Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Work
2.3. Daily Measurement of Sediment Flux
2.4. Meteorological and Hydrological Observations
2.5. Statistical Analysis
3. Results
3.1. Ultra-High-Resolution Sediment Flux Rate with Meteorological and Hydrological Observations
3.2. Statistical Analysis Results
4. Discussion
4.1. Potential and Reliability of Online Sediment Trap
4.2. Sediment Flux Changes Controlled by Meteorological and Hydrological Events
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ojala, A.E.K.; Francus, P.; Zolitschka, B.; Besonen, M.; Lamoreux, S.F. Characteristics of sedimentary varve chronologies—A review. Quat. Sci. Rev. 2012, 43, 45–60. [Google Scholar] [CrossRef]
- Zolitschka, B.; Francus, P.; Ojala, A.E.K.; Schimmelmann, A. Varves in lake sediments—A review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Schimmelmann, A.; Lange, C.; Schieber, J.; Francus, P.; Ojala, A.E.K.; Zolitschka, B. Varves in marine sediments: A review. Earth Sci. Rev. 2016, 159, 215–246. [Google Scholar] [CrossRef]
- Saarni, S.; Lensu, A.; Tammelin, M.; Haltia, E.; Saarinen, T. Winter climate signal in boreal clastic-biogenic varves; a comprehensive analysis of three varved records from 1890 to 1990 AD with meteorological and hydrological data from eastern Finland. GFF 2017, 139, 314–326. [Google Scholar] [CrossRef]
- Amann, B.; Szidat, S.; Grosjean, M. A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments: Implications for the future. Quat. Sci. Rev. 2015, 115, 89–100. [Google Scholar] [CrossRef]
- Blass, A.; Bigler, C.; Grosjean, M.; Sturm, M. Decadal-scale autumn temperature reconstruction back to AD 1580 inferred from the varved sediments of Lake Silvaplana (southern Swiss Alps). Quat. Res. 2007, 68, 184–195. [Google Scholar] [CrossRef]
- Moore, J.J.; Hughen, K.A.; Miller, G.H.; Overpeck, J.T. Little Ice Age recorded in summer temperature reconstructions from varved sediments of Donard Lake, Baffin Island, Canada. J. Paleolimnol. 2001, 25, 503–517. [Google Scholar] [CrossRef]
- Brauer, A.; Dulski, P.; Mangili, C.; Mingram, J.; Liu, J. The potential of varves in high-resolution paleolimnological studies. Pages News 2009, 17, 96–98. [Google Scholar] [CrossRef] [Green Version]
- Ojala, A.E.K.; Launonen, I.; Holmström, L.; Tiljander, M. Effects of solar forcing and North Atlantic Oscillation on the climate of continental Scandinavia during the Holocene. Quat. Sci. Rev. 2015, 112, 153–171. [Google Scholar]
- Ólafsdóttir, K.B.; Geirsdóttir, Á.; Miller, G.H.; Larsen, D.J. Evolution of NAO and AMO strength and cyclicity derived from a 3-ka varve-thickness record from Iceland. Quat. Sci. Rev. 2013, 69, 142–154. [Google Scholar] [CrossRef]
- Brauer, A.; Haug, G.H.; Dulski, P.; Sigman, D.M.; Negendank, J.F.W. An abrupt wind shift in western Europe at the onset of Younger Dryas cold Period. Nat. Geosci. 2008, 1, 520–523. [Google Scholar] [CrossRef]
- Schletter, G.; Liu, Q.; Mingram, J.; Stebich, M.; Dulski, P. East-Asian monsoon variability between 15 000 and 2000 cal. yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field). Holocene 2006, 16, 1043–1057. [Google Scholar] [CrossRef]
- Landmann, G.; Reimer, A.; Lemcke, G.; Kempe, S. Dating Late Glacial abrupt climate changes in the 14,570 yr long continuous varve record of Lake Van, Turkey. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1996, 122, 107–118. [Google Scholar] [CrossRef]
- Bonk, A.; Tylmann, W.; Amann, B.; Enters, D.; Grosjean, M. Modern limnology, sediment accumulation and varve formation processes in Lake Zabinskie, northeastern Poland: Comprehensive process studies as a key to understand the sediment record. J. Limnol. 2015, 74, 358–370. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Kosonen, E.; Wecström, J.; Korkonen, S.; Korhola, A. Seasonal formation of clastic-boigenic varves: Potential for paleoenvironmental interpretations. GFF 2013, 135, 237–247. [Google Scholar] [CrossRef]
- Trapote, M.C.; Vegas-Vilarrúbia, T.; López, P.; Puche, E.; Gomà, J.; Buchaca, T.; Cañellas-Boltà, N.; Safont, E.; Corella, J.P.; Rull, V. Modern sedimentary analogues and integrated monitoring to understand varve formation in the Mediterranean Lake Montcortès (Central Pyrenees, Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 496, 292–304. [Google Scholar] [CrossRef]
- Kaal, J.; Cortizas, A.M.; Rydberg, J.; Bigler, C. Seasonal changes in molecular composition of organic matter in lake sediment trap material from Nylandssjön, Sweden. Org. Geochem. 2015, 83–84, 253–262. [Google Scholar] [CrossRef]
- Chu, G.; Liu, J.; Schettler, G.; Li, J.; Sun, Q.; Gu, Z.; Lu, H.; Liu, Q.; Liu, T. Sediment Fluxes and Varve Formation in Sihailongwan, a Maar Lake from Northeastern China. J. Paleolimnol. 2015, 34, 311–324. [Google Scholar] [CrossRef]
- Tylmann, W.; Szpakowska, K.; Ohlendorf, C.; Woszczyk, M.; Zolitschka, B. Conditions for deposition of annually laminated sediments in a small meromictic lakes: A case study of Lake Suminko (northern Poland). J. Paleolimnol. 2012, 47, 55–70. [Google Scholar] [CrossRef]
- Kienel, U.; Kirillin, G.; Brademann, B.; Plessen, B.; Lampe, R.; Brauer, A. Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. J. Paleolimnol. 2017, 57, 37–49. [Google Scholar] [CrossRef]
- Saarni, S.; Muschitiello, F.; Weege, S.; Brauer, A.; Saarinen, T. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi. Quat. Sci. Rev. 2016, 154, 100–110. [Google Scholar] [CrossRef]
- Martin-Puertas, C.; Brauer, A.; Dulski, P.; Brademann, B. Testing climate-proxy stationarity throughout the Holocene: An example from the varved sediments of Lake Meerfelder Maar (Germany). Quat. Sci. Rev. 2012, 58, 56–65. [Google Scholar] [CrossRef]
- Itkonen, A.; Salonen, V.-P. The response of sedimentation in three varved lacustrine sequences to air temperature, precipitation and human impact. J. Paleolimnol. 1994, 11, 323–332. [Google Scholar] [CrossRef]
- The Finnish Meteorological Institute’s Open Data. Available online: https://en.ilmatieteenlaitos.fi/open-data (accessed on 30 March 2019).
- Finland’s Environmental Administration, Hydrological Observations. Available online: https://www.ymparisto.fi/en-US/Maps_and_statistics/Hydrological_observations (accessed on 30 March 2019).
- Saarnisto, M. Shoreline displacement and emergence of lake basins. Geological Survey of Finland. Spec. Pap. 2000, 29, 25–34. [Google Scholar]
- Eronen, M.; Haila, H. Geologinen kehitys jääkauden lopussa. In Atlas of Finland, Surficial Deposits; Alalammi, P., Ed.; National Board of Survey and Geographical Society of Finland: Helsinki, Finland, 1990; Volume 124, pp. 13–19. (In Finnish) [Google Scholar]
- Johansson, M.; Saarni, S.; Sorvari, J. A modern on-line technology for environmental monitoring: Tomographic approach in sediment trap provides record of sediment flux with ultra-high-resolution. Forthcoming.
- IBM Corp. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Haltia-Hovi, E.; Saarinen, T.; Kukkonen, M. A 2000-year record of solar forcing on varved lake sediments in eastern Finland. Quat. Sci. Rev. 2007, 26, 678–689. [Google Scholar] [CrossRef]
- Czymzik, M.; Brauer, A.; Dulski, P.; Plessen, B.; Naumann, R.; von Grafesnstein, U.; Scheffler, R. Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-Alpine Lake Ammersee (southern Germany). Quat. Sci. Rev. 2015, 61, 96–110. [Google Scholar] [CrossRef]
- Renberg, I. Formation, structure and visual appearance of iron-rich, varved lake sediments. Proc. Int. Assoc. Theor. Appl. Limnol. 1981, 21, 1922–2010. [Google Scholar] [CrossRef]
- Saarni, S.; Saarinen, T.; Lensu, A. Organic lacustrine sediment varves as indicators of past precipitation chamges: A 3000-year climate record from Central Finland. J. Paleolimnol. 1995, 53, 401–413. [Google Scholar] [CrossRef]
Sediment Collection Date | Online Measurement (mL) | Manual Measurement (mL) | Difference (mL) |
---|---|---|---|
11.11.2017 | 3.0 | 2.5 | 0.5 |
10.5.2018 | 6.9 | 6.5 | 0.4 |
28.7.2018 | 14.7 | 14.0 | 0.7 |
6.10.2018 | 14.4 | 17.8 | −3.4 |
Variable | Unit | N | Minimum | Maximum | Mean | Median | Std. Deviation |
---|---|---|---|---|---|---|---|
Sedimentation Flux rate | mL/day | 350 | 0.00 | 1.73 | 0.11 | 0.10 | 0.23 |
Air temperature | °C | 350 | −21.10 | 25.37 | 5.02 | 13.27 | 10.87 |
Wind speed | m/s | 350 | 0.88 | 5.83 | 2.49 | 2.40 | 0.90 |
Wind gust | m/s | 350 | 1.56 | 11.18 | 4.70 | 4.45 | 1.77 |
Wind direction | ° | 350 | 58.83 | 350.92 | 199.33 | 191.52 | 70.73 |
Snow depth | Cm | 350 | 0.00 | 93.88 | 22.41 | 50.93 | 29.75 |
Water precipitation | mm | 350 | 0.00 | 37.00 | 1.11 | 2.10 | 3.58 |
Snow precipitation | mm | 350 | 0.00 | 18.50 | 0.62 | 2.00 | 1.99 |
Water temperature at depth of: | °C | ||||||
1 m | 350 | 0.06 | 24.70 | 7.47 | 14.40 | 8.54 | |
2 m | 278 | 0.07 | 18.81 | 4.97 | 1.32 | 6.44 | |
3 m | 278 | 0.06 | 16.58 | 4.36 | 1.56 | 5.24 | |
4 m | 278 | 0.06 | 13.70 | 3.89 | 1.73 | 4.19 | |
5 m | 278 | 0.13 | 12.41 | 3.63 | 2.07 | 3.38 | |
6 m | 278 | 0.12 | 10.27 | 3.37 | 2.56 | 2.67 | |
Ground frost | Cm | 183 | 0.00 | 5.00 | 1.00 | 1.40 | 1.43 |
Ice cover | 0 (no), 1 (yes) | 350 | 0 | 1 | - | - | - |
Construction | 0 (no), 1 (yes) | 350 | 0 | 1 | - | - | - |
Ground frost (group variable) | 0 (no), 1 (yes) | 350 | 0 | 1 | - | - | - |
Flux Rate (mL/day) | Air Temperature (°C) | Wind Speed (m/s) | Wind Direction (West–East) | Precipitation (mm Water) |
---|---|---|---|---|
r | 0.31 1 | 0.31 2 | 0.20 2 | 0.35 1 |
p | <0.001 | 0.02 | 0.045 | 0.01 |
N | 350 | 54 | 106 | 54 |
Flux Rate (mL/day) | 1 | 2 | 3 | 4 |
R | 0.31 1 | 0.34 1 | 0.30 1 | 0.28 1 |
P | <0.001 | 0.02 | 0.01 | <0.001 |
N | 350 | 278 | 278 | 278 |
Flux Rate (mL/day) | 5 | 6 | Ice Cover | Snow Depth (cm) |
R | 0.28 1 | 0.28 1 | −0.28 1 | −0.26 1 |
P | 0.01 | <0.001 | <0.001 | <0.001 |
N | 278 | 278 | 350 | 350 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansson, M.; Saarni, S.; Sorvari, J. Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping. Quaternary 2019, 2, 18. https://doi.org/10.3390/quat2020018
Johansson M, Saarni S, Sorvari J. Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping. Quaternary. 2019; 2(2):18. https://doi.org/10.3390/quat2020018
Chicago/Turabian StyleJohansson, Markus, Saija Saarni, and Jouni Sorvari. 2019. "Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping" Quaternary 2, no. 2: 18. https://doi.org/10.3390/quat2020018
APA StyleJohansson, M., Saarni, S., & Sorvari, J. (2019). Ultra-High-Resolution Monitoring of the Catchment Response to Changing Weather Conditions Using Online Sediment Trapping. Quaternary, 2(2), 18. https://doi.org/10.3390/quat2020018