [Google Scholar] [CrossRef]
- Santos, J.; Gomes, A.; Costa, J.; Figueira, E. Till Macrofabric and Grain Size Analysis of Glacial Diamictons in the Serra Da Cabreira Mountains, NW Portugal. Geol. Soc. Am. Programs 2022, 54, 373413. [Google Scholar] [CrossRef]
- Pereira, P.; Gonçalves, A.B. Vestiges of the Quaternary glaciation in Cabreira Montain (North-West Portugal). Estud. Quaternário/Quat. Stud. 2001, 4, 61–68. [Google Scholar] [CrossRef]
- Vieira, A.; Gonçalves, A.; Almendra, R. Vestígios De Glaciação Da Serra Da Cabreira–Cartografia Geomorfológica De Pormenor Com Recurso a Tecnologias De Geoprocessamento. 2005, 10. Available online: http://apgeo.pt/files/docs/CD_X_Coloquio_Iberico_Geografia/pdfs/094.pdf (accessed on 5 March 2023).
- Pereira, P.; Pereira, D.; Rodrigues, L. Pseudoestratificação granítica na Serra da Cabreira: Geoformas com influência climática e estrutural. Assoc. Port. Geomorfólogos 2005, 3, 215–219. [Google Scholar]
- Pérez-Alberti, A.; Valcarcel, M. The glaciers in Eastern Galicia. In Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 375–395. [Google Scholar]
- Valcarcel, M.; Pérez-Alberti, A. The glaciers in Western Galicia. In Iberia, Land of Glaciers: How the Mountains Were Shaped by Glaciers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 353–373. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Gómez-Pazo, A. Glaciers Landscapes during the Pleistocene in Trevinca Massif (Northwest Iberian Peninsula). Land 2023, 12, 530. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D.I. The Granite and Glacial Landscapes of the Peneda-Gerês National Park. In Landscapes and Landforms of Portugal. World Geomorphological Landscapes; Springer: Cham, Switzerland, 2020; pp. 127–137. [Google Scholar] [CrossRef]
- Agencia Estatal de Meteorología Ministerio de Medio Ambiente y Medio Rural y Marino; Instituto de Meteorologia de Portugal. Atlas Climático Ibérico: Temperatura do Ar e Precipitação (1971–2000)/Iberian Climate Atlas: Air Temperature and Precipitation (1971/2000). 2011. Available online: http://www.ipma.pt/resources.www/docs/publicacoes.site/atlas_clima_iberico.pdf%0A (accessed on 10 April 2023).
- Daveau, S. Répartition et Rythme des Précipitations au Portugal; Centro de Estudos Geográficos: Lisbon, Portugal, 1977; Volume 1. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Trigo, R.M.; Cortesi, N.; González-Hidalgo, J.C. The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Atmos. Res. 2016, 178–179, 217–230. [Google Scholar] [CrossRef]
- Coude, G. La glaciation du Minho au Pleistocène récent dans son contexte paléogéographique local et régional. Géologie Méditerranéenne 1978, 5, 339–358. [Google Scholar] [CrossRef]
- Lambiel, C.; Maillard, B.; Ragamey, B.; Martin, S.; Kummert, M.; Schoeneich, P.; Pellitero-Ondicol, R.; Reynard, E. The ArcGIS Version of the Geomorphological-Mapping Legend of the University of Lausanne. 2013. Available online: https://wp.unil.ch/hmg/research/geomorphological-mapping/unil-geomorphological-legend/ (accessed on 2 January 2023).
- Taillefer, F. Autres cartes géomorphologiques: Cartographie géomorphologique. In Travaux de la RCP 77; Service de Documentation et de Cartographie Géographiques: Paris, France, 1972; pp. 487–488. [Google Scholar]
- Fernandes, M.; Oliva, M.; Vieira, G.; Lopes, L.F. Geomorphology of the Aran Valley Upper Garonne Basin Central Pyrenees. J. Maps 2022, 18, 219–231. [Google Scholar] [CrossRef]
- Pellitero, R.; Fernández-Fernández, J.M.; Campos, N.; Serrano, E.; Pisabarro, A. Late Pleistocene climate of the northern Iberian Peninsula: New insights from palaeoglaciers at Fuentes Carrionas (Cantabrian Mountains). J. Quat. Sci. 2019, 34, 342–354. [Google Scholar] [CrossRef]
- Pellitero, R.; Rea, B.R.; Spagnolo, M.; Bakke, J.; Ivy-Ochs, S.; Frew, C.R.; Hughes, P.; Ribolini, A.; Lukas, S.; Renssen, H. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Comput. Geosci. 2016, 94, 77–85. [Google Scholar] [CrossRef]
- Patterson, W.S.B. The sliding velocity of Athabasca Glacier, Canada. J. Glaciol. 1970, 9, 55–63. [Google Scholar] [CrossRef]
- Weertman, J. Shear Stress at the base of a rigidly rotating cirque glacier. J. Glaciol. 1971, 10, 31–37. [Google Scholar] [CrossRef]
- Schilling, D.H.; Hollin, J.T. Numerical reconstructions of valley glaciers and small ice caps. In The Last Great Ice Sheets; Denton, G.H.H., Ed.; Wiley & Sons: New York, NY, USA, 1981; pp. 207–220. [Google Scholar]
- Rea, B.R.; Evans, D.J.A. Quantifying climate and glacier mass balance in north Norway during the Younger Dryas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 246, 307–330. [Google Scholar] [CrossRef]
- Nye, J.F. The Mechanics of Glacier Flow. Cavendish Lab. Camb. 1952, 1, 52–53. [Google Scholar] [CrossRef]
- Porter, S.C. Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quat. Res. 1975, 5, 27–47. [Google Scholar] [CrossRef]
- Gross, G.; Kerschner, H.; Patzelt, G. Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Zeitschrift für Gletscherkd. und Glazialgeol. 1978, 12, 223–251. [Google Scholar]
- Meier, M.F.; Post, A.S. Recent Variations in Mass Net Budgets of Glaciers in Western North America. Int. Assoc. Hydrol. Sci. 1962, 58, 63–77. [Google Scholar]
- Braithwaite, R.J.; Muller, F. On the parameterization of glacier equilibrium line altitude. In Proceedings of the Riederalp Workshop, Riederalp, Switzerland, 17–22 September 1978; IAHS-AISH, 1980; Volume 126, pp. 263–271. [Google Scholar]
- Porter, S.C. Snowline depression in the tropics during the last glaciation. Quat. Sci. Rev. 2001, 20, 1067–1091. [Google Scholar] [CrossRef]
- Cogley, J.G.; Hock, R.; Rasmussen, L.A.; Arendt, A.A.; Bauder, A.; Braithwaite, R.J.; Jansson, P.; Kaser, G.; Möller, M.; Nicholson, L.; et al. Glossary of Glacier Mass Balance and Related Terms; IHP-VII Te.; International Association of Cryospheric Sciences: Paris, France, 2011. [Google Scholar]
- Barry, R.G. The status of research on glaciers and global glacier recession: A review. Prog. Phys. Geogr. 2006, 30, 285–306. [Google Scholar] [CrossRef]
- Owen, L.A.; Thackray, G.; Anderson, R.S.; Briner, J.; Kaufman, D.; Roe, G.; Pfeffer, W.; Yi, C. Integrated research on mountain glaciers: Current status, priorities and future prospects. Geomorphology 2009, 103, 158–171. [Google Scholar] [CrossRef]
- Benn, D.I.; Lehmkuhl, F. Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quat. Int. 2000, 65–66, 15–29. [Google Scholar] [CrossRef]
- Osmaston, H. Estimates of glacier equilibrium line altitudes by the Area × Altitude, the Area × Altitude Balance Ratio and the Area × Altitude Balance Index methods and their validation. Quat. Int. 2005, 138–139, 22–31. [Google Scholar] [CrossRef]
- Pellitero, R.; Brice, R.R.; Spagnolo, M.; Bakke, J.; Ivy-Ochs, S.; Hughes, P.; Lukas, S.; Ribolini, A. A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Comput. Geosci. 2015, 82, 663–675. [Google Scholar] [CrossRef]
- Pellitero, R. Evolución finicuaternaria del glaciarismo en el macizo de Fuentes Carrionas (Cordillera Cantábrica), propuesta cronológica y paleoambiental lateglacial. Cuaternario Geomorfol. 2013, 31, 45–72. Available online: https://recyt.fecyt.es/index.php/CUGEO/article/view/20179 (accessed on 20 March 2023).
- Bahr, D.B. Estimation of Glacier Volume and Volume Change by Scaling Methods. In Encyclopedia of Snow, Ice and Glaciers; Springer: Dordrecht, The Netherlands, 2011; pp. 239–247. [Google Scholar]
- Benn, D.I.; Evans, D.J.A. Glaciers & Glaciation; Hodder Education: London, UK, 1998. [Google Scholar]
- Boston, C.M.; Lukas, S.; Carr, S.J. A Younger Dryas plateau icefield in the Monadhliath, Scotland, and implications for regional palaeoclimate. Quat. Sci. Rev. 2015, 108, 139–162. [Google Scholar] [CrossRef]
- Bakke, J.; Nesje, A. Equilibrium Line Altitude (ELA). In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 3, pp. 268–277. [Google Scholar] [CrossRef]
- Kern, Z.; László, P. Size specific steady-state accumulation-area ratio: An improvement for equilibrium-line estimation of small palaeoglaciers. Quat. Sci. Rev. 2010, 29, 2781–2787. [Google Scholar] [CrossRef]
- Rea, B.R. Defining modern day Area-Altitude Balance Ratios (AABRs) and their use in glacier-climate reconstructions. Quat. Sci. Rev. 2009, 28, 237–248. [Google Scholar] [CrossRef]
- Mackintosh, A.N.; Anderson, B.M.; Pierrehumbert, R.T. Reconstructing Climate from Glaciers. Annu. Rev. Earth Planet. Sci. 2017, 45, 649–680. [Google Scholar] [CrossRef]
- Barry, R.G. Mountain Weather and Climate, 3rd ed.; Cambridge University Press: Cambridge, UK, 2008; Volume 17. [Google Scholar]
- Nunez, M.; Colhoun, E.A. A note on air temperature lapse rates on Mount Wellington, Tasmania. Pap. Proc.-R. Soc. Tasmania 1986, 120, 11–15. [Google Scholar] [CrossRef]
- Schnelle, K.B. Atmospheric Diffusion Modeling. In Encyclopedia of Physical Science and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 679–705. [Google Scholar] [CrossRef]
- Fitzgerald, N.B.; Kirkpatrick, J.B. Air temperature lapse rates and cloud cover in a hyper-oceanic climate. Antarct. Sci. 2020, 32, 440–453. [Google Scholar] [CrossRef]
- Pérez-Alberti, A. El patrimonio de origen glaciar de la Serra da Capelada (Geoparque mundial de la Unesco Cabo Ortegal, Galicia, Península Ibérica). Cuaternario y Geomorfol. 2017, 31, 45–72. Available online: https://recyt.fecyt.es/index.php/CUGEO/article/view/102466 (accessed on 9 May 2024).
- Vieira, G. Combined numerical and geomorphological reconstruction of the Serra da Estrela plateau icefield, Portugal. Geomorphology 2008, 97, 190–207. [Google Scholar] [CrossRef]
- Coudé-Gaussen, G. Les Serras da Peneda et do Gerês (Minho-Portugal): Formes et Formations D’origine Froide en Milieu Granitique. Ph.D Thesis, Université Paris-I-Panthéon-Sorbonne, Paris, France, 1979. [Google Scholar]
- Coudé, A.; Coudé-Gaussen, G.; Daveau, S. Nouvelles observations sur la glaciation des montagnes du Nord-Ouest du Portugal. Cuad. Lab. Xeol. Laxe 1983, 5, 381–393. [Google Scholar]
- Hughes, P.D.; Allard, J.; Woodward, J.; Pope, R. Glacial landscapes of the Balkans. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 141–148. [Google Scholar]
- Ivy-Ochs, S.; Monegato, G.; Reitner, J.M. Glacial landscapes of the Alps. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 115–121. [Google Scholar] [CrossRef]
- Urdea, P.; Ardelean, F.; Ardelean, M.; Onaca, A. Glacial landscapes of the Romanian Carpathians. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 109–114. [Google Scholar] [CrossRef]
- Delmas, M.; Gunnell, Y.; Calvet, M.; Reixach, T.; Oliva, M. Glacial landscape of the Pyrenees. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 123–128. [Google Scholar] [CrossRef]
- Zasadni, J.; Kłapyta, P.; Makos, M. Glacial landscapes of the Tatra Mountains. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 103–107. [Google Scholar] [CrossRef]
- Ribolini, A.; Giraudi, C. The Italian Peninsula. In European Glacial Landscapes: Maximum Extent of Glaciations; Elsevier: Amsterdam, The Netherlands, 2021; pp. 135–140. [Google Scholar]
- Pérez-Alberti, A.; Díaz, M.V.; Peter Martini, I.; Pascucci, V.; Andreucci, S. Upper pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. Geol. Soc. Spec. Publ. 2011, 354, 93–110. [Google Scholar] [CrossRef]
- Dunai, T.J. Cosmogenic Nuclides-Principles, Concepts and Applications in the Earth Surface Sciences; Cambridge University Press: Cambridge, UK, 2016; Volume 5, Available online: https://www.cambridge.org/core/books/cosmogenic-nuclides/403A3823168B0B721CB2D8ED10177122 (accessed on 11 December 2024).
- Siame, L.L.; Bourlès, D.L.; Brown, E.T. In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Processes, 1st ed.; The Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar]
- Ewertowski, M.W.; Evans, D.J.A.; Roberts, D.H.; Tomczyk, A.M. Glacial geomorphology of the terrestrial margins of the tidewater glacier, Nordenskiöldbreen, Svalbard. J. Maps 2016, 12, 476–487. [Google Scholar] [CrossRef]
- Śledź, S.; Ewertowski, M.W.; Piekarczyk, J. Applications of unmanned aerial vehicle (UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial geomorphology. Geomorphology 2021, 378, 107620. [Google Scholar] [CrossRef]








| Parameters | Gaviões | Azevedas |
|---|---|---|
| Glaciated area (km2) | 0.24 | 0.98 |
| Max. ice thickness (m) | 89 | 72.1 |
| Ice volume (hm3) | 11.4 | 38.1 |
| Length (headwall-snout) (m) | 903 | 1290 |
| Glacier top (m a.s.l) | 1219 | 1250 |
| Glacier base (m a.s.l) | 883 | 940 |
| Palaeoglacier | AABR 1.5–2.1 * | AABR BR 1.9 * | AAR 0.40–0.65 * | AAR 0.60 * | MELM |
|---|---|---|---|---|---|
| Gaviões | 1015–1025 | 1020.5 | 1053–1013 | 1018 | 937 |
| Azevedas | 1088.5–1073.5 | 1078.5 | 1136–1056 | 1071 | 1094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueira, E.; Gomes, A.; Costa, J. Late Pleistocene Low-Altitude Atlantic Palaeoglaciation and Palaeo-ELA Modelling: Insights from Serra da Cabreira, NW Iberia. Quaternary 2025, 8, 71. https://doi.org/10.3390/quat8040071
Figueira E, Gomes A, Costa J. Late Pleistocene Low-Altitude Atlantic Palaeoglaciation and Palaeo-ELA Modelling: Insights from Serra da Cabreira, NW Iberia. Quaternary. 2025; 8(4):71. https://doi.org/10.3390/quat8040071
Chicago/Turabian StyleFigueira, Edgar, Alberto Gomes, and Jorge Costa. 2025. "Late Pleistocene Low-Altitude Atlantic Palaeoglaciation and Palaeo-ELA Modelling: Insights from Serra da Cabreira, NW Iberia" Quaternary 8, no. 4: 71. https://doi.org/10.3390/quat8040071
APA StyleFigueira, E., Gomes, A., & Costa, J. (2025). Late Pleistocene Low-Altitude Atlantic Palaeoglaciation and Palaeo-ELA Modelling: Insights from Serra da Cabreira, NW Iberia. Quaternary, 8(4), 71. https://doi.org/10.3390/quat8040071

