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Abstract: Crop yield prediction is one of the crucial components of agriculture that plays an im-
portant role in the decision-making process for sustainable agriculture. Remote sensing provides
the most efficient and cost-effective solution for the measurement of important agricultural param-
eters such as soil moisture level, but retrieval of the soil moisture contents from coarse resolution
datasets, especially microwave datasets, remains a challenging task. In the present work, a ma-
chine learning-based framework is proposed to generate the enhanced resolution soil moisture
products, i.e., classified maps and change maps, using an optical-based moderate resolution imaging
spectroradiometer (MODIS) and microwave-based scatterometer satellite (SCATSAT-1) datasets. In
the proposed framework, nearest-neighbor-based image fusion (NNIF), artificial neural networks
(ANN), and post-classification-based change detection (PCCD) have been integrated to generate
thematic and change maps. To confirm the effectiveness of the proposed framework, random forest
post-classification-based change detection (RFPCD) has also been implemented, and it is concluded
that the proposed framework achieved better results (88.67-91.80%) as compared to the RFPCD
(86.80-87.80%) in the computation of change maps with ¢°-HH. This study is important in terms of
crop yield prediction analysis via the delivery of enhanced-resolution soil moisture products under
all weather conditions.

Keywords: scatterometer satellite (SCATSAT-1); moderate resolution imaging spectroradiometer
(MODIS); soil moisture; crop yield; fusion

1. Introduction

In agriculture, crop yield estimation is essential to improving productivity, food
security, and the decision-making process [1]. The growing population of the world is
also one of the major concerns related to food security. As per the Food and Agriculture
Organization (FAO) report, there will be a 60% increment in the demand for food-to-supply
ration by 2050. As per the United Nations (UN) Sustainable Development Goals (SDGs),
food security and the promotion of sustainable agriculture are important to end hunger [2].
Thus, there is an urgent requirement for enhancing crop yield production to meet the
current as well as future requirements of the world [3,4]. There are many factors involved
in crop yield prediction analysis, but it remains challenging to develop a perfect prediction
model [5,6].

As an important component of crop yield prediction, soil moisture plays a vital role in
energy and water exchanges at the land surface and atmosphere interface [7]. In addition to
crop yield prediction, the soil moisture parameter is also utilized in many other prediction
models, such as weather forecasting, soil erosion, drought warning, and flood estimation.
Therefore, continuous and accurate monitoring of soil moisture at a global level is essential
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to be monitored for many applications. However, continuous and reliable soil moisture
measurements at the global or national level are one of the most challenging tasks [8]. Some
authors highlighted the challenges in soil moisture retrieval over vegetated areas, which
could be improved by utilizing change detection or image fusion-based approaches [7,9].

In the past few decades, remote sensing technology has made a significant contribution
to the monitoring and management of agricultural land on a larger scale [10]. Remote
sensing allows the acquisition of earth surface information in multispectral bands via
optical sensors and backscattered coefficients via microwave sensors. Both sensors have
their features and limitations in delivering reliable information. The optical sensors are
very useful in the identification of crop diseases via the visible infrared (IR) spectral band
because this region of the spectrum is very sensitive to crop vigor, damage, and stress.
However, the major problem associated with optical bands included the impact of clouds
on satellite imagery because optical bands cannot penetrate through clouds. In such
situations, microwave sensors are very useful to acquire the earth’s surface information in
microwave regions with day-night capability under rainy and extreme weather conditions.
To retrieve the soil moisture, various microwave sensors were reported in the literature,
such as synthetic aperture radar (SAR) [11,12], Ku-band-based QuikSCAT [13,14], C-band-
based advanced microwave instrument (AMI) [15-19], special sensor microwave imager
(SSM/I) data [20,21], L-band based soil moisture and ocean salinity (SMOS) mission [22,23],
advanced microwave scanning radiometer-2 (AMSR-2) [24-26], and soil moisture active and
passive (SMAP) [27-29]. However, microwave sensors face the problem of coarse resolution
within the range of 25-50 km, which limits the applicability of microwave imagery.

With advanced computing models, there is the possibility of developing high-resolution
soil moisture products at the global level using different remote sensing datasets. Amongst
the various scatterometers [30], the scatterometer satellite (SCATSAT-1) made a significant
contribution to agriculture applications [31], such as high-resolution soil moisture product
development [7,32], leaf area index (LAI) estimation [33,34], paddy crop estimation [8,12,35-38],
and jute crop estimation [39]. A summary of state-of-the-art approaches for crop phenology
and soil moisture studies using SCATSAT-1 is shown in Table 1. The SCATSAT-1 offers a
variety of enhanced resolution (up to 2 km) operational products for different scientific domains
such as agriculture, cryosphere, hydrology, and oceanography [33,40—-46]. Some of the authors
highlighted the technical details, preprocessing, and calibration/validation of the SCATSAT-1
dataset [47—49]. To compensate for the lack of high spatial resolution remote sensing images, the
fusion of SCATSAT-1 with MODIS data via machine learning models allows the finer resolution
of soil moisture products. The daily-based enhanced resolution products can be utilized in the
identification of different crops, the assessment of crop conditions, and the estimation of crop
yields. Accurate predictions of crop yields are essential to farmers” production plans and the
various policy decisions related to trading and food security.

The main focus of this article is to generate the enhanced resolution soil moisture
products and also generate the change maps to analyze the variations between soil moisture
classified maps. Therefore, the objectives included: (a) fusion of the optical-based MODIS
dataset and microwave-based SCATSAT-1 dataset; (b) develop a framework based on NNIF
and ANN to generate the soil moisture classified maps; (c) generating post-classification-
based change detection (PCCD) based change maps for accurate crop yield change products
for crop yield; (d) analysis the impact of the proposed framework on different SCATSAT-1
parameters, i.e., 0°-HH (sigma-naught at horizontal-transmit and horizontal-receive polar-
ization), 0°-VV (sigma-naught at vertical-transmit and vertical-receive polarization), y°-HH
(gamma-naught at horizontal-transmit and horizontal-receive polarization), and y°-VV
(gamma-naught at vertical-transmit and vertical-receive polarization); and (e) comparing
the performance of the proposed framework with random forest post-classification-based
change detection (RFPCD) using various performance metrics.
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Table 1. A summary of state-of-the-art approaches developed for crop phenology and soil moisture
studies using the SCATSAT-1 dataset.

Technique Data Required Models Feature and Limitations Applications
SCATSAT-1 Level-4 WCM 4 Enhanced resolution data products (up to Soﬂ mmsfture, the
S1L4)(0°-HH 2, 0°-VV %) MWCM 2 km). impactof
SME-1! ( ’ NDVI® urban/vegetation
MOD13A2, Dubois Model The outcomes are dependent on the ron i i
MOD12Q1 ubois Mode urban factor. cover on so
moisture [32]
NDVI?, Enhanced resolution data products (up to
SME-2 6 i/lcgggﬁgil ﬁ)ocgiﬂsétz_z’ VTCI” 5.6 km). High-resolution soil
MODI3CT . Empirical Model The scaling factor of resolution improvement moisture products [7]
Dubois Model is based on VTCI 7.
WCM & WCM 8 Performance is highly dependent on the istimlat(iion oikelzaf
In-situ LAI measurements - - LAI values. h.re; ndex ( ] )gt
O-Model ¢ S1L4 (o°-HH) Oveisgharan [13] Unable to distinguish the heading of the 1gh temporal an:
NDVI 5 wheat crop/leaves. spatial resolutions [33]
S114 (0°-VV) Polv. Model Provides coarse resolution data products. ifeeir?p; pkrif::logy
PCE 1° Sentinel-1 6 }E, Ord Ease in the extraction of crop phenological 'llg N )
Rice crop mask (6th Order) stages tillering, veg., panicle
development [35]
Rice crop phenology
i/}g]g(lg 1;HH’ o"-VV) NDVI?® Soil surface roughness impacts the outcomes. stages (Qurmg Kharif
11 13 . R and rabi seasons),
CYE Kharif rice crop mask WI Requirement of the accurate derivation of drought monitorin
C . crop mas Statical Modeling SCATSAT products. 5 oring,
rop Cutting Experiment and deforestation
[8,36,38]
E}Iﬁi(fiic_?cljtl) Grr_l\a]S\Q Regression Model More external data is needed to estimate crop Rice crop monitoring
RGYE 1 C - CIop mas & yield. and yield prediction
rop Cutting Experiment Ratio s 19 o,
Reported Yield (FAOSTAT 15) The accuracy of crop yield is more than 95%. [12]
16 ini ; ;
JCE 16 S1L4 (0°-HH, 0°-VV) 1SO No training data is required. Jute crop yield [39]

Data Classification

More precision is required.

1 Soil moisture estimation model-1; 2 sigma-nough at horizontal-transmit and horizontal-receive; ® sigma-nough
at vertical-transmit and vertical-receive;  modified water cloud model; ® normalized difference vegetation index;
6 g0il moisture estimation model-2; 7 vegetation temperature condition index; 8 water cloud model; ? Oveisgharan
model; 1% paddy crop estimation; 1 crop yield estimation; 1 moderate resolution imaging spectroradiometer;
13 water index; !* rice grain yield estimation; !° food and agriculture organization corporate statistical database;
16 Jute crop estimation.

2. Material and Methods
2.1. Study Location and Satellite Dataset

Punjab State, India, has been selected as the study location with geographical coordi-
nates of 29°0'0"-33°0'0"” N and 73°0'0"-77°0'0" E (Figure 1).

66°0'0"E

73°0'0"E

73°0'0"E \
N

33°0'0"N
33°0'0"N

o R 2

bR e E

w0 1 |2 5 S
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(a) 98°0'0"E (b) 77°0'0"E © 77°0'0"E

Figure 1. Representation of study site: (a) Indian map (in red and green color boundary lines)
highlighted the Punjab State, India (with green color); (b) study site acquired using SCATSAT-1
(sigma-nought-c°); and (c¢) MODIS (MODO02 at RGB-621) data product on 20 November 2019.

This Indian state made a significant contribution to food grain production and agri-
culture development and was also the pioneer in India’s “green revolution.” The major
crops of the region included barley, wheat, rice, maize, and sugarcane. As per the national
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statistics, Punjab state contributed 29% of rice and 38% of wheat during the year 20162017,
making India self-reliant in food production. The satellite dataset was acquired on three
different dates, i.e., 20 November 2019, 20 December 2019, and 20 January 2020, from two
different satellite sensors. The optical-based NASA’s MODIS data were acquired from
Level-1 and the Atmosphere Archive and Distribution System Distributed Active Archive
Center (LAADS DAAC) online web portal (https://ladsweb.modaps.eosdis.nasa.gov/,
accessed on 20 November 2022) (See Figure 2). Additionally, microwave ISRO’s SCATSAT-1
(Level-4) data were acquired from the Meteorological and Oceanographic Satellite Data
Archival Centre (MOSDAC) online portal (https://www.mosdac.gov.in/, accessed on 20
November 2022) (See Figure 3).

(b)

Figure 2. Input datasets acquired from MODIS (MODO02 Product) on (a) 20 November 2019; (b) 20
December 2019; and (c) 20 January 2020.

\

20-Nov-2019

20-Dec-2019

20-Tan-2019

Figure 3. Input datasets acquired from SCATSAT-1 (level-4) on (a—d) 20 November 2019; (e-h) 20
December 2019; and (i-1) 20 January 2020 using different parameters, i.e., 0°-HH, ¢°-VV, y°-HH, and
vY°-VV.

2.2. Methodology

From Figure 4, the methodology of the proposed framework included: (a) prepro-
cessing of the input dataset; (b) NNIF-based fusion of optical (MODIS) and microwave
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(SCATSAT-1) datasets; (c) PCCD using ANN; and (d) validation of classified and change
maps using the SMAP dataset.

SCATSAT-1

Resampling

Preprocessing

Fused Image Validation
SMAP
e & o
o o o PC Change
® 0 ® o Detection
o ¢ ©
g Fusion =
» :_,._ ~ Neural Networks
&3
Resaﬁpled Classified Map
| Fusion | Post-Classification Change detection | Validation

Figure 4. A proposed flowchart of methodology for the generation and validation of enhanced-
resolution soil moisture classified and change maps.

2.2.1. Preprocessing of Optical and Microwave Dataset

The SCATSAT-1 measures the Earth’s surface information in THE form of backscat-
tered coefficients, i.e., sigma-naught (¢°) and gamma-naught (y°). Both the backscattered
coefficients offer information in two different polarization modes, i.e., HH and VV. The
SCATSAT-1 level-4 India product is available at an enhanced resolution of 2 km, while
MODIS data are available at a spatial resolution of 500 m (1-7 bands). Therefore, both
datasets need to be resampled beforehand at the same resolution of 500 m for the fusion
process. To resample the input dataset, the nearest-neighbor resampling method was
utilized, in which each pixel in the resampled image acquires the same value as its nearest-
neighbor pixel value in the original image. It is noteworthy that in the present work, all the
backscattered coefficients along with different polarization modes have been considered to
generate the soil moisture classification and change maps.

2.2.2. Nearest-Neighbor-Based Image Fusion (NNIF)

After the preprocessing of optical and microwave datasets, both images were fused
using the nearest-neighbor-based image fusion (NNIF) algorithm [50]. There are two main
objectives of the fusion of microwave and optical datasets. The first is to enhance the
resolution of the input dataset, and the second is to integrate the features of the microwave
dataset with optical datasets [51]. However, there are many challenges involved in the
fusion of the microwave and optical datasets, such as spectral distortion in the optical
dataset and different atmospheric conditions and periods in the acquisition processes of
both datasets [52]. However, various fusion methods were reported in the literature to fuse
the optical and microwave datasets, such as brovey transformation (BT) [53], Gram-Schmidt
(GS) [54], principal component analysis (PCA) [55], intensity hue saturation (IHS) [56],
Ehler’s transformation (ET) [57], wavelet principal component analysis (WPCA) [58], and
many more [59-65]. As per the previous literature, the NNIF algorithm is best suited
for the fusion of scatterometer and MODIS datasets as compared to well-defined fusion
techniques such as BT, GS, and ET. Therefore, in the present work, we have implemented
the NNIF to fuse the SCATSAT-1 and MODIS data for the retrieval of soil moisture maps.
To implement the NNIF, both datasets must be accurately geo-registered and resampled at
the same resolution to avoid the problem of misalignment due to the multisensory dataset.
Once the prerequisites are accomplished, the difference factor of the nearest-neighbor is
estimated as follows:
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b
Ni(x,y)= Y., |P(xy)—P(p,q) 1)
(Pa)€Q;(xy)

where parameters, i.e., ();(x, y), represented the region of nearest-neighbor pixels (p, 9) in
multispectral data, and P(x,y), represented the region of the pixel in microwave data. The
parameter b is the number of spectral bands. Afterward, the datasets are fused using the
following equation:

n N (x, XY)—(XuoYup)lxy, .
NNF = ol B e [ M320] xcoxpr | gl [ aau o, @
2]9:1 exp {_W} % exp |:_ ||(X/y)_(xl:;jgzytt,v)‘x,y,jH :| M(Z/l, v X, y,]) < T

k(x,y) 5x,y) ®)
where the parameters k(x,y) represented the normalized factor; o and o representing
the intensity smoothness and spatial smoothness factors, respectively. The parameters
M(u,v;x,y, j) represented the spectrum vector of nearest neighbor pixels (1, v). The param-
eters exp’ and exp” represented the similarity measure and spatial closeness measure of its
neighboring pixels, respectively. The term T is the spectral photometric contribution vector.

2.2.3. Post-Classification-Based Change Detection (PCCD) Using ANN

To generate the change maps, the post-classification change detection (PCCD) tech-
nique has been followed [66]. This approach has been implemented in two different steps,
i.e., classification and change detection. Initially, the fused dataset was classified using an
ANN-based classifier to classify the different levels of soil moisture in satellite imagery [67].
To process the ANN, the network parameters are selected as logistic activation function,
training threshold (0.82 value), training rate (0.20 value), training momentum (0.70 value),
RMS exit criteria (0.1), six input nodes (MODIS bands 1-4, 6 and 7; it is noted that the 5th
band was removed due to strip error), three output nodes (low, mid and high values of
soil moisture), and iterations (800). The ANN is one of the options for handling complex
patterns and prediction problems due to its flexible approach and unique approximation
potential to capture complex nonlinear behaviors. Afterward, the classified dataset of
multitemporal dates is processed via post-classification comparison to generate the soil
moisture change maps. The PCCD approach takes the advantages of straightforwardness
and simplicity and removes the requirement of strict radiometric errors. However, this
technique may face the problem the classification errors.

2.2.4. Validation and Cross-Referencing

Once the classification and change maps are generated, there is the requirement of
validating the outcomes with respect to the existing data sources to understand the ap-
plicability of the generated data. Therefore, the accuracy assessment was conducted and
computed for each class as well as the change map. The important parameters of the accu-
racy assessment included: (a) producer’s accuracy (PA); (b) user’s accuracy; (c) omission
error (OE); (d) commission error (CE); (e) overall accuracy (OA); and (f) kappa coeffi-
cient [68]. In the accuracy assessment procedure, more than 250 samples have been selected
for each class category using a stratified random sampling procedure [69-71]. To validate
the outcomes, SMAP-enhanced Level-2 radiometer surface soil moisture (derived from
SMAP Level-1B) data has been acquired at a resolution of 9 km from the online web portal
(https:/ /search.earthdata.nasa.gov/, accessed on 20 November 2022). The SMAP delivers
the soil moisture and freeze/thaw state from space for all non-liquid water surfaces globally
within the top layer of the Earth.

Moreover, the outcomes of the proposed framework have also been compared with
the well-known random forest post-classification-based change detection (RFPCD). As
a powerful and versatile supervised machine learning algorithm, the random forest is
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also known as the random decision forest. It operates by constructing a multitude of
decision trees on various subsets of the given dataset and taking the average to improve
the predictive accuracy. The random forest-based classified multitemporal input datasets
are compared together to generate the change maps. This method is very commonly used
for handling complex or big data problems. Nonetheless, the major problem associated
with RFPCD is that due to a large number of trees, the algorithms become slower and less
efficient in handling real-time scenarios.

3. Results and Discussion

To assess the performance of the proposed framework, the qualitative (visual) and
quantitative were computed. To explore the potential of the SCATSAT-1 dataset, all the
parameters of SCATSAT-1 (Level-4) have been considered i.e., 0°-HH, 0°-VV, v°-HH, and
v°-VV. Moreover, the comparative analysis of the proposed framework has also been per-
formed with a well-defined RFPCD algorithm with respect to various SCATSAT-1 parame-
ters (0°-HH, 0°-VV, y°-HH, and y°-VV). The NNIF allows the fusion of microwave-based
SCATSAT-1 (level 4) and optical-based MODIS (MOD02) images as shown in Figure 5a-d
for 20 November 2019, Figure 5e-h) for 20 December 2019, and Figure 5i-1 20 January 2020
using different parameters, i.e., 0°-HH, 0°-VV, y°-HH, and y°-VV. The visual interpretation
of fused images allows for the potential of various parameters of the SCATSAT-1 in cloud
removal. The fused datasets integrate the features of both MODIS and SCATSAT-1 in
the generation of enhanced-resolution products. But some of the cloud impacts can also
be visualized, which may be due to the problem of misalignment as both images were
acquired from different sensors. Moreover, the acquisition parameters of different imaging
sensor systems are not similar, which may raise errors in the outcomes.

MODO02 with o-HH MODO02 with o®-VV MODO02 with v?-HH MODO02 with v2-VV

20-Nov-2019

20-Dec-2019

20-Tan-2020

(G (o))

Figure 5. Image fusion of SCATSAT-1 (level 4) and MODIS (MODO02) of images (a—d) from 20
November 2019; (e-h) from 20 December 2019; and (i-1) from 20 January 2020 using different
parameters, i.e., 0°-HH, ¢°-VV, y°-HH, and y°-VV.

To generate the change maps from PCCD, the fused datasets of multitemporal inputs
are classified using ANN. ANN generally generates two types of datasets, i.e., rule maps
and classified maps, as shown in Figures 6 and 7, respectively. The classified maps are
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actual outcomes, but if the outcomes are not satisfactory, then rule maps can be used
to regenerate the classified outcomes without reperforming the classification. Figure 6
represents the ANN rule maps generated from the fused dataset (SCATSAT-1 and MODIS)
for (a—d) 20 November 2019; (e-h) 20 December 2019; and (i-1) 20 January 2020 using
different parameters, i.e., 0°-HH, 0°-VV, y°-HH, and y°-VV. In the rule maps, each class
category is represented in grayscale, and a multiclass image can be visualized by putting
each class in different RGB (red, green, and blue) planes. In Figure 6, the RGB planes
carried different information (i.e., red: high level of soil moisture, blue: mid-level of soil
moisture, green: high level of soil moisture). Figure 7 represents the ANN-based classified
maps generated from the fused dataset (SCATSAT-1 and MODIS) for (a—d) 20 November
2019; (e-h) 20 December 2019; and (i-1) 20 January 2020 using different parameters, i.e.,
0°-HH, 0°-VV, y°-HH, and y°-VV.

MODO02 with ¢%-HH MODO2 with o9-VV MODO2 with y°-HH MODO2 with y0-VV

\

20-Nov-2019

[

20-Dec-2019

20-Jan-2019

(O] &)

Legend PEBJENTY High [PEJUCRYENTY Mid Green Plane DI

Figure 6. ANN rule maps generated from the fused dataset (SCATSAT-1 and MODIS) for (a—d) 20
November 2019; (e-h) 20 December 2019; and (i-1) 20 January 2020 using different parameters, i.e.,
0°-HH, ¢°-VV, y°-HH, and y°-VV.

Afterward, multitemporal change maps have been generated from the fused classified
dataset using the PCCD approach, as shown in Figure 8. The multitemporal change maps
represent the variations in moisture level either in the positive direction, i.e., increment in
soil moisture (represented with green color), or the negative direction, i.e., decrement in
soil moisture (represented with maroon color). If the value is equal to zero, then no change
has been observed between two multitemporal dates.
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MODO02 with 6%-HH MODO02 with ®-VV MODO2 with y-HH MODO2 with 19-VV

20-Nov-2019

20-Dec-2019

20-Jan-2019

k)
Legend

Low e m High

Figure 7. ANN-based classified maps generated from the fused dataset (SCATSAT-1 and MODIS)
for (a-d) 20 November 2019; (e-h) 20 December 2019; and (i-1) 20 January 2020 using different
parameters, i.e., 0°-HH, 0°-VV, y°-HH, and y°-VV.

MODO02 with o*-HH MODO02 with o*-VV MODO2 with y*-HH MODO02 with y°-VV

Nov-2019 - Dec 2019

Dec-2019 — Jan-2020

Reduction in
soil moisture

s —, CFOment in
-1 —0.5 -0.25 0 025 0.5 1 soil moisture

Figure 8. PCCD change maps generated from the fused dataset (SCATSAT-1 and MODIS) for (a-d) Novem-
ber 2019-December 2019 and (e-h) December 2019-January 2020 using different parameters, i.e., 0°-HH,
0°-VV, y°-HH, and y°-VV (Note: SM: Soil Moisture).

To confirm the effectiveness of PCCD, a comparative analysis has also been performed
with the RFPCD algorithm. It must be noted that the RFPCD algorithm has been imple-
mented on the fused dataset (SCATSAT-1 and MODIS) for (a—d) 20 November 2019; (e-h)
20 December 2019; and (i-1) 20 January 2020 using different parameters, i.e., 0°-HH, 0°-VV,
v°-HH, and v°-VV as shown in Figure 9. Afterward, multitemporal change maps have
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been generated from the fused classified dataset using the RFPCD approach, as shown in
Figure 10.

MODO2 with o-HH MODO02 with 6-VV MODO2 with y*-HH MODO2 with y0-VV

\

20-Nov-2019

20-Dec-2019

20-Jan-2019

Legend

Low e s Hich

Figure 9. Random forest-based classified maps were generated from the fused dataset (SCATSAT-1
and MODIS) for (a-d) 20 November 2019; (e-h) 20 December 2019; and (i-1) 20 January 2020 using
different parameters, i.e., 0°-HH, 0°-VV, y°-HH, and y°-VV.

MODO2 with ¢*-HH MODO02 with 0°-VV MOD02 with y°-HH MODO2 with y°-VV

Nov-2019 - Dec 2019

Dec-2019 — Jan-2020

©

Legend
so0il moisture T

Reduction in Increment in

1 soil moisture

=1 -0.5 —0.25 0 0.25 0.5

Figure 10. RFPCD change maps generated from the fused dataset (SCATSAT-1 and MODIS) for (a-d) Novem-
ber 2019-December 2019 and (e-h) December 2019-January 2020 using different parameters, i.e., 0°-HH,
0°-VV, v°-HH, and vy°-VV (Note: SM: Soil Moisture).

The quantitative analysis allows us to judge the effectiveness of our proposed tech-
nique statistically, which is better than visual interpretation. Therefore, accuracy assess-
ments have been computed for each classified and changed map. Tables 2 and 3 represent
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the accuracy assessment of classified maps and change maps, respectively, computed from
ANN-PCCD. From Table 2, it has been seen that on all dates, the parameter c°-HH achieved
better accuracy (on 20 November 2019, OA = 94.92, kappa = 0.9234; on 20 December 2019,
OA = 9297, kappa = 0.8939; and on 20 January 2020, OA = 94.14, kappa = 0.9116) as
compared to other SCATSAT-1 parameters (i.e., 0°-VV, y°-HH, and y°-VV). Moreover, it
has also been apparent that for all parameters, more than 90.23% overall accuracy and less
than 12.79% error have been observed. These outcomes may be satisfactory enough to
generate the change maps.

Table 2. Accuracy assessment of annotated classified maps from different parameters.

Accuracy Max (%) Accuracy Min (%) Max Error (%) Overall
PA UA PA UA OE CE Kappa Accuracy
0°-HH 95.40 95.79 94.52 92.00 5.48 8.00 0.9234 94.92
20 November o°-VV 96.94 93.33 92.21 91.03 7.79 9.97 0.8819 92.19
2019 v°-HH 96.39 96.84 92.00 92.00 8.00 8.00 0.9116 94.14
y°-VVv 94.59 94.19 93.10 93.33 6.90 6.67 0.9058 93.75
o°-HH 94.94 97.89 92.08 87.21 7.92 12.79 0.8939 92.97
20 December o°-VV 91.67 92.63 87.67 85.33 2.33 4.67 0.8527 90.23
2019 v°-HH 94.05 95.79 90.54 91.86 9.46 8.14 0.8881 92.58
y°-VV 92.96 95.79 90.10 90.70 9.90 9.30 0.8761 91.80
o°-HH 97.50 97.89 91.18 90.70 8.82 9.30 0.9116 94.14
20 January 2020 o°-VV 94.59 93.33 90.72 91.86 9.28 8.14 0.8881 92.58
y v°-HH 94.12 94.74 92.00 92.00 8.00 8.00 0.8999 93.36
Y°-vv 94.19 92.63 90.79 92.00 9.21 8.00 0.8941 92.97
Note: OE: Omission Error; CE: Commission Error; PA: Producer’s Accuracy; UA: User’s Accuracy.
Table 3. Accuracy assessment of change maps generated from different parameters.
Accuracy Max (%) Accuracy Min (%) Max Error (%) Overall
PA UA PA UA OE CE Kappa Accuracy
N b 0°-HH 94.29 96.77 86.11 80.00 13.89 20.00 0.8997 91.80
2019°VDem ei o°-VV 94.34 93.24 75.00 80.00 25.00 20.00 0.8645 89.06
‘Zo‘ic;m T 4°-HH 94.55 94.55 74.07 73.33 25.93 26.67 0.8692 89.45
y°-VvV 95.83 97.37 74.29 76.00 25.71 24.00 0.8696 89.45
D b 0°-HH 96.36 96.36 79.31 72.00 20.69 28.00 0.8597 88.67
201;“”“ cr o°-VV 96.15 94.59 71.43 80.00 28.57 20.00 0.8549 88.28
;{) ;f(‘)uary v°-HH 93.24 93.24 76.92 80.00 23.08 20.00 0.8597 88.67
Y°-vv 94.34 95.95 71.43 79.41 28.57 20.59 0.8548 88.28

Note: OE: Omission Error; CE: Commission Error; PA: Producer’s Accuracy; UA: User’s Accuracy.

From the outcomes of ANN-PCCD change maps (Table 3), it has been seen that more
than 88% accuracy has been achieved in change maps computed using different SCATSAT-
1 parameters, i.e.,, 0°-HH, 0°-VV, y°-HH, and y°-VV. However, the parameter c°-HH
achieved marginally better accuracy (in November 2019-December 2019, OA = 91.80%,
kappa = 0.8997; and in December 2019-January 2020, OA = 88.67%, kappa = 0.8597) as
compared to other SCATSAT-1 parameters (i.e.,, 0°-VV, y°-HH, and y°-VV).

For the comparative analysis, the accuracy assessment has also been computed for
RFPCD classified and change maps, as shown in Tables 4 and 5, respectively. From the
classified outcomes of classified maps (Table 4), more than 90% accuracy has been achieved
with the SCATSAT-1 0°-HH parameter as compared to other SCATSAT-1 parameters, i.e.,
0°-VV, v°-HH, and y°-VV. From the change map outcomes of classified maps (Table 4),
marginally better accuracy (86.80-87.60%) has been achieved with the SCATSAT-1 c°-HH
parameter as compared to other SCATSAT-1 parameters, i.e., 0°-VV, y°-HH, and y°-VV.
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Table 4. Accuracy assessment of random forest classified maps from different parameters.
Accuracy Max (%) Accuracy Min (%) Max Error (%) Overall
PA UA PA UA OE CE Kappa  Accuracy
oc°-HH 91.92 91.00 89.47 90.12 10.53 9.88 0.8584 90.63
20 November o°-VV 90.43 93.75 86.11 82.67 13.89 17.33 0.8311 88.80
2019 v°-HH 90.67 92.00 89.61 85.00 10.39 15.00 0.8431 89.60
Y°-VVv 90.54 88.89 89.33 90.53 10.67 9.47 0.8492 90.00
c°-HH 92.68 94.67 87.78 84.44 12.22 15.56 0.8558 90.40
20 December VvV 90.70 91.01 86.17 82.67 13.83 17.33 0.8253 88.40
2019 ¥°-HH 90.24 88.76 83.33 86.05 16.67 13.95 0.8076 87.20
7°-vv 88.41 91.01 86.17 81.33 13.83 18.67 0.8011 86.80
oc°-HH 92.41 93.33 87.50 87.95 12.5 12.05 0.8557 90.40
20 January VvV 89.04 92.39 88.75 85.54 11.25 14.46 0.8251 88.40
2020 v°-HH 89.47 92.39 88.89 85.33 11.11 14.67 0.8372 89.20
y°-VV 89.87 90.22 85.71 85.54 14.29 14.46 0.8194 88.00
Note: OE: Omission Error; CE: Commission Error; PA: Producer’s Accuracy; UA: User’s Accuracy.
Table 5. Accuracy assessment of RFPCD change maps generated from different parameters.
Accuracy Max (%) Accuracy Min (%) Max Error (%) Overall
PA UA PA UA OE CE Kappa Accuracy
November  ¢°-HH 92.63 94.62 72.00 72.00 28.00 28.00 0.8403 87.60
2019- o°-VV 96.67 92.00 75.00 73.53 25.00 26.47 0.8260 86.40
December v°-HH 92.45 97.03 78.57 65.52 21.43 34.48 0.8312 87.20
2019 v°-vv 92.78 93.75 75.00 60.00 25.00 40.00 0.8241 86.40
December oc°-HH 91.67 97.06 78.57 64.00 2143 36.00 0.8252 86.80
2019- o°-VVv 92.63 91.67 77.14 79.41 22.86 20.59 0.8247 86.40
January v°-HH 91.43 100 76.47 64.00 23.53 36.00 0.8263 86.80
2020 v°-vv 91.67 91.67 78.57 68.00 2143 32.00 0.8193 86.00

Note: OE: Omission Error; CE: Commission Error; PA: Producer’s Accuracy; UA: User’s Accuracy.

The variability in climate is continuously reducing soil moisture and decreasing crop
yield. As an essential part of and an indicator of crop yield, the soil moisture level is
essential to be monitored continuously and accurately at the global level for planned food
production. The proposed framework allows the production of enhanced-resolution soil
moisture products using a multisensory remote sensing dataset. Due to the potential of
the microwave dataset for penetration through the clouds and its sensitivity towards the
water contents within the soil, active microwave-based SCATSAT-1 is very useful in the
real-time estimation of soil moisture. From the comparative analysis (Tables 2-5), it is
apparent that ANN-PCCD performed well enough not only in classifying outcomes but
also in generating change maps as compared to the RFPCD algorithm.

Moreover, the ANN-PCCD has also controlled the error rate (OE and CE) to a great
extent as compared to the RFPCD algorithm. However, it still needs to be improved with the
incorporation of advanced methods or the fusion of high spatial resolution on a larger scale.
As far as the different parameters of SCATSAT-1 are concerned, the y° as a normalized
form of the radar backscattered coefficient (c°) may overcome the range-dependency issues
in SCATSAT-1. Nevertheless, in the present work, better outcomes have been received with
0°. As a major characteristic of an electromagnetic (EM) signal, polarization (HH or VV)
highlights the different features of the Earth’s surface and is highly dependent on structural
variation or surface roughness [72]. In the present work, the soil moisture products were
generated marginally better with HH polarization as compared to VV polarization.

With the proposed framework, an enhanced resolution of SCATSAT-1 soil moisture
products can be achieved through the fusion of MODIS and SCATSAT-1 datasets. The
major advantages of both datasets included: (a) free accessibility; (b) daily data delivery;



Quaternary 2023, 6,28

13 of 16

and (c) global-level coverage [53]. Therefore, this combination of multisensory fusion
enhances the applicability of the proposed framework for the effective measurement of
soil moisture contents. Further, it also helps in delivering essential information on the
growing crops and their environment, allowing the farmers to understand the adequate
requirement of irrigation in the crop yield. The PCCD is straightforward in processing the
fused dataset and also avoids radiometric errors. However, multisensory fusion creates
many problems, such as spatial/spectral distortion, multiplicative speckle noise, and
improper registration [52]. Therefore, future work may include the incorporation of deep
learning, data mining, and big data processing.

4. Conclusions

This work presents a framework based on the integration of NNIF and ANN-PCCD
for crop yield estimation using optical-based MODIS and microwave-based SCATSAT-1. In
this study, various parameters of SCATSAT-1, i.e., 0°-HH, 0°-VV, y°-HH, and y°-VV, have
been demonstrated for the effective retrieval of soil moisture. Moreover, the outcomes of
the proposed framework have also been compared with those of a well-defined RFPCD.
The experimental outcomes confirm the effectiveness of the proposed framework in the
production of enhanced-resolution soil moisture operational classified maps (more than
90% overall accuracy) as well as change maps (more than 88% overall accuracy). However,
the commission and omission errors are still high in the change map production, which
may need to be addressed via more advanced models in the feature extraction and data
representation. However, the incorporation of deep neural networks with high spatial
resolution datasets may allow an improvement in the commission and omission errors.
The daily-based enhanced-resolution soil moisture products allow farmers to address the
emerging challenges in food security, particularly in crop yield prediction. This study also
highlights the crucial role of multisensory remote sensing datasets for crop monitoring and
yield prediction.
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