Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India
Abstract
:1. Introduction
2. Regional Settings
2.1. Study Area and Geology
2.2. Vegetation and Climate
3. Materials and Methods
3.1. Filed Work and Sampling
3.2. Protocol for Sample Processing
3.3. Microscopy and Construction of Pollen Diagram
4. Results
5. Discussion
5.1. Reconstruction of Vegetation Dynamics and Hydro-Climate Changes during the Middle Holocene
5.2. Regional Correlation and Global Contextualization of the HCO
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colin, C.; Kissel, C.; Blamart, D.; Turpin, L. Magnetic properties of sediments in the Bay of Bengal and the Andaman Sea: Impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon. Earth Planet. Sci. Lett. 1998, 160, 623–635. [Google Scholar] [CrossRef]
- McGregor, G.R.; Nieuwolt, S. Tropical Climatology; Wiley: Chichester, UK, 1998; p. 339. [Google Scholar]
- Wang, P.; Tian, J.; Lourens, L.J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 2010, 290, 319–330. [Google Scholar] [CrossRef]
- Gadgil, S.; Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Political Wkly. 2006, 41, 4887–4895. [Google Scholar]
- Basavaiah, N.; Seetharamaiah, J.; Appel, E.; Juyal, N.; Prasad, S.; Rao, K.N.; Khadkikar, A.S.; Nowaczyki, N.; Brauer, A. Holocene environmental magnetic records of Indian monsoon fluctuations. In Holocene Climate Change and Environment; Kumaran, K.P.N., Padmalal, D., Eds.; Elsevier: London, UK, 2022; pp. 229–246. [Google Scholar]
- Royer, D.L. Linkages between CO2, climate, and evolution in deep time. Proc. Natl. Acad. Sci. USA 2008, 105, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Tan, L.; Cheng, H.; An, Z.; Edwards, R.L.; Edwards, M.J.; Kong, X.; Wang, X. The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet. Sci. Lett. 2010, 291, 21–31. [Google Scholar] [CrossRef]
- Singhvi, A.K.; Bhattacharyya, A.; Kale, V.S.; Quadir, D.A.; Gupta, A.K.; Phadtare, N.R.; Shrestha, A.B.; Chauhan, O.S.; Kolli, R.K.; Sheikh, M.M.; et al. Instrumental, terrestrial and marine records of the climate of south Asia during the Holocene: Present status, unresolved problems and societal aspects. In Global Environmental Changes in South Asia; Mitra, A.P., Sharma, C., Eds.; National Physical Laboratory: New Delhi, India; Springer Netherlands: Heidelberg, Germany, 2010; pp. 54–124. [Google Scholar]
- Kotlia, B.S.; Singh, A.K.; Joshi, L.M.; Dhaila, B.S. Precipitation variability in the Indian Central Himalaya during last ca. 4000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quatern. Int. 2015, 371, 244–253. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Sanwal, J.; Raza, W.; Ahmad, S.M.; Joshi, L.M.; Sirohi, M.; Sharma, A.K.; Sagar, N. Stalagmite inferred high resolution climatic changes through Pleistocene-Holocene Transition in Northwest Indian Himalaya. J. EarthSci. Clim. Change 2016, 7, 338. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Zhao, J.-X.; Duan, W.; Tan, M.; Sharma, A.K.; Raza, W. Stalagmite based high resolution precipitation variability for past four centuries in the Indian Central Himalaya: Chulerasim cave re-visited and data re-interpretation. Quatern. Int. 2017, 444, 35–43. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Joshi, L.M.; Bisht, K. Precipitation variability over Northwest Himalaya from ∼4.0 to 1.9 ka BP with likely impact on civilization in the foreland areas. J. Asian Earth Sci. 2018, 162, 148–159. [Google Scholar] [CrossRef]
- Joshi, L.M.; Kotlia, B.S.; Kothyari, G.C.; Singh, A.K.; Taloor, A.K.; Upadhyay, R.; Dayal, D. Neotectonic Landform Development and Associated Mass Movements along Eastern Ramganga Valley in the Kumaun Himalaya, India. Geotectonics 2021, 55, 543–562. [Google Scholar] [CrossRef]
- McGhee, R. Archaeological evidence for climatic change during the last 5000 years. In Climate and History; Wigley, T.M.L., Ingram, M.J., Farmer, G., Eds.; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Weiss, H.; Courtney, M.-A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The genesis and collapse of third millennium north Mesopotamian civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodell, D.A.; Curtis, J.H.; Brenner, M. Possible role of climate in the collapse of classic Maya civilization. Nature 1995, 375, 391–394. [Google Scholar] [CrossRef]
- Dalfes, N.; Kukla, G.; Weiss, H. Third Millennium BC Climate Change and Old World Collapse; Springer: Berlin/Heidelberg, Germany; Springer: New York, NY, USA, 1996. [Google Scholar]
- Weiss, H.; Bradley, R.S. What drives societal collapse? Science 2001, 291, 609–610. [Google Scholar] [CrossRef]
- de Menocal, P.B. Cultural responses to climate change during the Late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef]
- Quamar, M.F.; Bera, S.K. Vegetation and climate change during mid and late Holocene in northern Chhattisgarh (central India) inferred from pollen records. Quat. Int. 2014, 349, 357–366. [Google Scholar] [CrossRef]
- Dodia, R. Climate of Kashmir during the last 700,000 years: The Baltal pollen profile. Proc. Natl. Acad. Sci. USA 1988, 54, 481–489. [Google Scholar]
- Gupta, H.P. Changing pattern of vegetation in the intermontane basin of Kashmir since 4 Ma: A palynological approach. Palaeobotanist 1991, 40, 354–373. [Google Scholar] [CrossRef]
- Gupta, H.P.; Sharma, C.; Dodia, R.; Mandavia, C.; Vora, A.B. A palynological interpretation of climate changes in Kashmir (India) during the past three million years. In Proceedings of Palaeoenvironment of East Asia from Mid-Tertiary II; Whyte, R.O., Ed.; Centre of Asian Studies, University of Hong Kong: Hong Kong, China, 1984; pp. 553–568. [Google Scholar]
- Gupta, H.P.; Sharma, C.; Dodia., R.; Mandavia, C.; Vora, A.B. Palynostratigraphy and palaeoenvironment of Kashmir, Hirpur Loc. III. In Current Trends in Geology (Climate and Geology of Kashmir); Today & Tomorrow’s Printers and Publishers: New Delhi, India, 1988; Volume VI, pp. 75–90. [Google Scholar]
- Gupta, H.P.; Sharma, C. Vegetational history and palaeoenvironment of Hirpur Loc. I, Lower Karewa. Palaeobotanist 1989, 37, 155–158. [Google Scholar]
- Sharma, C.; Gupta, H.P.; Dodia, R.; Mandavia, C. Palynostratigraphy and palaeoenvironment, Dubjan, Lower Karewa, Kashmir. In Current Trends in Geology (Climate and Geology of Kashmir); Today & Tomorrow’s Printers and Publishers: New Delhi, India, 1985; Volume VI, pp. 69–73. [Google Scholar]
- Sharma, B.D.; Vishnu-Mittre. Studies of Postglacial vegetational history from the Kashmir Valley-2. Babarishi and Yusmaidan. Palaeobotanist 1969, 17, 231–243. [Google Scholar]
- Singh, G. A preliminary survey of the Postglacial vegetational history of the Kashmir Valley. Palaeobotanist 1964, 12, 73–108. [Google Scholar]
- Vishnu-Mittre; Sharma, D.B. Studies of post glacial vegetation history from Kashmir valley-I, Haigatu lake. Palaeobotanist 1966, 15, 185–212. [Google Scholar]
- Bhattacharyya, A. Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 3, 25–38. [Google Scholar] [CrossRef]
- Sekhar, B. Interpretation of past climatic changes around Tsokar Lake, Ladakh for the last 33 ka on the basis of chemical data. Palaeobotanist 2000, 49, 519–527. [Google Scholar] [CrossRef]
- Trivedi, A.; Chauhan, M.S. Pollen proxy records of Holocene vegetation and climate change from Mansar Lake, Jammu region, India. Curr. Sci. 2008, 95, 1347–1354. [Google Scholar]
- Trivedi, A.; Chauhan, M.S. Holocene vegetation and climate fluctuations in Northwest Himalaya based on pollen evidence from Surinsar Lake, Jammu region, India. J. Geol. Soc. India 2009, 74, 402–412. [Google Scholar] [CrossRef]
- Quamar, M.F. Vegetation dynamics in response to climate change from the wetlands of Western Himalaya, India: Holocene Indian Summer Monsoon variability. Holocene 2019, 29, 345–362. [Google Scholar] [CrossRef]
- Quamar, M.F. Late Holocene vegetation dynamics and monsoonal climatic changes in Jammu, India. Acta Palaeobotanica 2022, 62, 36–49. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Joshi, L.M. Neotectonic and climatic impressions in the zone of TransHimadri Fault (THF), Kumaun Tethys Himalaya, India: A case study from palaeolakedeposits. Zeitschriftfür Geomorphologie 2013, 57, 289–303. [Google Scholar]
- Demske, D.; Tarasov, P.E.; Leipe, C.; Kotlia, B.S.; Joshi, L.M.; Long, T. Record of vegetation, climate change, human impact and retting of hemp in Garhwal Himalaya (India) during the past 4600 years. Holocene 2016, 26, 1–15. [Google Scholar] [CrossRef]
- Joshi, L.M.; Pant, P.D.; Kotlia, B.S.; Kothyari, G.C.; Luirei, K.; Singh, A.K. Structural overview and morphotectonic evolution of a strike slip fault in the zone of North Almora Thrust, Central Kumaun Himalaya, India. J. Geol. Res. 2016. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Bhalla, M.S.; Sharma, C.; Rajagopalan, G.; Ramesh, R.; Chauhan, M.S.; Mathur, P.D.; Bhandari, S.; Chacko, S.T. Palaeoclimatic conditions in the upper Pleistocene and Holocene Bhimtal–Naukuchiatal lake basin in southcentral Kumaun, North India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 130, 307–322. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Sharma, C.; Bhalla, M.S.; Rajagopalan, G.; Subrahmanyam, K.; Bhattacharyya, A.; Valdiya, K.S. Palaeoclimatic conditions in the Late Pleistocene Wadda lake, eastern Kumaun Himalaya (India). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 105–118. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Sanwal, J.; Phartiyal, B.; Joshi, L.M.; Trivedi, A.; Sharma, C. Late Quaternary climatic changes in the eastern Kumaun Himalaya, India, as deduced from multiproxy studies. Quat. Int. 2010, 213, 44–55. [Google Scholar] [CrossRef]
- Joshi, L.M.; Kotlia, B.S.; Ahmad, S.M.; Wu, C.C.; Sanwal, J.; Raza, W.; Singh, A.K.; Shen, C.C.; Long, T.; Sharma, A.K. Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka using speleothem delta δ18O records from the Central Lesser Himalaya, India. Arab. J. Geosci. 2017, 10, 1016. [Google Scholar] [CrossRef]
- Gupta, A.K.; Prakasam, M.; Dutt, S.; Clift, P.D.; Yadav, R.R. Evolution and development of the Indian Monsoon. In Geodynamics of the Indian Plate; Gupta, N., Tandon, S.K., Eds.; Springer Geology: Midtown Manhattan, NY, USA; Springer International Publishing: Midtown Manhattan, NY, USA, 2020; pp. 499–535. [Google Scholar] [CrossRef]
- Fleitmann, D.; Burns, S.J.; Mudelsee, M.; Neff, U.; Kramers, J.; Mangini, A.; Matter, A. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 2003, 300, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Anoop, A.; Riedel, N.; Sarkar, S.; Menzel, P.; Basavaiah, N.; Krishnan, R.; Fuller, D.; Plessen, B.; Gaye, B.; et al. Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India. Earth Planet Sci. Lett. 2014, 391, 171–182. [Google Scholar]
- Wang, B.; Liu, J.; Kim, H.J.; Webster, P.J.; Yim, S.-Y.; Xiang, B. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar]
- Morrill, C.; Overpeck, J.Y.; Cole, J.E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 2003, 13, 465–476. [Google Scholar] [CrossRef]
- McDonald, R.E. Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Clim. Dyn. 2011, 37, 1399–1425. [Google Scholar] [CrossRef]
- Gansser, A. The Geology of the Himalayas; Wiley Interscience: New York, NY, USA, 1964; p. 289. [Google Scholar]
- Tapponnier, P.; Molnar, P. Active faulting and tectonics in China. J. Geophys. Res. 1977, 82, 2905–2930. [Google Scholar] [CrossRef]
- Valdiya, K.S. Geology of Kumaun Lesser Himalaya; Wadia Institute of Himalayan Geology: Dehradun, India, 1980; pp. 1–291. [Google Scholar]
- Nakata, T. Active faults of the Himalayas of India and Nepal. Geol. Soc. Am. 1989, 232, 243–264. [Google Scholar]
- Godin, L. Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal Himalaya. J. Asian Earth Sci. 2003, 22, 307–328. [Google Scholar] [CrossRef]
- Agarwal, K.K.; Sharma, V.K. Quaternary tilt-block tectonics in parts of EasternKumaun Himalaya, India. Zeitschriftfür Geomorphologie 2011, 55, 197–208. [Google Scholar]
- Tiwari, V.C. Sedimentology of the rocks of Deoban basin, Dhurapat area, Saryu valley, eastern Kumaun Lesser Himalaya. Geosci. J. 1994, 15, 117–162. [Google Scholar]
- Kotlia, B.S.; Goswami, P.K.; Joshi, L.M.; Singh, A.K.; Sharma, A.K. Sedimentary environment and geomorphic development of the uppermost Siwalik molasse in Kumaun Himalayan Foreland Basin, North India. Geol. J. 2018, 53, 159–177. [Google Scholar] [CrossRef]
- Joshi, L.M.; Kotlia, B.S. Neotectonically triggered instability around the palaeolake regime in Central Kumaun Himalaya, India. Quat. Int. 2015, 371, 219–223. [Google Scholar] [CrossRef]
- Taloor, A.K.; Joshi, L.M.; Kotlia, B.S.; Alam, A.; Kothyari, G.C.; Kandregula, R.S.; Singh, A.K.; Dumka, R.K. Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: A geospatial approach. Quat. Int. 2021, 575, 21–36. [Google Scholar] [CrossRef]
- Champion, H.G.; Seth, S.K. A Revised Survey of Forest Types of India; Manager of Publications: New Delhi, India, 1968. [Google Scholar]
- Quamar, M.F.; Kar, R. Modern pollen dispersal studies in India: A detailed synthesis and review. Palynology 2020, 44, 217–236. [Google Scholar] [CrossRef]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; GebrüderBorntraeger: Berlin, Gernamy, 1936; Volume 1, p. 44. [Google Scholar]
- Erdtman, G. An Introduction to Pollen Analysis; Chronica Botanica Mass: Midtown Manhattan, NY, USA, 1943. [Google Scholar]
- Gupta, H.P.; Sharma, C. Pollen Flora of North-West Himalaya; Indian Association of Palynostratigraphers: Lucknow, India, 1987. [Google Scholar]
- Nair, P.K.K. Pollen Grains of Western Himalayan Plants; Asia Publishing House: Bombay, India, 1965. [Google Scholar]
- Nayar, T.S. Pollen Flora of Maharashtra State, India; Today and Tomorrow’s Printers and Publishers: New Delhi, India, 1990. [Google Scholar]
- Quamar, M.F.; Srivastava, J. Modern pollen rain in relation to vegetation in Jammu, Jammu and Kashmir, India. J. Palynol. 2013, 49, 19–30. [Google Scholar]
- Quamar, M.F.; Stivrins, N. Modern pollen and non-pollen palynomorphs along an altitudinal transect in Jammu and Kashmir (Western Himalaya), India. Palynology 2021, 45, 669–684. [Google Scholar] [CrossRef]
- Grimm, E.C. TILIA and TILIA.GRAPH, PC spreadsheet and graphics software for pollen data. In INQUA. Work. Group Datahandling Methods Newsl. 1990, 4, 5–7. [Google Scholar]
- Grimm, E.C. Coniss: A fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Benarde, M.A. Global Warming; John Wiley and Sons: New York, NY, USA, 1992. [Google Scholar]
- Dodia, R.; Agrawal, D.P.; Vora, A.B. New pollen data from the kashmir bogs: A summary. In Current Trends in Geology: Climate and Geology of Kashmir, 6; Today and Tomorrow’s Printers and Publishers: New Delhi, India, 1985; pp. 101–108. [Google Scholar]
- Bhattacharyya, A. Vegetation and climate during postglacial period in the vicinity of Rohtang Pass, Great Himalayan Range. Pollen Spores 1988, 30, 417–427. [Google Scholar]
- Phadtare, N.R. Sharp decrease in summer monsoon strength 4000–3500 calyr BP in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 2000, 53, 122–129. [Google Scholar] [CrossRef]
- Demske, D.; Tarasov, P.E.; Wünnemann, B.; Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation dynamics in the Trans-Himalaya recorded in the pollen profile from high-altitude Tso Kar Lake, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 279, 172–185. [Google Scholar] [CrossRef]
- Rawat, S.; Gupta, A.K.; Sangode, S.J.; Srivastava, P.; Nainwal, H.C. Late Pleistocene–Holocene vegetation and Indian summer monsoon record from the Lahaul, Northwest Himalaya, India. Quat. Sci. Rev. 2015, 114, 167–181. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Quamar, M.F. Mid-Holocene vegetation vis-a-vis climate change in southwestern Madhya Pradesh. Curr. Sci. 2012, 103, 1455–1461. [Google Scholar]
- Quamar, M.F.; Chauhan, M.S. Late Quaternary vegetation, climate as well as lakelevel changes and human occupation from Nitaya area in Hoshangabad District, southwestern Madhya Pradesh (India), based on pollen evidence. Quat. Int. 2012, 263, 104–113. [Google Scholar] [CrossRef]
- Chauhan, M.S. Vegetation and climatic variability in southeastern Madhya Pradesh, India since Mid-Holocene, based on pollen records. Curr. Sci. 2015, 109, 956–965. [Google Scholar] [CrossRef]
- Quamar, M.F.; Bera, S.K. Pollen records related to vegetation and climate change from northern Chhattisgarh, central India during the Late Quaternary. Palynology 2017, 41, 17–23. [Google Scholar] [CrossRef]
- Quamar, M.F.; Kar, R. Prolonged warming over the last ca. 11,700 cal years from the central Indian Core Monsoon Zone: Pollen evidence and a synoptic overview. Rev. Palaeobot. Palynol. 2020, 276, 104159. [Google Scholar] [CrossRef]
- Quamar, M.F. Palynological perspective on understanding climate change in India over the pre-industrial Common Era: A comprehensive review and a critical evaluation. In Role of Palynology in Understanding Stratigraphy and Climate Change during the Holocene in India; Samant, B., Ed.; Springer: Bern, Switzerland, 2022; submitted for publication. [Google Scholar]
- Quamar, M.F.; Banerji, U.S.; Kar, R.; Thakur, B. Indian Summer Monsoon rainfall (ISMR) variability over the Last Glacial Maximum (LGM) from the central Indian Core Monsoon Zone (CMZ): A review. Glob. Planet. Change 2022. submitted for publication. [Google Scholar]
- Renssen, H.; Seppä, H.; Crosta, X.; Goosse, H.; Roche, D.M. Global characterization of the Holocene Thermal Maximum. Quat. Sci. Rev. 2012, 48, 7–19. [Google Scholar] [CrossRef]
- Jansen, E.; Andersson, C.; Moros, M.; Nisancioglu, K.H.; Nyland, B.F.; Telford, R.J. The early to mid-Holocene thermal optimum in the North Atlantic. In Natural Climate Variability and GlobalWarming: A Holocene Perspective; Battarbee, R.W., Binney, H.A., Eds.; Wiley-Blackwell: Chichester, UK, 2008; pp. 123–137. [Google Scholar]
- Wanner, H.; Beer, J.; Butikofer, J.; Crowley, T.J.; Cubasch, U.; Fluckiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid-to Late Holocene climate change: An overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Miller, G.H.; Brigham-Grette, J.; Alley, R.B.; Anderson, L.; Bauch, H.A.; Douglas, M.S.V.; Edwards, M.E.; Elias, S.A.; Finney, B.P.; Fitzpatrick, J.J.; et al. Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 2010, 29, 1679–1715. [Google Scholar] [CrossRef]
- Bartlein, P.J.; Harrison, S.P.; Brewer, S.; Connor, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T.I.; Henderson, A.; Peyron, O.; et al. Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Clim. Dyn. 2011, 37, 755–802. [Google Scholar] [CrossRef]
- Jansen, E.; Overpeck, J.T.; Briffa, K.R.; Duplessy, J.C.; Joos, F.; Masson-Delmotte, V.; Olago, D.; Otto-Bliesner, B.; Peltier, W.R.; Rahmstorf, S.; et al. Palaeoclimate. In Climate Change 2007: The Physical Science Basis. 4th Assessment Report IPCC; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge Univ. Press: Cambridge, UK, 2007; pp. 433–498. [Google Scholar]
- Kaplan, M.R.; Wolfe, A.P. Spatial and temporal variability of Holocene temperature in the North Atlantic region. Quat. Res. 2006, 65, 223–231. [Google Scholar] [CrossRef]
- Renssen, H.; Seppä, H.; Heiri, O.; Roche, D.M.; Goosse, H.; Fichefet, T. The spatial and temporal complexity of the Holocene Thermal Maximum. Nat. Geosci. 2009, 2, 411–414. [Google Scholar] [CrossRef]
- Ljungqvist, F.C. The spatio-temporal pattern of the Mid-Holocene Thermal Maximum. Geografie 2011, 116, 91–110. [Google Scholar] [CrossRef] [Green Version]
S. No. | Sample Code | Height from Base (cm) | Age (Ka BP) |
---|---|---|---|
1 | RSPA1 | 24 | 7.508 ± 0.050 |
2 | RSPA4 | 138 | 6.955 ± 0.063 |
3 | RSPA7 | 236 | 6.077 ± 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quamar, M.F.; Singh, A.K.; Joshi, L.M.; Kotlia, B.S.; Singh, D.S.; Simion, C.A.; Sava, T.; Prasad, N. Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India. Quaternary 2023, 6, 11. https://doi.org/10.3390/quat6010011
Quamar MF, Singh AK, Joshi LM, Kotlia BS, Singh DS, Simion CA, Sava T, Prasad N. Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India. Quaternary. 2023; 6(1):11. https://doi.org/10.3390/quat6010011
Chicago/Turabian StyleQuamar, Mohammad Firoze, Anoop K. Singh, Lalit M. Joshi, Bahadur S. Kotlia, Dhruv Sen Singh, Corina Anca Simion, Tiberiu Sava, and Nagendra Prasad. 2023. "Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India" Quaternary 6, no. 1: 11. https://doi.org/10.3390/quat6010011
APA StyleQuamar, M. F., Singh, A. K., Joshi, L. M., Kotlia, B. S., Singh, D. S., Simion, C. A., Sava, T., & Prasad, N. (2023). Vegetation Dynamics and Hydro-Climatic Changes during the Middle Holocene from the Central Himalaya, India. Quaternary, 6(1), 11. https://doi.org/10.3390/quat6010011