A Review of Event Deposits in Lake Sediments
Abstract
:1. Introduction
2. Processes and Associated Sequences
2.1. Flood
2.2. Glacial Lake Outburst Floods
2.3. Avalanches
2.4. Volcanic Eruptions
2.5. Earthquakes
2.6. Delta Collapses
2.7. Tsunamis
2.7.1. Lake Tsunamis
2.7.2. Marine Tsunamis
2.8. Cyclones, Hurricanes, Typhoons, and Storms
3. How Can Event Deposits and Associated Processes Be Identified?
3.1. Spatial Imprint
3.1.1. Bathymetry
3.1.2. Seismic Reflection
3.1.3. Core Correlation
3.2. Lithofacies
3.2.1. Grain Size
3.2.2. Sedimentary Structures and Microfacies
3.2.3. Inorganic Geochemistry
Composition and/or Provenance of the Sediment Changes
Grain-Size Variability
The Event Induced a Change in Redox Conditions
3.2.4. Petrology
3.3. Biological and Organic Facies
3.3.1. Organic Geochemistry
3.3.2. Biological Remains
3.4. Other Approaches
4. Chronology
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gill, J.C. Geology and the Sustainable Development Goals. Episodes 2017, 40, 70–76. [Google Scholar] [CrossRef]
- Hodgson, D.M.; Bernhardt, A.; Clare, M.A.; Da Silva, A.-C.; Fosdick, J.C.; Mauz, B.; Midtkandal, I.; Owen, A.; Romans, B.W. Grand Challenges (and Great Opportunities) in Sedimentology, Stratigraphy, and Diagenesis Research. Front. Earth Sci. 2018, 6, 173. [Google Scholar] [CrossRef]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A Statistical Deterministic Approach to Hurricane Risk Assessment. Bull. Am. Meteor. Soc. 2006, 87, 299–314. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Landsea, C.W.; Harper, B.A.; Hoarau, K.; Knaff, J.A. Can We Detect Trends in Extreme Tropical Cyclones? Science 2006, 313, 452–454. [Google Scholar] [CrossRef]
- Gürpinar, A. The Importance of Paleoseismology in Seismic Hazard Studies for Critical Facilities. Tectonophysics 2005, 408, 23–28. [Google Scholar] [CrossRef]
- Michetti, A.M.; Audemard, M.; Franck, A.; Marco, S. Future Trends in Paleoseismology: Integrated Study of the Seismic Landscape as a Vital Tool in Seismic Hazard Analyses. Tectonophysics 2005, 408, 3–21. [Google Scholar] [CrossRef]
- Wilhelm, B.; Amann, B.; Corella, J.P.; Rapuc, W.; Giguet-Covex, C.; Merz, B.; Støren, E. Reconstructing Paleoflood Occurrence and Magnitude from Lake Sediments. Quaternary 2022, 5, 9. [Google Scholar] [CrossRef]
- Xu, M.; Bogen, J.; Wang, Z.; Bønsnes, T.E.; Gytri, S. Pro-Glacial Lake Sedimentation from Jökulhlaups (GLOF), Blåmannsisen, Northern Norway: Pro-glacial lake sedimentation from jökulhlaups. Earth Surf. Process. Landf. 2015, 40, 654–665. [Google Scholar] [CrossRef]
- Chaumillon, E.; Bertin, X.; Fortunato, A.B.; Bajo, M.; Schneider, J.-L.; Dezileau, L.; Walsh, J.P.; Michelot, A.; Chauveau, E.; Créach, A.; et al. Storm-Induced Marine Flooding: Lessons from a Multidisciplinary Approach. Earth-Sci. Rev. 2017, 165, 151–184. [Google Scholar] [CrossRef]
- Fouinat, L.; Sabatier, P.; David, F.; Montet, X.; Schoeneich, P.; Chaumillon, E.; Poulenard, J.; Arnaud, F. Wet Avalanches: Long-Term Evolution in the Western Alps under Climate and Human Forcing. Clim. Past 2018, 14, 1299–1313. [Google Scholar] [CrossRef]
- Moernaut, J. Time-Dependent Recurrence of Strong Earthquake Shaking near Plate Boundaries: A Lake Sediment Perspective. Earth-Sci. Rev. 2020, 210, 103344. [Google Scholar] [CrossRef]
- Kremer, K.; Anselmetti, F.S.; Evers, F.M.; Goff, J.; Nigg, V. Freshwater (Paleo)Tsunamis–a Review. Earth-Sci. Rev. 2021, 212, 103447. [Google Scholar] [CrossRef]
- Van Daele, M.; Moernaut, J.; Silversmit, G.; Schmidt, S.; Fontijn, K.; Heirman, K.; Vandoorne, W.; De Clercq, M.; Van Acker, J.; Wolff, C.; et al. The 600 Yr Eruptive History of Villarrica Volcano (Chile) Revealed by Annually Laminated Lake Sediments. Geol. Soc. Am. Bull. 2014, 126, 481–498. [Google Scholar] [CrossRef]
- Biguenet, M.; Sabatier, P.; Chaumillon, E.; Chagué, C.; Arnaud, F.; Jorissen, F.; Coulombier, T.; Geba, E.; Cordrie, L.; Vacher, P.; et al. A 1600 Year-Long Sedimentary Record of Tsunamis and Hurricanes in the Lesser Antilles (Scrub Island, Anguilla). Sediment. Geol. 2021, 412, 105806. [Google Scholar] [CrossRef]
- Sabatier, P.; Wilhelm, B.; Ficetola Gentile, F.; Moiroux, F.; Poulenard, J.; Develle, A.-L.; Bichet, A.; Chen, W.; Pignol, C.; Reyss, J.-L.; et al. 6-Kyr Record of Flood Frequency and Intensity in the Western Mediterranean Alps–Interplay of Solar and Temperature Forcing. Quat. Sci. Rev. 2017, 170, 121–135. [Google Scholar] [CrossRef]
- Vandekerkhove, E.; Van Daele, M.; Praet, N.; Cnudde, V.; Haeussler, P.J.; De Batist, M. Flood-triggered versus Earthquake-triggered Turbidites: A Sedimentological Study in Clastic Lake Sediments (Eklutna Lake, Alaska). Sedimentology 2020, 67, 364–389. [Google Scholar] [CrossRef]
- Wilhelm, B.; Arnaud, F.; Sabatier, P.; Magand, O.; Chapron, E.; Courp, T.; Tachikawa, K.; Fanget, B.; Malet, E.; Pignol, C.; et al. Palaeoflood Activity and Climate Change over the Last 1400 Years Recorded by Lake Sediments in the North-West European Alps. J. Quat. Sci. 2013, 28, 189–199. [Google Scholar] [CrossRef]
- Molenaar, A.; Van Daele, M.; Vandorpe, T.; Degenhart, G.; De Batist, M.; Urrutia, R.; Pino, M.; Strasser, M.; Moernaut, J. What Controls the Remobilization and Deformation of Surficial Sediment by Seismic Shaking? Linking Lacustrine Slope Stratigraphy to Great Earthquakes in South–Central Chile. Sedimentology 2021, 68, 2365–2396. [Google Scholar] [CrossRef]
- Vandekerkhove, E.; Bertrand, S.; Torrejón, F.; Kylander, M.E.; Reid, B.; Saunders, K.M. Signature of Modern Glacial Lake Outburst Floods in Fjord Sediments (Baker River, Southern Chile). Sedimentology 2021, 68, 2798–2819. [Google Scholar] [CrossRef]
- Kremer, K.; Hilbe, M.; Simpson, G.; Decrouy, L.; Wildi, W.; Girardclos, S. Reconstructing 4000 Years of Mass Movement and Tsunami History in a Deep Peri-Alpine Lake (Lake Geneva, France-Switzerland). Sedimentology 2015, 62, 1305–1327. [Google Scholar] [CrossRef]
- Wils, K.; Daryono, M.R.; Praet, N.; Santoso, A.B.; Dianto, A.; Schmidt, S.; Vervoort, M.; Huang, J.-J.S.; Kusmanto, E.; Suandhi, P.; et al. The Sediments of Lake Singkarak and Lake Maninjau in West Sumatra Reveal Their Earthquake, Volcanic and Rainfall History. Sediment. Geol. 2021, 416, 105863. [Google Scholar] [CrossRef]
- Bouma, A.H. Sedimentology of Some Flysch Deposits. In Agraphic Approach to Facies Interpretation; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1962; Volume 168. [Google Scholar]
- Donald, R. Lowe Sediment Gravity Flows: II Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents. J. Sediment. Res. 1982, 52, 279–297. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Shanmugam, G. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments. Sediment. Geol. 1980, 25, 23–42. [Google Scholar] [CrossRef]
- Mulder, T.; Alexander, J. The Physical Character of Subaqueous Sedimentary Density Flows and Their Deposits. Sedimentology 2001, 48, 269–299. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Rapuc, W.; Sabatier, P.; Arnaud, F.; Palumbo, A.; Develle, A.-L.; Reyss, J.-L.; Augustin, L.; Régnier, E.; Piccin, A.; Chapron, E.; et al. Holocene-Long Record of Flood Frequency in the Southern Alps (Lake Iseo, Italy) under Human and Climate Forcing. Glob. Planet. Change 2019, 175, 160–172. [Google Scholar] [CrossRef]
- Rapuc, W.; Sabatier, P.; Andrič, M.; Crouzet, C.; Arnaud, F.; Chapron, E.; Šmuc, A.; Develle, A.; Wilhelm, B.; Demory, F.; et al. 6600 Years of Earthquake Record in the Julian Alps (Lake Bohinj, Slovenia). Sedimentology 2018, 65, 1777–1799. [Google Scholar] [CrossRef]
- Dottori, F.; Szewczyk, W.; Ciscar, J.-C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased Human and Economic Losses from River Flooding with Anthropogenic Warming. Nat. Clim. Change 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Dankers, R.; Hirabayashi, Y.; Kanae, S.; Hattermann, F.F.; Huang, S.; Milly, P.C.D.; Stoffel, M.; Driessen, P.P.J.; et al. Differences in Flood Hazard Projections in Europe–Their Causes and Consequences for Decision Making. Hydrol. Sci. J. 2016, 62, 1–14. [Google Scholar] [CrossRef]
- Wilhelm, B.; Rapuc, W.; Amann, B.; Anselmetti, F.S.; Arnaud, F.; Blanchet, J.; Brauer, A.; Czymzik, M.; Giguet-Covex, C.; Gilli, A.; et al. Impact of Warmer Climate Periods on Flood Hazard in the European Alps. Nat. Geosci. 2022, 15, 118–123. [Google Scholar] [CrossRef]
- Sturm, M.; Matter, A. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In Modern and Ancient Lake Sediments; Matter, A., Tucker, M.E., Eds.; Wiley: Hoboken, NJ, USA, 1978; pp. 147–168. ISBN 978-0-632-00234-4. [Google Scholar]
- Wilhelm, B.; Sabatier, P.; Arnaud, F. Is a Regional Flood Signal Reproducible from Lake Sediments? Sedimentology 2015, 62, 1103–1117. [Google Scholar] [CrossRef]
- Chapron, E.; Desmet, M.; De Putter, T.; Loutre, M.F.; Beck, C.; Deconinck, J.F. Climatic Variability in the Northwestern Alps, France, as Evidenced by 600 Years of Terrigenous Sedimentation in Lake Le Bourget. Holocene 2002, 12, 177–185. [Google Scholar] [CrossRef]
- Giovanoli, F. Horizontal Transport and Sedimentation by Interflows and Turbidity Currents in Lake Geneva. In Large Lakes; Tilzer, M.M., Serruya, C., Eds.; Brock/Springer Series in Contemporary Bioscience; Springer: Berlin/Heidelberg, Germany, 1990; pp. 175–195. ISBN 978-3-642-84079-1. [Google Scholar]
- Pharo, C.H.; Carmack, E.C. Sedimentation Processes in a Short Residence-Time Intermontane Lake, Kamloops Lake, British Columbia. Sedimentology 1979, 26, 523–541. [Google Scholar] [CrossRef]
- Jenny, J.-P.; Wilhelm, B.; Arnaud, F.; Sabatier, P.; Giguet Covex, C.; Mélo, A.; Fanget, B.; Malet, E.; Ployon, E.; Perga, M.E. A 4D Sedimentological Approach to Reconstructing the Flood Frequency and Intensity of the Rhône River (Lake Bourget, NW European Alps). J. Paleolimnol. 2014, 51, 469–483. [Google Scholar] [CrossRef]
- Arnaud, F.; Lignier, V.; Revel, M.; Desmet, M.; Beck, C.; Pourchet, M.; Charlet, F.; Trentesaux, A.; Tribovillard, N. Flood and Earthquake Disturbance of 210Pb Geochronology (Lake Anterne, NW Alps). Terra Nova 2002, 14, 225–232. [Google Scholar] [CrossRef]
- Hsü, K.J.; Kelts, K.R. Quaternary Geology of Lake Zurich: An Interdisciplinary Investigation by Deep-Lake Drilling; Contributions to Sedimentology; Schweizerbart: Stuttgart, Germany, 1984; Volume 13. [Google Scholar]
- Lambert, A. Eintrag, Transport und Ablagerung von Feststoffen im Walensee. Eclogae Geol. Helv. 1978, 71, 35–52. [Google Scholar] [CrossRef]
- Lambert, A.; Kelts, K.; Zimmermann, U. Trübeströme in Seen: Sauerstoffeintrag durch grundnah eingeschichtetes Flusswasser. Schweiz. Z. Hydrol. 1984, 46, 41–50. [Google Scholar] [CrossRef]
- Smith, S.G.; Wegmann, K.W.; Leithold, E.L.; Bohnenstiehl, D.R. A 4000-Year Record of Hydrologic Variability from the Olympic Mountains, Washington, USA. Holocene 2019, 29, 1273–1291. [Google Scholar] [CrossRef]
- Mulder, T.; Chapron, E. Flood Deposits in Continental and Marine Environments Character and Significance. In Sediment Transfer from Shelf to Deep Water—Revisiting the Delivery System; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012; ISBN 978-1-62981-022-5. [Google Scholar]
- Wilhelm, B.; Arnaud, F.; Enters, D.; Allignol, F.; Legaz, A.; Magand, O.; Revillon, S.; Giguet-Covex, C.; Malet, E. Does Global Warming Favour the Occurrence of Extreme Floods in European Alps? First Evidences from a NW Alps Proglacial Lake Sediment Record. Clim. Change 2012, 113, 563–581. [Google Scholar] [CrossRef]
- Irmler, R.; Daut, G.; Mäusbacher, R. A Debris Flow Calendar Derived from Sediments of Lake Lago Di Braies (N. Italy). Geomorphology 2006, 77, 69–78. [Google Scholar] [CrossRef]
- Sletten, K.; Blikra, L.H.; Ballantyne, C.K.; Nesje, A.; Dahl, S.O. Holocene Debris Flows Recognized in a Lacustrine Sedimentary Succession: Sedimentology, Chronostratigraphy and Cause of Triggering. Holocene 2003, 13, 907–920. [Google Scholar] [CrossRef]
- Kiefer, C.; Oswald, P.; Moernaut, J.; Fabbri, S.C.; Mayr, C.; Strasser, M.; Krautblatter, M. A 4000-Year Debris Flow Record Based on Amphibious Investigations of Fan Delta Activity in Plansee (Austria, Eastern Alps). Earth Surf. Dynam. 2021, 9, 1481–1503. [Google Scholar] [CrossRef]
- Røthe, T.O.; Bakke, J.; Støren, E.W.N. Glacier Outburst Floods Reconstructed from Lake Sediments and Their Implications for Holocene Variations of the Plateau Glacier Folgefonna in Western Norway. Boreas 2019, 48, 616–634. [Google Scholar] [CrossRef]
- van der Bilt, W.G.M.; Barr, I.D.; Berben, S.M.P.; Hennekam, R.; Lane, T.; Adamson, K.; Bakke, J. Late Holocene Canyon-Carving Floods in Northern Iceland Were Smaller than Previously Reported. Commun. Earth Environ. 2021, 2, 86. [Google Scholar] [CrossRef]
- Boes, E.; Van Daele, M.; Moernaut, J.; Schmidt, S.; Jensen, B.J.L.; Praet, N.; Kaufman, D.; Haeussler, P.; Loso, M.G.; De Batist, M. Varve Formation during the Past Three Centuries in Three Large Proglacial Lakes in South-Central Alaska. GSA Bull. 2018, 130, 757–774. [Google Scholar] [CrossRef]
- Piret, L.; Bertrand, S.; Hawkings, J.; Kylander, M.E.; Torrejón, F.; Amann, B.; Wadham, J. High-resolution Fjord Sediment Record of a Receding Glacier with Growing Intermediate Proglacial Lake (Steffen Fjord, Chilean Patagonia). Earth Surf. Process. Landf. 2021, 46, 239–251. [Google Scholar] [CrossRef]
- Blikra, L.H.; Selvik, S.F. Climatic Signals Recorded in Snow Avalanche-Dominated Colluvium in Western Norway: Depositional Facies Successions and Pollen Records. Holocene 1998, 8, 631–658. [Google Scholar] [CrossRef]
- Nesje, A.; Bakke, J.; Dahl, S.O.; Lie, Ø.; Bøe, A.-G. A Continuous, High-Resolution 8500-Yr Snow-Avalanche Record from Western Norway. Holocene 2007, 17, 269–277. [Google Scholar] [CrossRef]
- Seierstad, J.; Nesje, A.; Dahl, S.O.; Simonsen, J.R. Holocene Glacier Fluctuations of Grovabreen and Holocene Snow-Avalanche Activity Reconstructed from Lake Sediments in Grningstlsvatnet, Western Norway. Holocene 2002, 12, 211–222. [Google Scholar] [CrossRef]
- Vasskog, K.; Nesje, A.; Støren, E.N.; Waldmann, N.; Chapron, E.; Ariztegui, D. A Holocene Record of Snow-Avalanche and Flood Activity Reconstructed from a Lacustrine Sedimentary Sequence in Oldevatnet, Western Norway. Holocene 2011, 21, 597–614. [Google Scholar] [CrossRef]
- Jomelli, V.; Bertran, P. Wet Snow Avalanche Deposits in the French Alps: Structure and Sedimentology. Geogr. Ann. Ser. A Phys. Geogr. 2001, 83, 15–28. [Google Scholar] [CrossRef]
- Fouinat, L.; Sabatier, P.; Poulenard, J.; Reyss, J.-L.; Montet, X.; Arnaud, F. A New CT Scan Methodology to Characterize a Small Aggregation Gravel Clast Contained in a Soft Sediment Matrix. Earth Surf. Dyn. 2017, 5, 199–209. [Google Scholar] [CrossRef]
- Moore, J.R.; Egloff, J.; Nagelisen, J.; Hunziker, M.; Aerne, U.; Christen, M. Sediment Transport and Bedrock Erosion by Wet Snow Avalanches in the Guggigraben, Matter Valley, Switzerland. Arct. Antarct. Alp. Res. 2013, 45, 350–362. [Google Scholar] [CrossRef]
- Baggi, S.; Schweizer, J. Characteristics of Wet-Snow Avalanche Activity: 20 Years of Observations from a High Alpine Valley (Dischma, Switzerland). Nat. Hazards 2009, 50, 97–108. [Google Scholar] [CrossRef]
- Castebrunet, H.; Eckert, N.; Giraud, G. Snow and Weather Climatic Control on Snow Avalanche Occurrence Fluctuations over 50 Yr in the French Alps. Clim. Past 2012, 8, 855–875. [Google Scholar] [CrossRef]
- Luckman, B.H. The Geomorphic Activity of Snow Avalanches. Geogr. Ann. Ser. A Phys. Geogr. 1977, 59, 31–48. [Google Scholar] [CrossRef]
- Thys, S.; Van Daele, M.; Praet, N.; Jensen, B.; Van Dyck, T.; Haeussler, P.; Vandekerkhove, E.; Cnudde, V.; De Batist, M. Dropstones in Lacustrine Sediments as a Record of Snow Avalanches—A Validation of the Proxy by Combining Satellite Imagery and Varve Chronology at Kenai Lake (South-Central Alaska). Quaternary 2019, 2, 11. [Google Scholar] [CrossRef]
- Lowe, D.J. Tephrochronology and Its Application: A Review. Quat. Geochronol. 2011, 6, 107–153. [Google Scholar] [CrossRef]
- Lowe, D.J.; Pearce, N.J.G.; Jorgensen, M.A.; Kuehn, S.C.; Tryon, C.A.; Hayward, C.L. Correlating Tephras and Cryptotephras Using Glass Compositional Analyses and Numerical and Statistical Methods: Review and Evaluation. Quat. Sci. Rev. 2017, 175, 1–44. [Google Scholar] [CrossRef]
- Fontijn, K.; Rawson, H.; Van Daele, M.; Moernaut, J.; Abarzúa, A.M.; Heirman, K.; Bertrand, S.; Pyle, D.M.; Mather, T.A.; De Batist, M.; et al. Synchronisation of Sedimentary Records Using Tephra: A Postglacial Tephrochronological Model for the Chilean Lake District. Quat. Sci. Rev. 2016, 137, 234–254. [Google Scholar] [CrossRef]
- Guédron, S.; Tolu, J.; Brisset, E.; Sabatier, P.; Perrot, V.; Bouchet, S.; Develle, A.L.; Bindler, R.; Cossa, D.; Fritz, S.C.; et al. Late Holocene Volcanic and Anthropogenic Mercury Deposition in the Western Central Andes (Lake Chungará, Chile). Sci. Total Environ. 2019, 662, 903–914. [Google Scholar] [CrossRef]
- Matthews-Bird, F.; Brooks, S.J.; Gosling, W.D.; Gulliver, P.; Mothes, P.; Montoya, E. Aquatic Community Response to Volcanic Eruptions on the Ecuadorian Andean Flank: Evidence from the Palaeoecological Record. J. Paleolimnol 2017, 58, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Telford, R. Lacustrine Responses to Tephra Deposition: Examples from Mexico. Quat. Sci. Rev. 2004, 23, 2337–2353. [Google Scholar] [CrossRef]
- Urrutia, R.; Araneda, A.; Cruces, F.; Torres, L.; Chirinos, L.; Treutler, H.C.; Fagel, N.; Bertrand, S.; Alvial, I.; Barra, R.; et al. Changes in Diatom, Pollen, and Chironomid Assemblages in Response to a Recent Volcanic Event in Lake Galletué (Chilean Andes). Limnologica 2007, 37, 49–62. [Google Scholar] [CrossRef]
- White, J.D.L.; Manville, V.; Wilson, C.J.N.; Houghton, B.F.; Riggs, N.R.; Ort, M. Settling and Deposition OfAD 181 Taupo Pumice in Lacustrine and Associated Environments. In Volcaniclastic Sedimentation in Lacustrine Settings; White, J.D.L., Riggs, N.R., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2001; pp. 141–150. ISBN 978-1-4443-0425-1. [Google Scholar]
- Green, R.M.; Bebbington, M.S.; Jones, G.; Cronin, S.J.; Turner, M.B. Estimation of Tephra Volumes from Sparse and Incompletely Observed Deposit Thicknesses. Bull. Volcanol. 2016, 78, 25. [Google Scholar] [CrossRef]
- Bertrand, S.; Daga, R.; Bedert, R.; Fontijn, K. Deposition of the 2011–2012 Cordón Caulle Tephra (Chile, 40° S) in Lake Sediments: Implications for Tephrochronology and Volcanology: Tephra Deposition in Lake Sediments. J. Geophys. Res. Earth Surf. 2014, 119, 2555–2573. [Google Scholar] [CrossRef]
- Kylander, M.E.; Lind, E.M.; Wastegård, S.; Löwemark, L. Recommendations for Using XRF Core Scanning as a Tool in Tephrochronology. Holocene 2012, 22, 371–375. [Google Scholar] [CrossRef]
- Davies, S.M.; Elmquist, M.; Bergman, J.; Wohlfarth, B.; Hammarlund, D. Cryptotephra Sedimentation Processes within Two Lacustrine Sequences from West Central Sweden. Holocene 2007, 17, 319–330. [Google Scholar] [CrossRef]
- Lane, C.S.; Martin-Jones, C.M.; Johnson, T.C. A Cryptotephra Record from the Lake Victoria Sediment Core Record of Holocene Palaeoenvironmental Change. Holocene 2018, 28, 1909–1917. [Google Scholar] [CrossRef]
- Doig, R. A Method for Determining the Frequency of Large-Magnitude Earthquakes Using Lake Sediments. Can. J. Earth Sci. 1986, 23, 930–937. [Google Scholar] [CrossRef]
- Hibsch, C.; Alvarado, A.; Yepes, H.; Perez, V.H.; Sébrier, M. Holocene Liquefaction and Soft-Sediment Deformation in Quito (Ecuador): A Paleoseismic History Recorded in Lacustrine Sediments. J. Geodyn. 1997, 24, 259–280. [Google Scholar] [CrossRef]
- Marco, S.; Stein, M.; Agnon, A.; Ron, H. Long-Term Earthquake Clustering: A 50,000-Year Paleoseismic Record in the Dead Sea Graben. J. Geophys. Res. 1996, 101, 6179–6191. [Google Scholar] [CrossRef]
- Sims, J.D. Determining Earthquake Recurrence Intervals from Deformational Structures in Young Lacustrine Sediments. Dev. Geotecton. 1975, 29, 141–152. [Google Scholar] [CrossRef]
- Strasser, M.; Monecke, K.; Schnellmann, M.; Anselmetti, F.S. Lake Sediments as Natural Seismographs: A Compiled Record of Late Quaternary Earthquakes in Central Switzerland and Its Implication for Alpine Deformation. Sedimentology 2013, 60, 319–341. [Google Scholar] [CrossRef]
- Lu, Y.; Wetzler, N.; Waldmann, N.; Agnon, A.; Biasi, G.P.; Marco, S. A 220,000-Year-Long Continuous Large Earthquake Record on a Slow-Slipping Plate Boundary. Sci. Adv. 2020, 6, eaba4170. [Google Scholar] [CrossRef] [PubMed]
- Avşar, U.; Jónsson, S.; Avşar, Ö.; Schmidt, S. Earthquake-Induced Soft-Sediment Deformations and Seismically Amplified Erosion Rates Recorded in Varved Sediments of Köyceğiz Lake (SW Turkey): Earthquake Records in Lacustrine Varves. J. Geophys. Res. Solid Earth 2016, 121, 4767–4779. [Google Scholar] [CrossRef]
- Kremer, K.; Wirth, S.B.; Reusch, A.; Fäh, D.; Bellwald, B.; Anselmetti, F.S.; Girardclos, S.; Strasser, M. Lake-Sediment Based Paleoseismology: Limitations and Perspectives from the Swiss Alps. Quat. Sci. Rev. 2017, 168, 1–18. [Google Scholar] [CrossRef]
- Moernaut, J.; Daele, M.V.; Heirman, K.; Fontijn, K.; Strasser, M.; Pino, M.; Urrutia, R.; De Batist, M. Lacustrine Turbidites as a Tool for Quantitative Earthquake Reconstruction: New Evidence for a Variable Rupture Mode in South Central Chile. J. Geophys. Res. Solid Earth 2014, 119, 1607–1633. [Google Scholar] [CrossRef]
- Wilhelm, B.; Nomade, J.; Crouzet, C.; Litty, C.; Sabatier, P.; Belle, S.; Rolland, Y.; Revel, M.; Courboulex, F.; Arnaud, F.; et al. Quantified Sensitivity of Small Lake Sediments to Record Historic Earthquakes: Implications for Paleoseismology: LAKE SENSITIVITY TO RECORD EARTHQUAKES. J. Geophys. Res. Earth Surf. 2016, 121, 2–16. [Google Scholar] [CrossRef]
- Beck, C. Late Quaternary Lacustrine Paleo-Seismic Archives in North-Western Alps: Examples of Earthquake-Origin Assessment of Sedimentary Disturbances. Earth-Sci. Rev. 2009, 96, 327–344. [Google Scholar] [CrossRef]
- Van Daele, M.; Moernaut, J.; Doom, L.; Boes, E.; Fontijn, K.; Heirman, K.; Vandoorne, W.; Hebbeln, D.; Pino, M.; Urrutia, R.; et al. A Comparison of the Sedimentary Records of the 1960 and 2010 Great Chilean Earthquakes in 17 Lakes: Implications for Quantitative Lacustrine Palaeoseismology. Sedimentology 2015, 62, 1466–1496. [Google Scholar] [CrossRef]
- Agnon, A.; Migowski, C.; Marco, S. Intraclast Breccias in Laminated Sequences Reviewed: Recorders of Paleo-Earthquakes. In New Frontiers in Dead Sea Paleoenvironmental Research; Geological Society of America: Boulder, CO, USA, 2006; ISBN 978-0-8137-2401-0. [Google Scholar]
- Oswald, P.; Strasser, M.; Hammerl, C.; Moernaut, J. Seismic Control of Large Prehistoric Rockslides in the Eastern Alps. Nat. Commun. 2021, 12, 1059. [Google Scholar] [CrossRef]
- Sammartini, M.; Moernaut, J.; Anselmetti, F.S.; Hilbe, M.; Lindhorst, K.; Praet, N.; Strasser, M. An Atlas of Mass-Transport Deposits in Lakes. In Geophysical Monograph Series; Ogata, K., Festa, A., Pini, G.A., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 201–226. ISBN 978-1-119-50058-2. [Google Scholar]
- Leithold, E.L.; Wegmann, K.W.; Bohnenstiehl, D.R.; Joyner, C.N.; Pollen, A.F. Repeated Megaturbidite Deposition in Lake Crescent, Washington, USA, Triggered by Holocene Ruptures of the Lake Creek-Boundary Creek Fault System. GSA Bull. 2019, 131, 2039–2055. [Google Scholar] [CrossRef]
- Bertrand, S.; Charlet, F.; Chapron, E.; Fagel, N.; De Batist, M. Reconstruction of the Holocene Seismotectonic Activity of the Southern Andes from Seismites Recorded in Lago Icalma, Chile, 39° S. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 259, 301–322. [Google Scholar] [CrossRef]
- Howarth, J.D.; Fitzsimons, S.J.; Norris, R.J.; Jacobsen, G.E. Lake Sediments Record Cycles of Sediment Flux Driven by Large Earthquakes on the Alpine Fault, New Zealand. Geology 2012, 40, 1091–1094. [Google Scholar] [CrossRef]
- Jiang, H.; Zhong, N.; Li, Y.; Ma, X.; Xu, H.; Shi, W.; Zhang, S.; Nie, G. A Continuous 13.3-Ka Record of Seismogenic Dust Events in Lacustrine Sediments in the Eastern Tibetan Plateau. Sci. Rep. 2017, 7, 15686. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, M.; Araya-Cornejo, C.; Pille, T.; Vanneste, K.; Moernaut, J.; Schmidt, S.; Kempf, P.; Meyer, I.; Cisternas, M. Distinguishing Intraplate from Megathrust Earthquakes Using Lacustrine Turbidites. Geology 2019, 47, 127–130. [Google Scholar] [CrossRef]
- Archer, C.; Noble, P.; Rosen, M.R.; Sagnotti, L.; Florindo, F.; Mensing, S.; Piovesan, G.; Michetti, A.M. Lakes as Paleoseismic Records in a Seismically-Active, Low-Relief Area (Rieti Basin, Central Italy). Quat. Sci. Rev. 2019, 211, 186–207. [Google Scholar] [CrossRef]
- Daxer, C.; Sammartini, M.; Molenaar, A.; Piechl, T.; Strasser, M.; Moernaut, J. Morphology and Spatio-Temporal Distribution of Lacustrine Mass-Transport Deposits in Wörthersee, Eastern Alps, Austria. Geol. Soc. Lond. Spec. Publ. 2020, 500, 235–254. [Google Scholar] [CrossRef]
- Praet, N.; Moernaut, J.; Van Daele, M.; Boes, E.; Haeussler, P.J.; Strupler, M.; Schmidt, S.; Loso, M.G.; De Batist, M. Paleoseismic Potential of Sublacustrine Landslide Records in a High-Seismicity Setting (South-Central Alaska). Mar. Geol. 2017, 384, 103–119. [Google Scholar] [CrossRef]
- Daxer, C.; Ortler, M.; Fabbri, S.C.; Hilbe, M.; Hajdas, I.; Dubois, N.; Piechl, T.; Hammerl, C.; Strasser, M.; Moernaut, J. High-Resolution Calibration of Seismically-Induced Lacustrine Deposits with Historical Earthquake Data in the Eastern Alps (Carinthia, Austria). Quat. Sci. Rev. 2022, 284, 107497. [Google Scholar] [CrossRef]
- Gastineau, R.; Sigoyer, J.; Sabatier, P.; Fabbri, S.C.; Anselmetti, F.S.; Develle, A.L.; Şahin, M.; Gündüz, S.; Niessen, F.; Gebhardt, A.C. Active Subaquatic Fault Segments in Lake Iznik Along the Middle Strand of the North Anatolian Fault, NW Turkey. Tectonics 2021, 40, e2020TC006404. [Google Scholar] [CrossRef]
- Praet, N.; Van Daele, M.; Moernaut, J.; Mestdagh, T.; Vandorpe, T.; Jensen, B.J.L.; Witter, R.C.; Haeussler, P.J.; De Batist, M. Unravelling a 2300 Year Long Sedimentary Record of Megathrust and Intraslab Earthquakes in Proglacial Skilak Lake, South-central Alaska. Sedimentology 2022, 69, 2151–2180. [Google Scholar] [CrossRef]
- Avşar, U.; Hubert-Ferrari, A.; De Batist, M.; Lepoint, G.; Schmidt, S.; Fagel, N. Seismically-Triggered Organic-Rich Layers in Recent Sediments from Göllüköy Lake (North Anatolian Fault, Turkey). Quat. Sci. Rev. 2014, 103, 67–80. [Google Scholar] [CrossRef]
- Hilbe, M.; Anselmetti, F.S. Signatures of Slope Failures and River-Delta Collapses in a Perialpine Lake (Lake Lucerne, Switzerland). Sedimentology 2014, 61, 1883–1907. [Google Scholar] [CrossRef]
- Kremer, K.; Simpson, G.; Girardclos, S. Giant Lake Geneva Tsunami in AD 563. Nature Geosci. 2012, 5, 756–757. [Google Scholar] [CrossRef]
- Nigg, V.; Wohlwend, S.; Hilbe, M.; Bellwald, B.; Fabbri, S.C.; de Souza, G.F.; Donau, F.; Grischott, R.; Strasser, M.; Anselmetti, F.S. A Tsunamigenic Delta Collapse and Its Associated Tsunami Deposits in and around Lake Sils, Switzerland. Nat. Hazards 2021, 107, 1069–1103. [Google Scholar] [CrossRef] [PubMed]
- Girardclos, S.; Schmidt, O.T.; Sturm, M.; Ariztegui, D.; Pugin, A.; Anselmetti, F.S. The 1996 AD Delta Collapse and Large Turbidite in Lake Brienz. Mar. Geol. 2007, 241, 137–154. [Google Scholar] [CrossRef]
- Fabbri, S.C.; Haas, I.; Kremer, K.; Motta, D.; Girardclos, S.; Anselmetti, F.S. Subaqueous Geomorphology and Delta Dynamics of Lake Brienz (Switzerland): Implications for the Sediment Budget in the Alpine Realm. Swiss J. Geosci. 2021, 114, 22. [Google Scholar] [CrossRef] [PubMed]
- Rapuc, W.; Arnaud, F.; Sabatier, P.; Anselmetti, F.S.; Piccin, A.; Peruzza, L.; Bastien, A.; Augustin, L.; Régnier, E.; Gaillardet, J.; et al. Instant Sedimentation in a Deep Alpine Lake (Iseo, Italy) Controlled by Climate, Human and Geodynamic Forcing. Sedimentology 2022, 69, 1816–1840. [Google Scholar] [CrossRef]
- Moore, J.G.; Schweickert, R.A.; Kitts, C.A. Tsunami-Generated Sediment Wave Channels at Lake Tahoe, California-Nevada, USA. Geosphere 2014, 10, 757–768. [Google Scholar] [CrossRef]
- Moore, J.G.; Schweickert, R.A.; Robinson, J.E.; Lahren, M.M.; Kitts, C.A. Tsunami-Generated Boulder Ridges in Lake Tahoe, California-Nevada. Geology 2006, 34, 965. [Google Scholar] [CrossRef]
- Nigg, V.; Bacigaluppi, P.; Vetsch, D.F.; Vogel, H.; Kremer, K.; Anselmetti, F.S. Shallow-Water Tsunami Deposits: Evidence From Sediment Cores and Numerical Wave Propagation of the 1601 CE Lake Lucerne Event. Geochem. Geophys. Geosyst. 2021, 22, e2021GC009753. [Google Scholar] [CrossRef]
- Waldmann, N.; Vasskog, K.; Simpson, G.; Chapron, E.; Støren, E.W.N.; Hansen, L.; Loizeau, J.-L.; Nesje, A.; Ariztegui, D. Anatomy of a Catastrophe: Reconstructing the 1936 Rock Fall and Tsunami Event in Lake Lovatnet, Western Norway. Front. Earth Sci. 2021, 9, 671378. [Google Scholar] [CrossRef]
- Avalos Cueva, D.; Monzón, C.O.; Filonov, A.; Tereshchenko, I.; Limón Covarrubias, P.; Galaviz González, J.R. Natural Frequencies of Seiches in Lake Chapala. Sci. Rep. 2019, 9, 11863. [Google Scholar] [CrossRef] [PubMed]
- Chapron, E.; Beck, C.; Pourchet, M.; Deconinck, J.-F. 1822 Earthquake-Triggered Homogenite in Lake Le Bourget (NW Alps). Terra Nova 1999, 11, 86–92. [Google Scholar] [CrossRef]
- Ichinose, G.A.; Anderson, J.G.; Satake, K.; Schweickert, R.A.; Lahren, M.M. The Potential Hazard from Tsunami and Seiche Waves Generated by Large Earthquakes within Lake Tahoe, California-Nevada. Geophys. Res. Lett. 2000, 27, 1203–1206. [Google Scholar] [CrossRef]
- Chapron, E.; Ariztegui, D.; Mulsow, S.; Villarosa, G.; Pino, M.; Outes, V.; Juvignié, E.; Crivelli, E. Impact of the 1960 Major Subduction Earthquake in Northern Patagonia (Chile, Argentina). Quat. Int. 2006, 158, 58–71. [Google Scholar] [CrossRef]
- Schnellmann, M.; Anselmetti, F.S.; Giardini, D.; Mckenzie, J.A. 15,000 Years of Mass-Movement History in Lake Lucerne: Implications for Seismic and Tsunami Hazards. Eclogae. Geol. Helv. 2006, 99, 409–428. [Google Scholar] [CrossRef]
- Siegenthaler, C.; Finger, W.; Kelts, K.; Wang, S. Earthquake and Seiche Deposits in Lake Lucerne, Switzerland. Eclogae Geol. Helv. 1987, 80, 241–260. [Google Scholar] [CrossRef]
- Minoura, K.; Nakaya, S.; Uchida, M. Tsunami Deposits in a Lacustrine Sequence of the Sanriku Coast, Northeast Japan. Sediment. Geol. 1994, 89, 25–31. [Google Scholar] [CrossRef]
- Hutchinson, I.; Clague, J.J.; Mathewes, R.W. Reconstructing the Tsunami Record on an Emerging Coast: A Case Study of Kanim Lake, Vancouver Island, British Columbia, Canada. J. Coast. Res. 1997, 13, 545–553. [Google Scholar]
- Baranes, H.E.; Woodruff, J.D.; Wallace, D.J.; Kanamaru, K.; Cook, T.L. Sedimentological Records of the C.E. 1707 Hōei Nankai Trough Tsunami in the Bungo Channel, Southwestern Japan. Nat. Hazards 2016, 84, 1185–1205. [Google Scholar] [CrossRef]
- Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C. Tsunami History of an Oregon Coastal Lake Reveals a 4600 Yr Record of Great Earthquakes on the Cascadia Subduction Zone. Geol. Soc. Am. Bull. 2005, 117, 1009. [Google Scholar] [CrossRef]
- Kempf, P.; Moernaut, J.; Van Daele, M.; Vermassen, F.; Vandoorne, W.; Pino, M.; Urrutía, R.; Schmidt, S.; Garrett, E.; De Batist, M. The Sedimentary Record of the 1960 Tsunami in Two Coastal Lakes on Isla de Chiloé, South Central Chile. Sediment. Geol. 2015, 328, 73–86. [Google Scholar] [CrossRef]
- Paris, R.; Sabatier, P.; Biguenet, M.; Bougouin, A.; André, G.; Roger, J. A Tsunami Deposit at Anse Meunier, Martinique Island: Evidence of the 1755 CE Lisbon Tsunami and Implication for Hazard Assessment. Mar. Geol. 2021, 439, 106561. [Google Scholar] [CrossRef]
- Avşar, U. Sedimentary Geochemical Evidence of Historical Tsunamis in the Eastern Mediterranean from Ölüdeniz Lagoon, SW Turkey. J. Paleolimnol 2019, 61, 373–385. [Google Scholar] [CrossRef]
- Vött, A.; Brückner, H.; May, S.M.; Sakellariou, D.; Nelle, O.; Lang, F.; Kapsimalis, V.; Jahns, S.; Herd, R.; Handl, M.; et al. The Lake Voulkaria (Akarnania, NW Greece) Palaeoenvironmental Archive a Sediment Trap for Multiple Tsunami Impact since the Mid-Holocene. Z. Für Geomorphologie. Supplementband 2009, 53, 1–37. [Google Scholar] [CrossRef]
- Jackson, K.L.; Eberli, G.P.; Amelung, F.; McFadden, M.A.; Moore, A.L.; Rankey, E.C.; Jayasena, H.A.H. Holocene Indian Ocean Tsunami History in Sri Lanka. Geology 2014, 42, 859–862. [Google Scholar] [CrossRef]
- Bondevik, S.; Inge Svendsen, J.; Mangerud, J. Tsunami Sedimentary Facies Deposited by the Storegga Tsunami in Shallow Marine Basins and Coastal Lakes, Western Norway. Sedimentology 1997, 44, 1115–1131. [Google Scholar] [CrossRef]
- Wagner, B.; Bennike, O.; Klug, M.; Cremer, H. First Indication of Storegga Tsunami Deposits from East Greenland. J. Quat. Sci. 2007, 22, 321–325. [Google Scholar] [CrossRef]
- Kempf, P.; Moernaut, J.; Van Daele, M.; Pino, M.; Urrutia, R.; De Batist, M. Paleotsunami Record of the Past 4300 Years in the Complex Coastal Lake System of Lake Cucao, Chiloé Island, South Central Chile. Sediment. Geol. 2020, 401, 105644. [Google Scholar] [CrossRef]
- Riou, B.; Chaumillon, E.; Chagué, C.; Sabatier, P.; Schneider, J.-L.; Walsh, J.-P.; Zawadzki, A.; Fierro, D. Backwash Sediment Record of the 2009 South Pacific Tsunami and 1960 Great Chilean Earthquake Tsunami. Sci. Rep. 2020, 10, 4149. [Google Scholar] [CrossRef] [PubMed]
- Sawai, Y.; Fujii, Y.; Fujiwara, O.; Kamataki, T.; Komatsubara, J.; Okamura, Y.; Satake, K.; Shishikura, M. Marine Incursions of the Past 1500 Years and Evidence of Tsunamis at Suijin-Numa, a Coastal Lake Facing the Japan Trench. Holocene 2008, 18, 517–528. [Google Scholar] [CrossRef]
- Kempf, P.; Moernaut, J.; Van Daele, M.; Vandoorne, W.; Pino, M.; Urrutia, R.; De Batist, M. Coastal Lake Sediments Reveal 5500 Years of Tsunami History in South Central Chile. Quat. Sci. Rev. 2017, 161, 99–116. [Google Scholar] [CrossRef]
- Liu, K.; Fearn, M.L. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records. Quat. Res. 2000, 54, 238–245. [Google Scholar] [CrossRef]
- Liu, K.; Fearn, M.L. Lake-Sediment Record of Late Holocene Hurricane Activities from Coastal Alabama. Geology 1993, 21, 793–796. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Woodruff, J.D. Intense Hurricane Activity over the Past 5,000 Years Controlled by El Niño and the West African Monsoon. Nature 2007, 447, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Sabatier, P.; Dezileau, L.; Condomines, M.; Briqueu, L.; Colin, C.; Bouchette, F.; Le Duff, M.; Blanchemanche, P. Reconstruction of Paleostorm Events in a Coastal Lagoon (Hérault, South of France). Mar. Geol. 2008, 251, 224–232. [Google Scholar] [CrossRef]
- Lane, P.; Donnelly, J.P.; Woodruff, J.D.; Hawkes, A.D. A Decadally-Resolved Paleohurricane Record Archived in the Late Holocene Sediments of a Florida Sinkhole. Mar. Geol. 2011, 287, 14–30. [Google Scholar] [CrossRef]
- Wallace, E.J.; Donnelly, J.P.; Hengstum, P.J.; Wiman, C.; Sullivan, R.M.; Winkler, T.S.; d’Entremont, N.E.; Toomey, M.; Albury, N. Intense Hurricane Activity Over the Past 1500 Years at South Andros Island, The Bahamas. Paleoceanogr. Paleoclimatology 2019, 34, 1761–1783. [Google Scholar] [CrossRef]
- Lambert, W.J.; Aharon, P.; Rodriguez, A.B. Catastrophic Hurricane History Revealed by Organic Geochemical Proxies in Coastal Lake Sediments: A Case Study of Lake Shelby, Alabama (USA). J. Paleolimnol 2008, 39, 117–131. [Google Scholar] [CrossRef]
- Das, O.; Wang, Y.; Donoghue, J.; Xu, X.; Coor, J.; Elsner, J.; Xu, Y. Reconstruction of Paleostorms and Paleoenvironment Using Geochemical Proxies Archived in the Sediments of Two Coastal Lakes in Northwest Florida. Quat. Sci. Rev. 2013, 68, 142–153. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Hawkes, A.D.; Lane, P.; MacDonald, D.; Shuman, B.N.; Toomey, M.R.; van Hengstum, P.J.; Woodruff, J.D. Climate Forcing of Unprecedented Intense-Hurricane Activity in the Last 2000 Years: Donnelly et al. Earth’s Future 2015, 3, 49–65. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Donnelly, J.P.; Okusu, A. Exploring Typhoon Variability over the Mid-to-Late Holocene: Evidence of Extreme Coastal Flooding from Kamikoshiki, Japan. Quat. Sci. Rev. 2009, 28, 1774–1785. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Wang, Z.; Jia, J.; Mao, L.; Li, Z.; Fang, X.; Gao, S. Investigating ENSO and WPWP Modulated Typhoon Variability in the South China Sea during the Mid–Late Holocene Using Sedimentological Evidence from Southeastern Hainan Island, China. Mar. Geol. 2019, 416, 105987. [Google Scholar] [CrossRef]
- Degeai, J.-P.; Devillers, B.; Dezileau, L.; Oueslati, H.; Bony, G. Major Storm Periods and Climate Forcing in the Western Mediterranean during the Late Holocene. Quat. Sci. Rev. 2015, 129, 37–56. [Google Scholar] [CrossRef]
- Dezileau, L.; Pérez-Ruzafa, A.; Blanchemanche, P.; Degeai, J.-P.; Raji, O.; Martinez, P.; Marcos, C.; Von Grafenstein, U. Extreme Storms during the Last 6500 Years from Lagoonal Sedimentary Archives in the Mar Menor (SE Spain). Clim. Past 2016, 12, 1389–1400. [Google Scholar] [CrossRef]
- Dezileau, L.; Sabatier, P.; Blanchemanche, P.; Joly, B.; Swingedouw, D.; Cassou, C.; Castaings, J.; Martinez, P.; Von Grafenstein, U. Intense Storm Activity during the Little Ice Age on the French Mediterranean Coast. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 289–297. [Google Scholar] [CrossRef]
- Raji, O.; Dezileau, L.; Von Grafenstein, U.; Niazi, S.; Snoussi, M.; Martinez, P. Extreme Sea Events during the Last Millennium in the Northeast of Morocco. Nat. Hazards Earth Syst. Sci. 2015, 15, 203–211. [Google Scholar] [CrossRef]
- Sabatier, P.; Dezileau, L.; Colin, C.; Briqueu, L.; Bouchette, F.; Martinez, P.; Siani, G.; Raynal, O.; Von Grafenstein, U. 7000 Years of Paleostorm Activity in the NW Mediterranean Sea in Response to Holocene Climate Events. Quat. Res. 2012, 77, 1–11. [Google Scholar] [CrossRef]
- Brandon, C.M.; Woodruff, J.D.; Lane, D.P.; Donnelly, J.P. Tropical Cyclone Wind Speed Constraints from Resultant Storm Surge Deposition: A 2500 Year Reconstruction of Hurricane Activity from St. Marks, FL: Paleo-hurricane activity in st. marks, FL. Geochem. Geophys. Geosyst. 2013, 14, 2993–3008. [Google Scholar] [CrossRef]
- van Hengstum, P.J.; Donnelly, J.P.; Toomey, M.R.; Albury, N.A.; Lane, P.; Kakuk, B. Heightened Hurricane Activity on the Little Bahama Bank from 1350 to 1650 AD. Cont. Shelf Res. 2014, 86, 103–115. [Google Scholar] [CrossRef]
- Denommee, K.C.; Bentley, S.J.; Droxler, A.W. Climatic Controls on Hurricane Patterns: A 1200-y near-Annual Record from Lighthouse Reef, Belize. Sci. Rep. 2015, 4, 3876. [Google Scholar] [CrossRef]
- Sabatier, P.; Dezileau, L.; Briqueu, L.; Colin, C.; Siani, G. Clay Minerals and Geochemistry Record from Northwest Mediterranean Coastal Lagoon Sequence: Implications for Paleostorm Reconstruction. Sediment. Geol. 2010, 228, 205–217. [Google Scholar] [CrossRef]
- McCloskey, T.A.; Liu, K. A 7000 Year Record of Paleohurricane Activity from a Coastal Wetland in Belize. Holocene 2013, 23, 278–291. [Google Scholar] [CrossRef]
- McCloskey, T.A.; Liu, K. A Sedimentary-Based History of Hurricane Strikes on the Southern Caribbean Coast of Nicaragua. Quat. Res. 2012, 78, 454–464. [Google Scholar] [CrossRef]
- Baumann, J.; Chaumillon, E.; Schneider, J.-L.; Jorissen, F.; Sauriau, P.-G.; Richard, P.; Bonnin, J.; Schmidt, S. Contrasting Sediment Records of Marine Submersion Events Related to Wave Exposure, Southwest France. Sediment. Geol. 2017, 353, 158–170. [Google Scholar] [CrossRef]
- Hippensteel, S.P.; Martin, R.E. Foraminifera as an Indicator of Overwash Deposits, Barrier Island Sediment Supply, and Barrier Island Evolution: Folly Island, South Carolina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 149, 115–125. [Google Scholar] [CrossRef]
- Goslin, J.; Clemmensen, L.B. Proxy Records of Holocene Storm Events in Coastal Barrier Systems: Storm-Wave Induced Markers. Quat. Sci. Rev. 2017, 174, 80–119. [Google Scholar] [CrossRef]
- Strupler, M.; Hilbe, M.; Anselmetti, F.S.; Kopf, A.J.; Fleischmann, T.; Strasser, M. Probabilistic Stability Evaluation and Seismic Triggering Scenarios of Submerged Slopes in Lake Zurich (Switzerland). Geo-Mar. Lett. 2017, 37, 241–258. [Google Scholar] [CrossRef]
- Strasser, M.; Berberich, T.; Fabbri, S.; Hilbe, M.; Huang, J.-J.S.; Lauterbach, S.; Ortler, M.; Rechschreiter, H.; Brauer, A.; Anselmetti, F.; et al. Geomorphology and Event-Stratigraphy of Recent Mass-Movement Processes in Lake Hallstatt (UNESCO World Heritage Cultural Landscape, Austria). Geol. Soc. Lond. Spec. Publ. 2020, 500, 405–426. [Google Scholar] [CrossRef]
- Sammartini, M.; Moernaut, J.; Kopf, A.; Stegmann, S.; Fabbri, S.C.; Anselmetti, F.S.; Strasser, M. Propagation of Frontally Confined Subaqueous Landslides: Insights from Combining Geophysical, Sedimentological, and Geotechnical Analysis. Sediment. Geol. 2021, 416, 105877. [Google Scholar] [CrossRef]
- Hilbe, M.; Anselmetti, F.S.; Eilertsen, R.S.; Hansen, L.; Wildi, W. Subaqueous Morphology of Lake Lucerne (Central Switzerland): Implications for Mass Movements and Glacial History. Swiss J. Geosci. 2011, 104, 425–443. [Google Scholar] [CrossRef]
- Hughes, K.E.; Geertsema, M.; Kwoll, E.; Koppes, M.N.; Roberts, N.J.; Clague, J.J.; Rohland, S. Previously Undiscovered Landslide Deposits in Harrison Lake, British Columbia, Canada. Landslides 2021, 18, 529–538. [Google Scholar] [CrossRef]
- Kremer, K.; Fabbri, S.C.; Evers, F.M.; Schweizer, N.; Wirth, S.B. Traces of a Prehistoric and Potentially Tsunamigenic Mass Movement in the Sediments of Lake Thun (Switzerland). Swiss J. Geosci. 2022, 115, 13. [Google Scholar] [CrossRef] [PubMed]
- Strupler, M.; Danciu, L.; Hilbe, M.; Kremer, K.; Anselmetti, F.S.; Strasser, M.; Wiemer, S. A Subaqueous Hazard Map for Earthquake-Triggered Landslides in Lake Zurich, Switzerland. Nat. Hazards 2018, 90, 51–78. [Google Scholar] [CrossRef]
- Moernaut, J.; Van Daele, M.; Strasser, M.; Clare, M.A.; Heirman, K.; Viel, M.; Cardenas, J.; Kilian, R.; Ladrón de Guevara, B.; Pino, M.; et al. Lacustrine Turbidites Produced by Surficial Slope Sediment Remobilization: A Mechanism for Continuous and Sensitive Turbidite Paleoseismic Records. Mar. Geol. 2017, 384, 159–176. [Google Scholar] [CrossRef]
- Fabbri, S.C.; Herwegh, M.; Horstmeyer, H.; Hilbe, M.; Hübscher, C.; Merz, K.; Schlunegger, F.; Schmelzbach, C.; Weiss, B.; Anselmetti, F.S. Combining Amphibious Geomorphology with Subsurface Geophysical and Geological Data: A Neotectonic Study at the Front of the Alps (Bernese Alps, Switzerland). Quat. Int. 2017, 451, 101–113. [Google Scholar] [CrossRef]
- Mosher, D.C.; Simpkin, P.G. Environmental Marine Geoscience 1. Status and Trends of Marine High-Resolution Seismic Reflection Profiling: Data Acquistion. Geosci. Can. 1999, 26, 174–188. [Google Scholar]
- Billeaud, I.; Chaumillon, E.; Weber, O. Evidence of a Major Environmental Change Recorded in a Macrotidal Bay (Marennes-Oléron Bay, France) by Correlation between VHR Seismic Profiles and Cores. Geo-Mar. Lett. 2005, 25, 1–10. [Google Scholar] [CrossRef]
- Chaumillon, E.; Tessier, B.; Weber, N.; Tesson, M.; Bertin, X. Buried Sandbodies within Present-Day Estuaries (Atlantic Coast of France) Revealed by Very High Resolution Seismic Surveys. Mar. Geol. 2004, 211, 189–214. [Google Scholar] [CrossRef]
- Schnellmann, M.; Anselmetti, F.S.; Giardini, D.; McKenzie, J.A.; Ward, S.N. Prehistoric Earthquake History Revealed by Lacustrine Slump Deposits. Geology 2002, 30, 1131. [Google Scholar] [CrossRef]
- Lamair, L.; Hubert-Ferrari, A.; Yamamoto, S.; El Ouahabi, M.; Vander Auwera, J.; Obrochta, S.; Boes, E.; Nakamura, A.; Fujiwara, O.; Shishikura, M.; et al. Volcanic Influence of Mt. Fuji on the Watershed of Lake Motosu and Its Impact on the Lacustrine Sedimentary Record. Sediment. Geol. 2018, 363, 200–220. [Google Scholar] [CrossRef]
- Kämpf, L.; Brauer, A.; Swierczynski, T.; Czymzik, M.; Mueller, P.; Dulski, P. Processes of Flood-Triggered Detrital Layer Deposition in the Varved Lake Mondsee Sediment Record Revealed by a Dual Calibration Approach. J. Quat. Sci. 2014, 29, 475–486. [Google Scholar] [CrossRef]
- Praet, N.; Van Daele, M.; Collart, T.; Moernaut, J.; Vandekerkhove, E.; Kempf, P.; Haeussler, P.J.; De Batist, M. Turbidite Stratigraphy in Proglacial Lakes: Deciphering Trigger Mechanisms Using a Statistical Approach. Sedimentology 2020, 67, 2332–2359. [Google Scholar] [CrossRef]
- Fortin, D.; Praet, N.; McKay, N.P.; Kaufman, D.S.; Jensen, B.J.L.; Haeussler, P.J.; Buchanan, C.; De Batist, M. New Approach to Assessing Age Uncertainties–The 2300-Year Varve Chronology from Eklutna Lake, Alaska (USA). Quat. Sci. Rev. 2019, 203, 90–101. [Google Scholar] [CrossRef]
- Jones, G.; Lane, C.S.; Brauer, A.; Davies, S.M.; de Bruijn, R.; Engels, S.; Haliuc, A.; Hoek, W.Z.; Merkt, J.; Sachse, D.; et al. The Lateglacial to Early Holocene Tephrochronological Record from Lake Hämelsee, Germany: A Key Site within the European Tephra Framework. Boreas 2018, 47, 28–40. [Google Scholar] [CrossRef]
- Spano, N.G.; Lane, C.S.; Francis, S.W.; Johnson, T.C. Discovery of Mount Mazama Cryptotephra in Lake Superior (North America): Implications and Potential Applications. Geology 2017, 45, 1071–1074. [Google Scholar] [CrossRef]
- Wilhelm, B.; Vogel, H.; Anselmetti, F.S. A Multi-Centennial Record of Past Floods and Earthquakes in Valle d’Aosta, Mediterranean Italian Alps. Nat. Hazards Earth Syst. Sci. 2017, 17, 613–625. [Google Scholar] [CrossRef]
- Van Daele, M.; Haeussler, P.J.; Witter, R.C.; Praet, N.; De Batist, M. The Sedimentary Record of the 2018 Anchorage Earthquake in Eklutna Lake, Alaska: Calibrating the Lacustrine Seismograph. Seismol. Res. Lett. 2020, 91, 126–141. [Google Scholar] [CrossRef]
- Wilhelm, B.; Arnaud, F.; Sabatier, P.; Crouzet, C.; Brisset, E.; Chaumillon, E.; Disnar, J.-R.; Guiter, F.; Malet, E.; Reyss, J.-L.; et al. 1400 Years of Extreme Precipitation Patterns over the Mediterranean French Alps and Possible Forcing Mechanisms. Quat. Res. 2012, 78, 1–12. [Google Scholar] [CrossRef]
- Moernaut, J.; Van Daele, M.; Fontijn, K.; Heirman, K.; Kempf, P.; Pino, M.; Valdebenito, G.; Urrutia, R.; Strasser, M.; De Batist, M. Larger Earthquakes Recur More Periodically: New Insights in the Megathrust Earthquake Cycle from Lacustrine Turbidite Records in South-Central Chile. Earth Planet. Sci. Lett. 2018, 481, 9–19. [Google Scholar] [CrossRef]
- Evin, G.; Wilhelm, B.; Jenny, J.-P. Flood Hazard Assessment of the Rhône River Revisited with Reconstructed Discharges from Lake Sediments. Glob. Planet. Change 2019, 172, 114–123. [Google Scholar] [CrossRef]
- Liu, D.; Bertrand, S.; Weltje, G.J. An Empirical Method to Predict Sediment Grain Size From Inorganic Geochemical Measurements. Geochem. Geophys. Geosyst. 2019, 20, 3690–3704. [Google Scholar] [CrossRef]
- Paris, R.; Falvard, S.; Chagué, C.; Goff, J.; Etienne, S.; Doumalin, P. Sedimentary Fabric Characterized by X-ray Tomography: A Case-study from Tsunami Deposits on the Marquesas Islands, French Polynesia. Sedimentology 2020, 67, 1207–1229. [Google Scholar] [CrossRef]
- Jacq, K.; Giguet-Covex, C.; Sabatier, P.; Perrette, Y.; Fanget, B.; Coquin, D.; Debret, M.; Arnaud, F. High-Resolution Grain Size Distribution of Sediment Core with Hyperspectral Imaging. Sediment. Geol. 2019, 393–394, 105536. [Google Scholar] [CrossRef]
- Bertrand, S.; Hughen, K.A.; Sepúlveda, J.; Pantoja, S. Geochemistry of Surface Sediments from the Fjords of Northern Chilean Patagonia (44–47° S): Spatial Variability and Implications for Paleoclimate Reconstructions. Geochim. Cosmochim. Acta 2012, 76, 125–146. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landf. 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Weltje, G.J.; Prins, M.A. Muddled or Mixed? Inferring Palaeoclimate from Size Distributions of Deep-Sea Clastics. Sediment. Geol. 2003, 162, 39–62. [Google Scholar] [CrossRef]
- Dietze, E.; Dietze, M. Grain-Size Distribution Unmixing Using the R Package EMMAgeo. EG Quat. Sci. J. 2019, 68, 29–46. [Google Scholar] [CrossRef]
- Paterson, G.A.; Heslop, D. New Methods for Unmixing Sediment Grain Size Data. Geochem. Geophys. Geosyst. 2015, 16, 4494–4506. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Sun, Y. QGrain: An Open-Source and Easy-to-Use Software for the Comprehensive Analysis of Grain Size Distributions. Sediment. Geol. 2021, 423, 105980. [Google Scholar] [CrossRef]
- Van Daele, M.; Meyer, I.; Moernaut, J.; De Decker, S.; Verschuren, D.; De Batist, M. A Revised Classification and Terminology for Stacked and Amalgamated Turbidites in Environments Dominated by (Hemi)Pelagic Sedimentation. Sediment. Geol. 2017, 357, 72–82. [Google Scholar] [CrossRef]
- Passega, R. Grain Size Representation by CM Patterns as a Geologic Tool. J. Sediment. Res. 1964, 34, 830–847. [Google Scholar] [CrossRef]
- Bøe, A.-G.; Dahl, S.O.; Lie, Ø.; Nesje, A. Holocene River Floods in the Upper Glomma Catchment, Southern Norway: A High-Resolution Multiproxy Record from Lacustrine Sediments. Holocene 2006, 16, 445–455. [Google Scholar] [CrossRef]
- Schiefer, E.; Gilbert, R.; Hassan, M.A. A Lake Sediment-Based Proxy of Floods in the Rocky Mountain Front Ranges, Canada. J. Paleolimnol. 2011, 45, 137–149. [Google Scholar] [CrossRef]
- Mulder, T.; Migeon, S.; Savoye, B.; Faugères, J.C. Inversely Graded Turbidite Sequences in the Deep Mediterranean: A Record of Deposits from Flood-Generated Turbidity Currents? Geo-Mar. Lett. 2001, 21, 86–93. [Google Scholar] [CrossRef]
- Willershäuser, T.; Vött, A.; Hadler, H.; Ntageretzis, K.; Emde, K.; Brückner, H. Holocene Palaeotsunami Imprints in the Stratigraphical Record and the Coastal Geomorphology of the Gialova Lagoon near Pylos (Southwestern Peloponnese, Greece). Z. Geomorphol 2015, 59, 215–252. [Google Scholar] [CrossRef]
- Chagué-Goff, C.; Szczuciński, W.; Shinozaki, T. Applications of Geochemistry in Tsunami Research: A Review. Earth-Sci. Rev. 2017, 165, 203–244. [Google Scholar] [CrossRef]
- Bendle, J.M.; Palmer, A.P.; Carr, S.J. A Comparison of Micro-CT and Thin Section Analysis of Lateglacial Glaciolacustrine Varves from Glen Roy, Scotland. Quat. Sci. Rev. 2015, 114, 61–77. [Google Scholar] [CrossRef]
- Boës, X.; Fagel, N. Impregnation Method for Detecting Annual Laminations in Sediment Cores: An Overview. Sediment. Geol. 2005, 179, 185–194. [Google Scholar] [CrossRef]
- Jacq, K.; Rapuc, W.; Benoit, A.; Coquin, D.; Fanget, B.; Perrette, Y.; Sabatier, P.; Wilhelm, B.; Debret, M.; Arnaud, F. Sedimentary Structure Discrimination with Hyperspectral Imaging in Sediment Cores. Sci. Total Environ. 2021, 817, 152018. [Google Scholar] [CrossRef]
- Rapuc, W.; Jacq, K.; Develle, A.-L.; Sabatier, P.; Fanget, B.; Perrette, Y.; Coquin, D.; Debret, M.; Wilhelm, B.; Arnaud, F. XRF and Hyperspectral Analyses as an Automatic Way to Detect Flood Events in Sediment Cores. Sediment. Geol. 2020, 409, 105776. [Google Scholar] [CrossRef]
- Schnellmann, M.; Anselmetti, F.S.; Giardini, D.; McKENZIE, J.A. Mass Movement-Induced Fold-and-Thrust Belt Structures in Unconsolidated Sediments in Lake Lucerne (Switzerland): Mass Movement-Induced Deformation Structures. Sedimentology 2005, 52, 271–289. [Google Scholar] [CrossRef]
- Waldmann, N.; Anselmetti, F.S.; Ariztegui, D.; Austin, J.A., Jr.; Pirouz, M.; Moy, C.M.; Dunbar, R. Holocene Mass-Wasting Events in Lago Fagnano, Tierra Del Fuego (54° S): Implications for Paleoseismicity of the Magallanes-Fagnano Transform Fault: Holocene Mass-Wasting Events in Lago Fagnano, Tierra Del Fuego (54° S). Basin Res. 2011, 23, 171–190. [Google Scholar] [CrossRef]
- Moernaut, J.; Wiemer, G.; Kopf, A.; Strasser, M. Evaluating the Sealing Potential of Young and Thin Mass-Transport Deposits: Lake Villarrica, Chile. Geol. Soc. Lond. Spec. Publ. 2020, 500, 129–146. [Google Scholar] [CrossRef]
- Hage, S.; Hubert-Ferrari, A.; Lamair, L.; Avşar, U.; El Ouahabi, M.; Van Daele, M.; Boulvain, F.; Ali Bahri, M.; Seret, A.; Plenevaux, A. Flow Dynamics at the Origin of Thin Clayey Sand Lacustrine Turbidites: Examples from Lake Hazar, Turkey. Sedimentology 2017, 64, 1929–1956. [Google Scholar] [CrossRef]
- Wils, K.; Deprez, M.; Kissel, C.; Vervoort, M.; Van Daele, M.; Daryono, M.R.; Cnudde, V.; Natawidjaja, D.H.; De Batist, M. Earthquake Doublet Revealed by Multiple Pulses in Lacustrineseismo-Turbidites. Geology 2021, 49, 1301–1306. [Google Scholar] [CrossRef]
- Falvard, S.; Paris, R. X-Ray Tomography of Tsunami Deposits: Towards a New Depositional Model of Tsunami Deposits. Sedimentology 2017, 64, 453–477. [Google Scholar] [CrossRef]
- Biguenet, M.; Chaumillon, E.; Sabatier, P.; Paris, R.; Vacher, P.; Feuillet, N. Discriminating between Tsunamis and Tropical Cyclones in the Sedimentary Record Using X-Ray Tomography. Mar. Geol. 2022, 450, 106864. [Google Scholar] [CrossRef]
- van der Bilt, W.G.M.; Cederstrøm, J.M.; Støren, E.W.N.; Berben, S.M.P.; Rutledal, S. Rapid Tephra Identification in Geological Archives With Computed Tomography: Experimental Results and Natural Applications. Front. Earth Sci. 2021, 8, 622386. [Google Scholar] [CrossRef]
- Lu, Y.; Moernaut, J.; Bookman, R.; Waldmann, N.; Wetzler, N.; Agnon, A.; Marco, S.; Alsop, G.I.; Strasser, M.; Hubert-Ferrari, A. A New Approach to Constrain the Seismic Origin for Prehistoric Turbidites as Applied to the Dead Sea Basin. Geophys. Res. Lett. 2021, 48, e2020GL090947. [Google Scholar] [CrossRef]
- Monecke, K.; Anselmetti, F.S.; Becker, A.; Schnellmann, M.; Sturm, M.; Giardini, D. Earthquake-Induced Deformation Structures in Lake Deposits: A Late Pleistocene to Holocene Paleoseismic Record for Central Switzerland. Eclogae Geol. Helv. 2006, 99, 343–362. [Google Scholar] [CrossRef]
- Oldfield, F. Lakes and Their Drainage Basins as Units of Sediment-Based Ecological Study. Prog. Phys. Geogr. Earth Environ. 1977, 1, 460–504. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and Evaluation of a New Multi-Function X-ray Core Scanner. Geol. Soc. Lond. Spec. Publ. 2006, 267, 51–63. [Google Scholar] [CrossRef]
- Jansen, J.H.F.; Van der Gaast, S.J.; Koster, B.; Vaars, A.J. CORTEX, a Shipboard XRF-Scanner for Element Analyses in Split Sediment Cores. Mar. Geol. 1998, 151, 143–153. [Google Scholar] [CrossRef]
- Richter, T.O.; van der Gaast, S.; Koster, B.; Vaars, A.; Gieles, R.; de Stigter, H.C.; Haas, H.D.; Weering, T.C.E. van The Avaatech XRF Core Scanner: Technical Description and Applications to NE Atlantic Sediments. Geol. Soc. Lond. Spec. Publ. 2006, 267, 39–50. [Google Scholar] [CrossRef]
- Petersen, J.; Wilhelm, B.; Revel, M.; Rolland, Y.; Crouzet, C.; Arnaud, F.; Brisset, E.; Chaumillon, E.; Magand, O. Sediments of Lake Vens (SW European Alps, France) Record Large-Magnitude Earthquake Events. J. Paleolimnol. 2014, 51, 343–355. [Google Scholar] [CrossRef]
- Støren, E.W.N.; Paasche, Ø.; Hirt, A.M.; Kumari, M. Magnetic and Geochemical Signatures of Flood Layers in a Lake System: SIGNATURES OF FLOODS IN LAKE SEDIMENTS. Geochem. Geophys. Geosyst. 2016, 17, 4236–4253. [Google Scholar] [CrossRef]
- Weltje, G.J.; Bloemsma, M.R.; Tjallingii, R.; Heslop, D.; Röhl, U.; Croudace, I.W. Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic Selection of Calibration Samples and Quantification of Uncertainties. In Micro-XRF Studies of Sediment Cores; Croudace, I.W., Rothwell, R.G., Eds.; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2015; Volume 17, pp. 507–534. ISBN 978-94-017-9848-8. [Google Scholar]
- Arnaud, F.; Poulenard, J.; Giguet-Covex, C.; Wilhelm, B.; Révillon, S.; Jenny, J.-P.; Revel, M.; Enters, D.; Bajard, M.; Fouinat, L.; et al. Erosion under Climate and Human Pressures: An Alpine Lake Sediment Perspective. Quat. Sci. Rev. 2016, 152, 1–18. [Google Scholar] [CrossRef]
- Schillereff, D.N.; Chiverrell, R.C.; Macdonald, N.; Hooke, J.M. Flood Stratigraphies in Lake Sediments: A Review. Earth-Sci. Rev. 2014, 135, 17–37. [Google Scholar] [CrossRef]
- Chagué-Goff, C. Chemical Signatures of Palaeotsunamis: A Forgotten Proxy? Mar. Geol. 2010, 271, 67–71. [Google Scholar] [CrossRef]
- Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wüest, A. Calcite Dissolution in Two Deep Eutrophic Lakes. Geochim. Cosmochim. Acta 1999, 63, 3349–3356. [Google Scholar] [CrossRef]
- Wilhelm, B.; Vogel, H.; Crouzet, C.; Etienne, D.; Anselmetti, F.S. Frequency and Intensity of Palaeofloods at the Interface of Atlantic and Mediterranean Climate Domains. Clim. Past 2016, 12, 299–316. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Elbaz-Poulichet, F.; Sabatier, P.; Dezileau, L.; Freydier, R. Sedimentary Record of V, U, Mo and Mn in the Pierre-Blanche Lagoon (Southern France)–Evidence for a Major Anoxia Event during the Roman Period. Holocene 2014, 24, 1384–1392. [Google Scholar] [CrossRef]
- Rothwell, R.G. Minerals and Mineraloids in Marine Sediments; Springer: Dordrecht, The Netherlands, 1989; ISBN 978-94-010-7002-7. [Google Scholar]
- Myrbo, A.; Morrison, A.; McEwan, R. Tool for Microscopic Identification (TMI). 2011. Available online: https://tmi.laccore.umn.edu/help/show (accessed on 20 May 2022).
- Bertrand, S.; Fagel, N. Nature, Origin, Transport and Deposition of Andosol Parent Material in South-Central Chile (36–42° S). Catena 2008, 73, 10–22. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Bertrand, S.; Boës, X.; Castiaux, J.; Charlet, F.; Urrutia, R.; Espinoza, C.; Lepoint, G.; Charlier, B.; Fagel, N. Temporal Evolution of Sediment Supply in Lago Puyehue (Southern Chile) during the Last 600 Yr and Its Climatic Significance. Quat. Res. 2005, 64, 163–175. [Google Scholar] [CrossRef]
- Verardo, D.J.; Froelich, P.N.; McIntyre, A. Determination of Organic Carbon and Nitrogen in Marine Sediments Using the Carlo Erba NA-1500 Analyzer. Deep. Sea Res. Part A Oceanogr. Res. Pap. 1990, 37, 157–165. [Google Scholar] [CrossRef]
- Chawchai, S.; Kylander, M.E.; Chabangborn, A.; Löwemark, L.; Wohlfarth, B. Testing Commonly Used X-Ray Fluorescence Core Scanning-Based Proxies for Organic-Rich Lake Sediments and Peat. Boreas 2016, 45, 180–189. [Google Scholar] [CrossRef]
- Rein, B.; Sirocko, F. In-Situ Reflectance Spectroscopy-Analysing Techniques for High-Resolution Pigment Logging in Sediment Cores. Int. J. Earth Sci. 2002, 91, 950–954. [Google Scholar] [CrossRef]
- Jacq, K.; Perrette, Y.; Fanget, B.; Sabatier, P.; Coquin, D.; Martinez-Lamas, R.; Debret, M.; Arnaud, F. High-Resolution Prediction of Organic Matter Concentration with Hyperspectral Imaging on a Sediment Core. Sci. Total Environ. 2019, 663, 236–244. [Google Scholar] [CrossRef]
- Meyers, P.A.; Teranes, J.L. Sediment Organic Matter. In Tracking Environmental Change Using Lake Sediments; Last, W.M., Smol, J.P., Eds.; Developments in Paleoenvironmental Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 2, pp. 239–269. ISBN 978-1-4020-0628-9. [Google Scholar]
- Bertrand, S.; Sterken, M.; Vargas-Ramirez, L.; De Batist, M.; Vyverman, W.; Lepoint, G.; Fagel, N. Bulk Organic Geochemistry of Sediments from Puyehue Lake and Its Watershed (Chile, 40° S): Implications for Paleoenvironmental Reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 294, 56–71. [Google Scholar] [CrossRef]
- Fiers, G.; Bertrand, S.; Van Daele, M.; Granon, E.; Reid, B.; Vandoorne, W.; De Batist, M. Hydroclimate Variability of Northern Chilean Patagonia during the Last 20 Kyr Inferred from the Bulk Organic Geochemistry of Lago Castor Sediments (45°S). Quat. Sci. Rev. 2019, 204, 105–118. [Google Scholar] [CrossRef]
- Perdue, E.M.; Koprivnjak, J.-F. Using the C/N Ratio to Estimate Terrigenous Inputs of Organic Matter to Aquatic Environments. Estuar. Coast. Shelf Sci. 2007, 73, 65–72. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using Δ13C and C/N Ratios in Organic Material. Earth-Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Jahan, S.; Wang, Y.; Burnett, W.C.; Means, G.H.; Sun, F. Evaluating Organic Geochemical Proxies for Application to Coastal Lake Sediments along the Gulf Coast of Florida for Paleotempestology. Quat. Sci. Rev. 2021, 266, 107077. [Google Scholar] [CrossRef]
- Hopmans, E.C.; Weijers, J.W.H.; Schefuß, E.; Herfort, L.; Sinninghe Damsté, J.S.; Schouten, S. A Novel Proxy for Terrestrial Organic Matter in Sediments Based on Branched and Isoprenoid Tetraether Lipids. Earth Planet. Sci. Lett. 2004, 224, 107–116. [Google Scholar] [CrossRef]
- Simonneau, A.; Chapron, E.; Vannière, B.; Wirth, S.B.; Gilli, A.; Di Giovanni, C.; Anselmetti, F.S.; Desmet, M.; Magny, M. Mass-Movement and Flood-Induced Deposits in Lake Ledro, Southern Alps, Italy: Implications for Holocene Palaeohydrology and Natural Hazards. Clim. Past 2013, 9, 825–840. [Google Scholar] [CrossRef]
- Howarth, J.D.; Fitzsimons, S.J.; Norris, R.J.; Jacobsen, G.E. Lake Sediments Record High Intensity Shaking That Provides Insight into the Location and Rupture Length of Large Earthquakes on the Alpine Fault, New Zealand. Earth Planet. Sci. Lett. 2014, 403, 340–351. [Google Scholar] [CrossRef]
- Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Nomade, J.; Gajurel, A.P.; van der Beek, P.A. Potentially Large Post-1505 AD Earthquakes in Western Nepal Revealed by a Lake Sediment Record. Nat. Commun. 2019, 10, 2258. [Google Scholar] [CrossRef]
- Bertrand, S.; Castiaux, J.; Juvigné, E. Tephrostratigraphy of the Late Glacial and Holocene Sediments of Puyehue Lake (Southern Volcanic Zone, Chile, 40° S). Quat. Res. 2008, 70, 343–357. [Google Scholar] [CrossRef]
- Sabatier, P.; Dezileau, L.; Blanchemanche, P.; Siani, G.; Condomines, M.; Bentaleb, I.; Piquès, G. Holocene Variations of Radiocarbon Reservoir Ages in a Mediterranean Lagoonal System. Radiocarbon 2010, 52, 91–102. [Google Scholar] [CrossRef]
- Switzer, A.D.; Jones, B.G. Large-Scale Washover Sedimentation in a Freshwater Lagoon from the Southeast Australian Coast: Sea-Level Change, Tsunami or Exceptionally Large Storm? Holocene 2008, 18, 787–803. [Google Scholar] [CrossRef]
- Poirier, C.; Sauriau, P.-G.; Chaumillon, E.; Allard, J. Can Molluscan Assemblages Give Insights into Holocene Environmental Changes Other than Sea Level Rise? A Case Study from a Macrotidal Bay (Marennes–Oléron, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 280, 105–118. [Google Scholar] [CrossRef]
- Valentine, J.W.; Jablonski, D.; Kidwell, S.; Roy, K. Assessing the Fidelity of the Fossil Record by Using Marine Bivalves. Proc. Natl. Acad. Sci. USA 2006, 103, 6599–6604. [Google Scholar] [CrossRef]
- Sabatier, P.; Dezileau, L.; Barbier, M.; Raynal, O.; Lofi, J.; Briqueu, L.; Condomines, M.; Bouchette, F.; Certain, R.; Van Grafenstein, U.; et al. Late-Holocene Evolution of a Coastal Lagoon in the Gulf of Lions (South of France). Bull. Société Géologique Fr. 2010, 181, 27–36. [Google Scholar] [CrossRef]
- Bertrand, S.; Doner, L.; Akçer Ön, S.; Sancar, U.; Schudack, U.; Mischke, S.; Çagatay, M.N.; Leroy, S.A.G. Sedimentary Record of Coseismic Subsidence in Hersek Coastal Lagoon (Izmit Bay, Turkey) and the Late Holocene Activity of the North Anatolian Fault: COSEISMIC SUBSIDENCE IN HERSEK LAGOON. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- McCloskey, T.; Bianchette, T.; Liu, K. Geological and Sedimentological Evidence of a Large Tsunami Occurring~1100 Year BP from a Small Coastal Lake along the Bay of La Paz in Baja California Sur, Mexico. J. Mar. Sci. Eng. 2015, 3, 1544–1567. [Google Scholar] [CrossRef]
- Armynot du Chatelet, E.; Degre, D.; Sauriau, P.-G.; Debenay, J.-P. Distribution of Living Benthic Foraminifera in Relation with Environmental Variables within the Aiguillon Cove (Atlantic Coast, France): Improving Knowledge for Paleoecological Interpretation. Bull. Société Géologique Fr. 2009, 180, 131–144. [Google Scholar] [CrossRef]
- Yassini, I.; Jones, B.G. Recent Foraminifera and Ostracoda from Estuarine and Shelf Environments on the Southeastern Coast of Australia; University of Wollongong Press: Wollongong, NSW, Australia, 1995. [Google Scholar]
- Kotler, E.; Martin, R.E.; Liddell, W.D. Experimental Analysis of Abrasion and Dissolution Resistance of Modern Reef-Dwelling Foraminifera: Implications for the Preservation of Biogenic Carbonate. Palaios 1992, 7, 244. [Google Scholar] [CrossRef]
- Mischke, S.; Schudack, U.; Bertrand, S.; Leroy, S.A.G. Ostracods from a Marmara Sea Lagoon (Turkey) as Tsunami Indicators. Quat. Int. 2012, 261, 156–161. [Google Scholar] [CrossRef]
- Ruiz, F.; Borrego, J.; López-González, N.; Abad, M.; González-Regalado, M.L.; Carro, B.; Pendón, J.G.; Rodríguez-Vidal, J.; Cáceres, L.M.; Prudêncio, M.I.; et al. The Geological Record of a Mid-Holocene Marine Storm in Southwestern Spain. Geobios 2007, 40, 689–699. [Google Scholar] [CrossRef]
- Zaïbi, C.; Kamoun, F.; Viehberg, F.; Carbonel, P.; Jedoui, Y.; Abida, H.; Fontugny, M. Impact of Relative Sea Level and Extreme Climate Events on the Southern Skhira Coastline (Gulf of Gabes, Tunisia) during Holocene Times: Ostracodes and Foraminifera Associations’ Response. J. Afr. Earth Sci. 2016, 118, 120–136. [Google Scholar] [CrossRef]
- Parsons, M.L. Salt Marsh Sedimentary Record of the Landfall of Hurricane Andrew on the Louisiana Coast: Diatoms and Other Paleoindicators. J. Coast. Res. 1998, 14, 939–950. [Google Scholar]
- Pilarczyk, J.E.; Dura, T.; Horton, B.P.; Engelhart, S.E.; Kemp, A.C.; Sawai, Y. Microfossils from Coastal Environments as Indicators of Paleo-Earthquakes, Tsunamis and Storms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 413, 144–157. [Google Scholar] [CrossRef]
- Grauert, M.; Björck, S.; Bondevik, S. Storegga Tsunami Deposits in a Coastal Lake on Suðuroy, the Faroe Islands. Boreas 2001, 30, 263–271. [Google Scholar] [CrossRef]
- Liu, D.; Bertrand, S.; Vandekerkhove, E.; Renson, V. Provenance of Baker River Sediments (Chile, 48° S): Implications for the Identification of Flood Deposits in Fjord Sediments. Earth Surf. Process. Landf. 2021, 47, 825–838. [Google Scholar] [CrossRef]
- Revel-Rolland, M.; Arnaud, F.; Chapron, E.; Desmet, M.; Givelet, N.; Alibert, C.; McCulloch, M. Sr and Nd Isotopes as Tracers of Clastic Sources in Lake Le Bourget Sediment (NW Alps, France) during the Little Ice Age: Palaeohydrology Implications. Chem. Geol. 2005, 224, 183–200. [Google Scholar] [CrossRef]
- Debret, M.; Chapron, E.; Desmet, M.; Rolland-Revel, M.; Magand, O.; Trentesaux, A.; Bout-Roumazeille, V.; Nomade, J.; Arnaud, F. North Western Alps Holocene Paleohydrology Recorded by Flooding Activity in Lake Le Bourget, France. Quat. Sci. Rev. 2010, 29, 2185–2200. [Google Scholar] [CrossRef]
- Szczuciński, W.; Pawłowska, J.; Lejzerowicz, F.; Nishimura, Y.; Kokociński, M.; Majewski, W.; Nakamura, Y.; Pawlowski, J. Ancient Sedimentary DNA Reveals Past Tsunami Deposits. Mar. Geol. 2016, 381, 29–33. [Google Scholar] [CrossRef]
- Yap, W.; Switzer, A.D.; Gouramanis, C.; Marzinelli, E.; Wijaya, W.; Yan, Y.T.; Dominey-Howes, D.; Labbate, M.; Srinivasalu, S.; Jankaew, K.; et al. Environmental DNA Signatures Distinguish between Tsunami and Storm Deposition in Overwash Sand. Commun. Earth Environ. 2021, 2, 129. [Google Scholar] [CrossRef]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 Cal KBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Hogg, A.G.; Heaton, T.J.; Hua, Q.; Palmer, J.G.; Turney, C.S.; Southon, J.; Bayliss, A.; Blackwell, P.G.; Boswijk, G.; Bronk Ramsey, C.; et al. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years Cal BP. Radiocarbon 2020, 62, 759–778. [Google Scholar] [CrossRef]
- Björck, S.; Wohlfarth, B. 14C Chronostratigraphic Techniques in Paleolimnology. In Tracking Environmental Change Using Lake Sediments; Last, W.M., Smol, J.P., Eds.; Developments in Paleoenvironmental Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 1, pp. 205–245. ISBN 978-0-7923-6482-5. [Google Scholar]
- Fontana, S.L. Radiocarbon Chronologies of Holocene Lacustrine Sediments from the Southern Coast of Buenos Aires Province, Argentina. Radiocarbon 2007, 49, 103–116. [Google Scholar] [CrossRef]
- Schneider, L.; Pain, C.F.; Haberle, S.; Blong, R.; Alloway, B.V.; Fallon, S.J.; Hope, G.; Zawadzki, A.; Heijnis, H. Evaluating the Radiocarbon Reservoir Effect in Lake Kutubu, Papua New Guinea. Radiocarbon 2019, 61, 287–308. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Lücke, A.; Wünnemann, B.; Zhou, L.; Reimer, P.; Wang, S. Lacustrine Radiocarbon Reservoir Ages in Co Ngoin and Zigê Tangco, Central Tibetan Plateau. Quat. Int. 2010, 212, 21–25. [Google Scholar] [CrossRef]
- Howarth, J.D.; Fitzsimons, S.J.; Jacobsen, G.E.; Vandergoes, M.J.; Norris, R.J. Identifying a Reliable Target Fraction for Radiocarbon Dating Sedimentary Records from Lakes. Quat. Geochronol. 2013, 17, 68–80. [Google Scholar] [CrossRef]
- Bertrand, S.; Araneda, A.; Vargas, P.; Jana, P.; Fagel, N.; Urrutia, R. Using the N/C Ratio to Correct Bulk Radiocarbon Ages from Lake Sediments: Insights from Chilean Patagonia. Quat. Geochronol. 2012, 12, 23–29. [Google Scholar] [CrossRef]
- Strunk, A.; Olsen, J.; Sanei, H.; Rudra, A.; Larsen, N.K. Improving the Reliability of Bulk Sediment Radiocarbon Dating. Quat. Sci. Rev. 2020, 242, 106442. [Google Scholar] [CrossRef]
- Eglinton, T.I.; Benitez-Nelson, B.C.; Pearson, A.; McNichol, A.P.; Bauer, J.E.; Druffel, E.R.M. Variability in Radiocarbon Ages of Individual Organic Compounds from Marine Sediments. Science 1997, 277, 796–799. [Google Scholar] [CrossRef]
- Gierga, M.; Hajdas, I.; van Raden, U.J.; Gilli, A.; Wacker, L.; Sturm, M.; Bernasconi, S.M.; Smittenberg, R.H. Long-Stored Soil Carbon Released by Prehistoric Land Use: Evidence from Compound-Specific Radiocarbon Analysis on Soppensee Lake Sediments. Quat. Sci. Rev. 2016, 144, 123–131. [Google Scholar] [CrossRef]
- Hou, J.; Huang, Y.; Brodsky, C.; Alexandre, M.R.; McNichol, A.P.; King, J.W.; Hu, F.S.; Shen, J. Radiocarbon Dating of Individual Lignin Phenols: A New Approach for Establishing Chronology of Late Quaternary Lake Sediments. Anal. Chem. 2010, 82, 7119–7126. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Nishizawa, F.; Yoshimoto, M.; Miyairi, Y.; Yokoyama, Y.; Suga, H.; Ohkouchi, N. Dating Lake Sediments Using Compound-Specific 14 C Analysis of C 16 Fatty Acid: A Case Study From the Mount Fuji Volcanic Region, Japan. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009544. [Google Scholar] [CrossRef]
- Blaauw, M. Methods and Code for ‘Classical’ Age-Modelling of Radiocarbon Sequences. Quat. Geochronol. 2010, 5, 512–518. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Flexible Paleoclimate Age-Depth Models Using an Autoregressive Gamma Process. Bayesian Anal. 2011, 6, 457–474. [Google Scholar] [CrossRef]
- Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C. 210Pb Sediment Radiochronology: An Integrated Formulation and Classification of Dating Models. Geochim. Cosmochim. Acta 2012, 82, 183–200. [Google Scholar] [CrossRef]
- Foucher, A.; Chaboche, P.-A.; Sabatier, P.; Evrard, O. A Worldwide Meta-Analysis (1977–2020) of Sediment. Core Dating Using Fallout Radionuclides Including 137Cs and 210Pbex; Geosciences–Sedimentology. Earth Syst. Sci. Data 2021, 13, 4951–4966. [Google Scholar] [CrossRef]
- Bruel, R.; Sabatier, P. Serac: An R Package for ShortlivEd RAdionuclide Chronology of Recent Sediment Cores. J. Environ. Radioact. 2020, 225, 106449. [Google Scholar] [CrossRef]
- Crouzet, C.; Wilhelm, B.; Sabatier, P.; Demory, F.; Thouveny, N.; Pignol, C.; Reyss, J.-L.; Magand, O.; Jeltsch-Thömmes, A.; Bajard, M.; et al. Palaeomagnetism for Chronologies of Recent Alpine Lake Sediments: Successes and Limits. J. Paleolimnol. 2019, 62, 259–278. [Google Scholar] [CrossRef]
- Lamoureux, S. Varve Chronology Techniques. In Tracking Environmental Change Using Lake Sediments; Last, W.M., Smol, J.P., Eds.; Developments in Paleoenvironmental Research; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 1, pp. 247–260. ISBN 978-0-7923-6482-5. [Google Scholar]
- Zolitschka, B.; Francus, P.; Ojala, A.E.K.; Schimmelmann, A. Varves in Lake Sediments—A Review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Nakagawa, T.; Gotanda, K.; Haraguchi, T.; Danhara, T.; Yonenobu, H.; Brauer, A.; Yokoyama, Y.; Tada, R.; Takemura, K.; Staff, R.A.; et al. SG06, a Fully Continuous and Varved Sediment Core from Lake Suigetsu, Japan: Stratigraphy and Potential for Improving the Radiocarbon Calibration Model and Understanding of Late Quaternary Climate Changes. Quat. Sci. Rev. 2012, 36, 164–176. [Google Scholar] [CrossRef]
- Vandergoes, M.J.; Howarth, J.D.; Dunbar, G.B.; Turnbull, J.C.; Roop, H.A.; Levy, R.H.; Li, X.; Prior, C.; Norris, M.; Keller, L.D.; et al. Integrating Chronological Uncertainties for Annually Laminated Lake Sediments Using Layer Counting, Independent Chronologies and Bayesian Age Modelling (Lake Ohau, South Island, New Zealand). Quat. Sci. Rev. 2018, 188, 104–120. [Google Scholar] [CrossRef]
- Wirth, S.B.; Gilli, A.; Simonneau, A.; Ariztegui, D.; Vannière, B.; Glur, L.; Chapron, E.; Magny, M.; Anselmetti, F.S. A 2000 Year Long Seasonal Record of Floods in the Southern European Alps: Flood seasonality in the southern alps. Geophys. Res. Lett. 2013, 40, 4025–4029. [Google Scholar] [CrossRef]
- Tylmann, W.; Zolitschka, B. Annually Laminated Lake Sediments—Recent Progress. Quaternary 2020, 3, 5. [Google Scholar] [CrossRef]
- Bruel, R.; Girardclos, S.; Marchetto, A.; Kremer, K.; Crouzet, C.; Reyss, J.-L.; Sabatier, P.; Perga, M.-E. Reframing Lake Geneva Ecological Trajectory in a Context of Multiple but Asynchronous Pressures. J. Paleolimnol 2021, 65, 353–368. [Google Scholar] [CrossRef]
- Haslett, J.; Parnell, A. A Simple Monotone Process with Application to Radiocarbon-Dated Depth Chronologies. J. R. Stat. Soc. Ser. C 2008, 57, 399–418. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Wright, A.J.; Edwards, R.J.; van de Plassche, O.; Blaauw, M.; Parnell, A.C.; van der Borg, K.; de Jong, A.F.M.; Roe, H.M.; Selby, K.; Black, S. Reconstructing the Accumulation History of a Saltmarsh Sediment Core: Which Age-Depth Model Is Best? Quat. Geochronol. 2017, 39, 35–67. [Google Scholar] [CrossRef]
- Lacourse, T.; Gajewski, K. Current Practices in Building and Reporting Age-Depth Models. Quat. Res. 2020, 96, 28–38. [Google Scholar] [CrossRef]
- Trachsel, M.; Telford, R.J. All Age–Depth Models Are Wrong, but Are Getting Better. Holocene 2017, 27, 860–869. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Bennett, K.D.; Reimer, P.J. Double the Dates and Go for Bayes—Impacts of Model Choice, Dating Density and Quality on Chronologies. Quat. Sci. Rev. 2018, 188, 58–66. [Google Scholar] [CrossRef]
- Morlock, M.A.; Vogel, H.; Russell, J.M.; Anselmetti, F.S.; Bijaksana, S. Quaternary Environmental Changes in Tropical Lake Towuti, Indonesia, Inferred from End-member Modelling of X-ray Fluorescence Core-scanning Data. J. Quat. Sci. 2021, 36, 1040–1051. [Google Scholar] [CrossRef]
- Brocard, G.; Anselmetti, F.S.; Teyssier, C. Guatemala Paleoseismicity: From Late Classic Maya Collapse to Recent Fault Creep. Sci. Rep. 2016, 6, 36976. [Google Scholar] [CrossRef]
- Kremer, K.; Gassner-Stamm, G.; Grolimund, R.; Wirth, S.B.; Strasser, M.; Fäh, D. A Database of Potential Paleoseismic Evidence in Switzerland. J. Seism. 2020, 24, 247–262. [Google Scholar] [CrossRef]
- Walton, M.A.L.; Staisch, L.M.; Dura, T.; Pearl, J.K.; Sherrod, B.; Gomberg, J.; Engelhart, S.; Tréhu, A.; Watt, J.; Perkins, J.; et al. Toward an Integrative Geological and Geophysical View of Cascadia Subduction Zone Earthquakes. Annu. Rev. Earth Planet. Sci. 2021, 49, 367–398. [Google Scholar] [CrossRef]
Spatial Imprint | Lithofacies | Biological and Organic Facies | |||||||
---|---|---|---|---|---|---|---|---|---|
Event Deposit Type | Bathymetry | Seismic Reflection | Core Correlation | Grain Size | Sedimentary Structures Microfacies | Inorganic Geochemistry | Petrology | Organic Geochemistry | Biological Remains |
Flood | x | x | X | X | x | X | x | x | - |
GLOF | x | x | x | X | x | x | - | X | - |
Avalanche | x | x | x | X | x | x | x | X | - |
Cyclone/Hurricane | x | - | X | X | x | X | x | x | X |
Volcanic eruption | x | x | x | x | x | x | X | - | - |
Earthquake | X | X | X | X | x | x | - | x | - |
Delta collapse | X | X | X | X | x | x | - | x | - |
Marine tsunami | x | x | X | X | X | x | x | x | X |
In-lake tsunami | X | X | X | X | X | - | - | x | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabatier, P.; Moernaut, J.; Bertrand, S.; Van Daele, M.; Kremer, K.; Chaumillon, E.; Arnaud, F. A Review of Event Deposits in Lake Sediments. Quaternary 2022, 5, 34. https://doi.org/10.3390/quat5030034
Sabatier P, Moernaut J, Bertrand S, Van Daele M, Kremer K, Chaumillon E, Arnaud F. A Review of Event Deposits in Lake Sediments. Quaternary. 2022; 5(3):34. https://doi.org/10.3390/quat5030034
Chicago/Turabian StyleSabatier, Pierre, Jasper Moernaut, Sebastien Bertrand, Maarten Van Daele, Katrina Kremer, Eric Chaumillon, and Fabien Arnaud. 2022. "A Review of Event Deposits in Lake Sediments" Quaternary 5, no. 3: 34. https://doi.org/10.3390/quat5030034