The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Sedimentological Analyses
2.3. Luminescence Dating
3. Results
3.1. Luminescence Properties
3.2. Stratigraphy and OSL Ages of Terrace T2/2
3.3. Stratigraphy and OSL Ages of Terrace T2/1
4. Discussion
4.1. Reconstruction of Terrace Development with a Climatic Approach
4.2. The Potential Role of Tectonic Forcing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schumm, S.A. Geomorphic thresholds concept and its applications. Trans. Inst. Br. Geogr. 1979, 4, 485–515. [Google Scholar] [CrossRef]
- Gábris, G. A folyóvízi teraszok hazai kutatásának rövid áttekintése—A teraszok kialakulásának és korbeosztásának új magyarázata. Földrajzi Közlemények 2013, 137, 240–247. [Google Scholar]
- Starkel, L.; Michczyńska, D.J.; Gębica, P.; Kiss, T.; Panin, A.; Perşoiu, I. Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8 ka cal BP). Quat. Int. 2015, 388, 97–118. [Google Scholar] [CrossRef]
- Bulla, B. A Magyar medence pliocén es pleisztocén teraszai. Földrajzi Közlemények 1941, 69, 199–230. [Google Scholar]
- Pécsi, M. A Magyarországi Duna-Völgy Kialakulása és Felszínalaktana; Akadémiai Kiadó: Budapest, Hungary, 1959; p. 346. [Google Scholar]
- Vandenberghe, J. Timescales, climate and river development. Quat. Sci. Rev. 1995, 14, 631–638. [Google Scholar] [CrossRef]
- Gábris, G. A magyarországi folyóteraszok kialakulásának és korbeosztásának magyarázata az oxigénizotóp sztratigráfia tükrében. Földrajzi Közlemények 2006, 130, 123–133. [Google Scholar]
- Starkel, L.; Gębica, P.; Superson, J. Last Glacial–Interglacial cycle in the evolution of river valleys in southern and central Poland. Quat. Sci. Rev. 2007, 26, 2924–2936. [Google Scholar] [CrossRef]
- Schumm, S.A.; Dumont, J.F.; Holbrook, J.M. Active Tectonics and Alluvial Rivers; Cambridge University Press: Cambridge, UK, 2002; p. 276. [Google Scholar]
- Necea, D.; Fielitz, W.; Matenco, L. Late Pliocene–Quaternary tectonics in the frontal part of the SE Carpathians: Insights from tectonic geomorphology. Tectonophysics 2005, 410, 137–156. [Google Scholar] [CrossRef]
- Vandenberghe, J.; Wang, X.; Lu, H. Differential impact of small-scaled tectonic movements on fluvial morphology and sedimentology (the Huang shui catchment, NE Tibet Plateau). Geomorphology 2011, 134, 171–185. [Google Scholar] [CrossRef]
- Pécsi, M. A Dunai Alföld; Akadémia Kiadó: Budapest, Hungary, 1967. [Google Scholar]
- Ruszkiczay-Rüdiger, Z.; Fodor, L.; Bada, G.; Leel-Őssy, S.; Horváth, E.; Dunai, T.J. Quantification of Quaternary vertical movements in the central Pannonian Basin: A review of chronologic data along the Danube River, Hungary. Tectonophysics 2005, 410, 157–172. [Google Scholar] [CrossRef]
- Bulla, B. Folyóterasz-problémák. Földrajzi Közlemények 1956, 80, 121–141. [Google Scholar]
- Schanz, S.A.; Montgomery, D.R.; Collins, B.D.; Duvall, A.R. Multiple paths to straths: A review and reassessment of terrace genesis. Geomorphology 2018, 312, 12–23. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Wulf, H.; Preusser, F.; Strecker, M.R. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India. Earth Planet. Sci. Lett. 2015, 428, 255–266. [Google Scholar] [CrossRef]
- Dey, S.; Thiede, R.C.; Schildgen, T.F.; Wittmann, H.; Bookhagen, B.; Scherler, D.; Jain, V.; Strecker, M.R. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India. Earth Planet. Sci. Lett. 2016, 449, 321–331. [Google Scholar] [CrossRef]
- Malatesta, L.C.; Avouac, J.-P. Contrasting river incision in north and south Tian Shan piedmonts due to variable glacial imprint in mountain valleys. Geology 2018, 6, 659–662. [Google Scholar] [CrossRef]
- Kiss, T.; Hernesz, P.; Sümeghy, B.; Györgyövics, K.; Sipos, G. The evolution of the Great Hungarian Plain fluvial system—Fluvial processes in a subsiding area from the beginning of the Weichselian. Quat. Int. 2015, 388, 142–155. [Google Scholar] [CrossRef]
- Bendefy, L. A Maros geomorfológiája, Az Erdélyi-medence mai vízrendszerének földtani kialakulása. In Vízrajzi Atlasz Sorozat 19. kötet. Maros 1. Fejezet. Hidrográfia, Geomorfológia; Csoma, J., Laczay, I., Eds.; Országos Vízügyi Főigazgatóság: Budapest, Hungary, 1975; pp. 13–14. [Google Scholar]
- Berec, B.; Gábris, G. A Maros hordalékkúp bánsági szakasza. In Kárpát-Medence: Természet, Társadalom, Gazdaság (Földrajzi Tanulmányok); Frisnyák, S., Gál, A., Eds.; Nyíregyházi Főiskola Turizmus és Földrajztudományi Intézet; Hajdúböszörményi Bocskai István Gimnázium: Nyíregyháza, Hungary, 2013; pp. 51–64. [Google Scholar]
- Molnár, B. A Maros folyó kialakulása és vízgyűjtő területének földtani felépítése. Hidrológiai Közlöny 2007, 87, 27–30. [Google Scholar]
- Sawicki, L.M. Pryczynki do morfologii Seidemiogrodu.—Beiträge zur Morphologie Siebenbürgens. In Bulletin International De L’académie des Sciences; Impimerie De L’université: Kraków, Poland, 1912. [Google Scholar]
- Pávai Vajna, F. A Maros-völgy kalakulásáról. Földtani Közlöny 1914, 44, 256–280. [Google Scholar]
- Popp, N. Valea hunedoreană a Mureşului. Lucr. Şt. Inst. Ped. Oradea, seria A. Geografie, Ed; Intitutul de Invatamint Superior din Ordadea, Ordadea, Romania, 1977; 171–178. [Google Scholar]
- Mike, K. Magyarország Ősrajza és Felszíni Vizeinek Története; Aqua Kiadó: Budapest, Hungary, 1991; pp. 361–577. [Google Scholar]
- Braumann, S.M.; Neuhuber, S.; Fiebig, M.; Schaefer, J.M.; Hintersberger, E.; Lüthgens, C. Challenges in constraining ages of fluvial terraces in the Vienna Basin (Austria) using combined isochron burial and pIRIR225 luminescence dating. Quat. Int. 2019, 509, 87–102. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Qiu, W.-L.; Hu, G.; Zhou, L.-P. Determining the Age of Terrace Formation Using Luminescence Dating—A Case of the Yellow River Terraces in the Baode Area, China. Methods Protoc. 2020, 3, 17. [Google Scholar] [CrossRef]
- Jain, M.; Murray, A.S.; Bøtter-Jensen, L. Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments. Quaternaire 2004, 15, 143–157. [Google Scholar] [CrossRef]
- Tóth, O.; Sipos, G.; Kiss, T.; Bartyik, T. Variation of OSL residual doses in terms of coarse and fine grain modern sediments along the Hungarian section of the Danube. Geochronometria 2017, 44, 319–330. [Google Scholar] [CrossRef]
- Anechitei-Deacu, V.; Timar-Gabor, A.; Constantin, D.; Trandafir-Antohi, O.; Valle, L.; Fornós, J.; Gómez-pujol, L.; Wintle, A. Assessing the maximum limit of SAR-OSL dating using quartz of different grain sizes. Geochronometria 2018, 45, 146–159. [Google Scholar] [CrossRef]
- Konecsny, K.; Bálint, G. Low water related hydrological hazards along the lower Mures/Maros River. Riscuri Si Catastr. 2009, 8, 202–207. [Google Scholar]
- Katona, O.; Sipos, G.; Onaca, A.; Ardelean, F. Reconstruction of palaeo-hydrology and fluvial architerture at the Orosháza palaeo-channel of River Maros, Hungary. J. Enviromental Geogr. 2012, 5, 29–38. [Google Scholar] [CrossRef]
- Bartyik, T.; Sipos, G.; Filyó, D.; Kiss, T.; Urdea, P.; Timofte, F. Temporal relationship of increased palaeodischarges and Late Glacial deglaciation phases on the catchment of River Maros/Mureş, Central Europe. J. Environ. Geogr. 2021, 14, 39–46. [Google Scholar] [CrossRef]
- Ianovici, V.; Borcoş, M.; Bleahu, M.; Patrulius, D.; Lupu, M.; Dimitrescu, R.; Savu, H. Geologia Munţilor Apuseni; Edit. Academiei: Bucharest, Romania, 1976; 630p. [Google Scholar]
- Gheorghiu, C.; Calotă, C.; Zberea, A.; Mareş, I. Aspecte Tectonice ale Culoarului Mureşului, Asoc.geol. carp.-balc.; Congresul, V., Ed.; Carpatho-Balkan Geological Association: Bucharest, Romania, 1963; pp. 85–102. [Google Scholar]
- Zugrăvescu, D.; Polonic, G.; Horomnea, M.; Dragomir, V. Recent vertical crustal movements on the Romanian territory, the major tectonic compartments and their relative dynamics. Rev. Roum. Géophysique 1998, 42, 3–14. [Google Scholar]
- Mauz, B.; Bode, T.; Mainz, E.; Blanchard, H.; Hilger, W.; Dikau, R.; Zöller, L. The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Anc. TL 2002, 20, 53–61. [Google Scholar]
- Sipos, G.; Kiss, T.; Tóth, O. Constraining the age of floodplain levels along the lower section of river Tisza, Hungary. J. Environ. Geogr. 2016, 9, 39–44. [Google Scholar] [CrossRef]
- Olley, J.; Caitcheon, G.; Murray, A. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments. Radiat. Meas. 1998, 30, 207–217. [Google Scholar] [CrossRef]
- Wintle, A.G.; Murray, A.S. A rewiev of quarzt optically stimulated luminescence characteristics and their relevance in single-aliguit regeneration dating protocols. Radiat. Meas. 2006, 41, 369–391. [Google Scholar] [CrossRef]
- Galbraith, R.F.; Roberts, R.G. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quat. Geochronol. 2012, 11, 1–27. [Google Scholar] [CrossRef]
- Arnold, L.J.; Bailey, R.M.; Tucker, G.E. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quat. Geochronol. 2007, 2, 162–167. [Google Scholar] [CrossRef]
- Kreutzer, S.; Schmidt, C.; Fuchs, M.C.; Dietze, M.; Fischer, M.; Fuchs, M. Introducing an R package for luminescence dating analysis. Anc. TL 2012, 30, 1–8. [Google Scholar]
- Jain, M.; Murray, A.S.; Bøtter-Jensen, L. Characterisation of blue light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiat. Meas. 2003, 37, 441–449. [Google Scholar] [CrossRef]
- Durcan, J.A.; Duller, G.A.T. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiat. Meas. 2011, 46, 1065–1072. [Google Scholar] [CrossRef]
- Gray, H.J.; Jain, M.; Sawakuchi, A.O.; Mahan, S.A.; Tucker, G.E. Luminescence as a sediment tracer and provenance tool. Rev. Geophys. 2019, 57, 987–1017. [Google Scholar] [CrossRef]
- Bartyik, T.; Magyar, G.; Filyó, D.; Tóth, O.; Blanka-Végi, V.; Kiss, T.; Marković, S.; Persoiu, I.; Gavrilov, M.; Mezősi, G.; et al. Spatial differences in the luminescence sensitivity of quartz extracted from Carpathian Basin fluvial sediments. Quat. Geochronol. 2021, 64, 101166. [Google Scholar] [CrossRef]
- Liritzis, I.; Stamoulis, K.; Papachristodoulou, C.; Ioannides, K. A re-valuation of radiation dose-rate conversion factors. Mediterr. Archaeol. Archaeom. 2013, 13, 1–15. [Google Scholar]
- Prescott, J.R.; Hutton, J.T. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long term variations. Radiat. Meas. 1994, 23, 497–500. [Google Scholar] [CrossRef]
- Alexanderson, H. Residual OSL signals from modern Greenlandic river sediments. Geochronometria 2007, 26, 1–9. [Google Scholar] [CrossRef]
- Marković, S.B.; Fitzsimmons, K.E.; Sprafke, T.; Gavrilović, D.; Smalley, I.J.; Jović, V.; Svirčev, Z.; Gavrilov, M.B.; Bešlin, M. The history of Danube loess research. Quaternary. Int. 2016, 399, 86–99. [Google Scholar] [CrossRef]
- Van Huissteden, K.; Vandenberghe, J.; Pollard, D. Palaeotemperature reconstructions of the European permafrost zone during marine oxygen isotope Stage 3 compared with climate model results. J. Quat. Sci. 2003, 18, 453–464. [Google Scholar] [CrossRef]
- Feurdean, A.; Perşoiu, A.; Taţău, I.; Stevens, I.; Magyari, E.K.; Onac, B.P.; Marković, S.; Andrič, M.; Connor, S.; Fărcaş, S.; et al. Climate variaility and associated vegetion repsonse throught Central and Eastern Europe (CCE) between 60 and 8 ka. Quat. Sci. Rev. 2014, 106, 206–224. [Google Scholar] [CrossRef]
- Van Meerbeeck, C.J.; Renssen, H.; Roche, D.M. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ?—Perspectives from equilibrium simulations. Clim. Past 2009, 5, 33–51. [Google Scholar] [CrossRef]
- Cunha, P.P.; Martins, A.A.; Buylaert, J.-P.; Murray, A.S.; Gouveia, M.P.; Font, E.; Pereria, T.; Figueirdo, S.; Ferreira, C.; Bridgland, D.R.; et al. The lowermost Tejo River terrace at foz do enxarrique, Portugal: A paleoenvrionmental archive from c. 60-35 ka and its implications for the last neanderthals in Westernmost Iberia. Quaternary 2019, 2, 3. [Google Scholar] [CrossRef]
- Winsemann, J.; Lang, J.; Roskosch, J.; Polom, U.; Böhner, U.; Brandes, C.; Glotzbach, C.; Frechen, M. Terrace styles and timing of terrace formation in the Weser and Leine valleys, northern Germany: Response of a fluvial system to climate change and glaciation. Quat. Sci. Rev. 2015, 123, 31–57. [Google Scholar] [CrossRef]
- Olszak, J.; Kukulak, J.; Alexanderson, H. Revision of river terrace geochronology in the Orawa-Nowy Targ Depression, south Poland: Insights from OSL dating. Proc. Geol. Assoc. 2016, 127, 595–605. [Google Scholar] [CrossRef]
- Vassallo, R.; Ritz, J.-F.; Braucher, R.; Jolivet, M.; Carretier, S.; Larroque, C.; Chauvet, A.; Sue, C.; Todbileg, M.; Bourlès, D.; et al. Transpressional tectonics and stream terraces of the Gobi-Altay, Mongolia. Tectonics 2007, 26, TC5013. [Google Scholar] [CrossRef]
- Picotti, V.; Pazzaglia, F.J. A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). J. Geophys. Res. Solid Earth 2008, 113, B08412. [Google Scholar] [CrossRef]
- Fuller, T.K.; Perg, L.A.; Willenbring, J.K.; Lepper, K. Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology 2009, 37, 467–470. [Google Scholar] [CrossRef]
- Antoine, P.; Lautridou, J.P.; Laurent, M. Long-term fluvial archives in NW France: Response of the seine and Somme rivers to tectonic movements, climatic variations and sea-level changes. Geomorphology 2000, 33, 183–207. [Google Scholar] [CrossRef]
- Vandenberghe, J. The fluvial cycle at cold-warm-cold transitions in lowland regions: A refinement of theory. Geomorphology 2008, 98, 275–284. [Google Scholar] [CrossRef]
- Gábris, G.; Horváth, E.; Novothny, Á.; Ruszkiczay-Rüdiger, Z. Fluvial and aeolian landscape evolution in Hungary—results of the last 20 years research. Netherland J. Geosci. 2012, 91, 111–128. [Google Scholar] [CrossRef]
- Bridgland, D.R. The Middle and Upper Pleistocene sequence in the Lower Thames: A record of Milankovitch climatic fluctuation and early human occupation of southern Britain. Proc. Geol. Assoc. 2006, 117, 281–305. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Huang, W.; Li, A.; Hu, Z.; Huang, X.; Yang, H. 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: Constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin, China. Geomorphology 2020, 348, 106884. [Google Scholar] [CrossRef]
- Urdea, P.; Onaca, A.; Ardelean, M.; Ardelean, M. New Evidence on the Quaternary Glaciation in the Romanian Carpathians, cap. 24. In Quaternary Glaciations—Extent and Chronology. A Closer Look; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 305–322. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Braucher, R.; Madarász, B.; Schimmelpfennig, I. Revised deglaciation history of the Pietrele–Stânişoara glacial complex, Retezat Mts, Southern Carpathians, Romania. Quat. Int. 2011, 415, 216–229. [Google Scholar] [CrossRef]
- Ruszkiczay-Rüdiger, Z.; Kern, Z.; Urdea, P.; Madarász, B.; Braucher, R. ASTER TEAM Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Souther Carpathians, Romania). Geomorphology 2011, 384, 107719. [Google Scholar] [CrossRef]
- Pazzaglia, F.J. Fluvial terraces. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 379–412. [Google Scholar] [CrossRef]
- Kiss, T.; Sümeghy, B.; Sipos, G. Late Quaternary paleo-drainage reconstruction of the Maros River Alluvial Fan. Geomorphology 2014, 204, 49–60. [Google Scholar] [CrossRef]
- Kasse, C.; Hoek, W.Z.; Bohncke, S.J.P.; Konert, M.; Weijers, J.W.H.; Cassee, M.L.; Van der Zee, R.M. Late Glacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. J. Quat. Sci. 2005, 20, 377–394. [Google Scholar] [CrossRef]
- Necea, D.; Fielitz, W.; Kadereit, A.; Andriessen, P.A.M.; Dinu, C. Middle Pleistocene to Holocene fluvial terrace development and uplift-driven valley incision in the SE Carpathians, Romania. Tectonophysics 2013, 602, 332–354. [Google Scholar] [CrossRef]
- Van Balen, R.T.; Houtgast, R.F.; Van der Wateren, F.M.; Vandenberghe, J.; Bogaart, P.W. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley rift system. Glob. Planet. Chang. 2000, 27, 113–129. [Google Scholar] [CrossRef]
- Gunnell, Y.; Gallagher, K.; Carter, A.; Widdowson, M.; Hurford, A.J. Denudation history of the continental margin of western peninsular India since the early Mesozoic; reconciling apatite fission-track data with geomorphology. Earth Planet. Sci. Lett. 2003, 215, 187–201. [Google Scholar] [CrossRef]
- Pan, B.; Wu, G.; Wang, Y.; Liu, Z.; Guan, Q. Ages and genesis of the Shangou River terraces in eastern Qilian Mountains. Chin. Sci. Bull. 2001, 46, 510–515. [Google Scholar] [CrossRef]
- Tofelde, S.; Schildgen, T.F.; Savi, S.; Pingel, H.; Wickert, A.D.; Bookhagen, B.; Wittmann, H.; Alonso, R.N.; Cottle, J.; Strecker, M.R. 100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina. Earth Planet. Sci. Lett. 2017, 473, 141–153. [Google Scholar] [CrossRef]
- Bartyik, T. Reconstruction of Fluvial Processes in the Maros River Basin, with Particular Reference to the Applicability of OSL Sensitivity. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartyik, T.; Urdea, P.; Kiss, T.; Hegyi, A.; Sipos, G. The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary 2023, 6, 35. https://doi.org/10.3390/quat6020035
Bartyik T, Urdea P, Kiss T, Hegyi A, Sipos G. The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary. 2023; 6(2):35. https://doi.org/10.3390/quat6020035
Chicago/Turabian StyleBartyik, Tamás, Petru Urdea, Tímea Kiss, Alexandru Hegyi, and György Sipos. 2023. "The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania" Quaternary 6, no. 2: 35. https://doi.org/10.3390/quat6020035
APA StyleBartyik, T., Urdea, P., Kiss, T., Hegyi, A., & Sipos, G. (2023). The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mureş (Maros), Romania. Quaternary, 6(2), 35. https://doi.org/10.3390/quat6020035