The Indian Summer Monsoon from a Speleothem δ18O Perspective—A Review
Abstract
:1. Introduction
2. Study Region
- Winter lasting from December until March; snowfall is seen only in the high-altitude Himalayan region. Winter climate is characterized by dry conditions through most of the other regions, with influence of northeasterly cold-air masses originating on the Tibetan Plateau, the “Winter monsoon”. In northwest India, recycled moisture from the Atlantic, Mediterranean, and near East can be introduced by the westerlies (“Western Disturbances”) [22].
- Summer or pre-monsoon season lasting from April to June; these are the hottest and driest months of the year with temperatures between 20 °C and 40 °C.
- Summer monsoon (Indian summer monsoon—ISM) or rainy season lasts from July to September; the monsoon rainfall onset is as early as the first week of June in south peninsular India gradually extending across the rest of India by the first week of July. The summer monsoon season is dominated by the southwest monsoon that delivers ~70% of the total annual rainfall to India. The Meghalaya Plateau in northeast India receives exceptional amounts of precipitation at this time due to its position as the first orographic barrier for moist air masses from the Bay of Bengal [23], leading to its denomination as the “wettest place on Earth” [24].
- The post-monsoon occurs during October and November; little rain falls at this time in peninsular India except in the southeast where most of the rain is brought by northeast winds that source moisture from the Bay of Bengal.
3. Distribution of Speleothem Isotopic Records in Space and Time
3.1. Spatial Distribution of Caves and Potential for Paleoclimate Studies
3.2. Temporal Distribution of Stalagmite Paleoclimate Records
3.3. Quality of the Records
4. Regional Patterns in Speleothem Oxygen Isotope Records and Their Climatic Interpretations
4.1. North India
4.2. Northeast India
4.3. Peninsular India
5. Discussion
5.1. The Little Ice Age (LIA)
- Other types of records from the north Indian region (such as lake core records) suggest changes in ISM rainfall amount in north India during the LIA (e.g., [106] and references therein).
- If changes in circulation during the LIA are a result of active/break dynamics as suggested by Dixit and Tandon [106], the northeast and north Indian cave records should respond with δ18O excursions in the same direction as a result of stronger Bay of Bengal branch of precipitation.
- If changes in circulation during the LIA are a result of a weaker ISM and stronger Western Disturbances as suggested by Kotlia et al. [60] and Sanwal et al. [56], then there needs to be unambiguous evidence of Western Disturbances influencing cave stalagmite δ18O records (either through seasonal drip water δ18O changes or cave ventilation changes) at present or in the past (e.g., through investigation in spatially separated stalagmite records and climate modeling).
5.2. North Atlantic Forcing
5.3. Orbital Forcing
6. Future Directions
- The use of uranium–thorium dating methods coupled with the strong seasonality of the monsoon allow for high-resolution records with high dating precision. This allows for precise age control on the timing of events and, in turn, gives significant insight into the pathway of distal forcings on the ISM. However, this requires consistency in age model creation, which will be an important next step for the SISAL Working Group.
- There is less information available on multi-decadal variability of the ISM and on the frequency of variability within different climate states. The age control provided by stalagmites coupled with high growth rates allows for the generation of more information on this variability through different methods of spectral analysis. This was explored only to a limited extent in the current records, only to conclude with a range of plausible mechanisms. Increased interaction between the paleoclimate and atmospheric sciences communities will be required to narrow down the plausible physical mechanisms and pathways of forcings.
- Databases such as SISAL allow examination of regional patterns in records highlighting the sub-regional differences in responses of the ISM to forcings. At present, this is somewhat handicapped by the lack of long-term rainfall δ18O and cave monitoring studies. While δ18O gives information on large-scale circulation changes, other stalagmite-based records like trace-element ratios (such as Mg/Ca and U/Ca) can form powerful paleo-aridity indicators providing information on local changes in rainfall. This not only provides information on local climate change, but also on the sub-regional ISM response to distal forcings. Quantitative reconstruction of rainfall using δ18O was attempted [122], and this approach is worth testing over modern instrumental time scales. A recent study suggests that calcium isotope ratios can also be used for quantitative reconstruction of rainfall [123].
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webster, P.J.; Magaña, V.O.; Palmer, T.N.; Shukla, J.; Tomas, R.A.; Yanai, M.; Yasunari, T. Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans 1998, 103, 14451–14510. [Google Scholar] [CrossRef] [Green Version]
- Mohtadi, M.; Prange, M.; Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016, 533, 191–199. [Google Scholar] [CrossRef]
- Li, H.-C.; Ku, T.-L.; You, C.-F.; Cheng, H.; Edwards, R.L.; Ma, Z.-B.; Tsai, W.; Li, M.-D. 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochim. Cosmochim. Acta 2005, 69, 3933–3947. [Google Scholar] [CrossRef]
- Johnson, K.R.; Hu, C.; Belshaw, N.S.; Henderson, G.M. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. EPSL 2006, 244, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Sinha, A.; Wang, X.; Cruz, F.W.; Edwards, R.L. The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim. Dyn. 2012, 39, 1045–1062. [Google Scholar] [CrossRef]
- Wang, Y.J.; Cheng, H.; Edwards, R.L.; An, Z.S.; Wu, J.Y.; Shen, C.-C.; Dorale, J.A. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 2001, 294, 2345–2348. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Edwards, R.L.; Kong, X.; Shao, X.; Chen, S.; Wu, J.; Jiang, X.; Wang, X.; An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2008, 451, 1090–1093. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Cannariato, K.G.; Stott, L.D.; Cheng, H.; Edwards, R.L.; Yadava, M.G.; Ramesh, R.; Singh, I.B. A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys. Res. Lett. GRL 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Kathayat, G.; Cheng, H.; Breitenbach, S.F.M.; Berkelhammer, M.; Mudelsee, M.; Biswas, J.; Edwards, R.L. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature Commun. 2015, 6. [Google Scholar] [CrossRef]
- Sinha, A.; Berkelhammer, M.; Stott, L.; Mudelsee, M.; Cheng, H.; Biswas, J. The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys. Res. Lett. GRL 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Kathayat, G.; Cheng, H.; Sinha, A.; Yi, L.; Li, X.; Zhang, H.; Li, H.; Ning, Y.; Edwards, R.L. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv. 2017, 3, e1701296. [Google Scholar] [CrossRef] [PubMed]
- Kathayat, G.; Cheng, H.; Sinha, A.; Spötl, C.; Edwards, R.L.; Zhang, H.; Li, X.; Yi, L.; Ning, Y.; Cai, Y.; et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.G.; Oster, J.L.; Sharp, W.D.; Bennartz, R.; Kelley, N.P.; Covey, A.K.; Breitenbach, S.F.M. Northeast Indian stalagmite records Pacific decadal climate change: Implications for moisture transport and drought in India. Geophys. Res. Lett. GRL 2015, 42, 4124–4132. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Cannariato, K.G.; Stott, L.D.; Li, H.-C.; You, C.-F.; Cheng, H.; Edwards, R.L.; Singh, I.B. Variability of Southwest Indian summer monsoon precipitation during the Bølling-Ållerød. Geology 2005, 33, 813–816. [Google Scholar] [CrossRef]
- Dutt, S.; Gupta, A.K.; Clemens, S.C.; Cheng, H.; Singh, R.K.; Kathayat, G.; Edwards, R.L. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. GRL 2015, 42, 5526–5532. [Google Scholar] [CrossRef]
- Lechleitner, F.A.; Breitenbach, S.F.M.; Cheng, H.; Plessen, B.; Rehfeld, K.; Goswami, B.; Marwan, N.; Eroglu, D.; Adkins, J.; Haug, G. Climatic and in-cave influences on δ18O and δ13C in a stalagmite from northeastern India through the last deglaciation. Quat. Res. 2017, 88, 458–471. [Google Scholar] [CrossRef]
- LeGrande, A.N.; Schmidt, G.A. Sources of Holocene variability of oxygen isotopes in paleoclimate archives. Clim. Past 2009, 5, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Battisti, D.S.; Ding, Q.; Roe, G.H. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation. J. Geophys. Res. Atmos. 2014, 119, 11997–12020. [Google Scholar] [CrossRef]
- Atsawawaranunt, K.; Harrison, S.; Comas Bru, L. SISAL (Speleothem Isotopes Synthesis and AnaLysis Working Group) Database Version 1.0. 2018. Available online: http://researchdata.reading.ac.uk/139/ (accessed on 4 December 2018).
- Atsawawaranunt, K.; Comas-Bru, L.; Amirnezhad Mozhdehi, S.; Deininger, M.; Harrison, S.P.; Baker, A.; Boyd, M.; Kaushal, N.; Ahmad, S.M.; Ait Brahim, Y.; et al. The SISAL database: A global resource to document oxygen and carbon isotope records from speleothems. Earth Syst. Sci. Data 2018, 1–64. [Google Scholar] [CrossRef]
- Dimri, A.P.; Niyogi, D.; Barros, A.P.; Ridley, J.; Mohanty, U.C.; Yasunari, T.; Sikka, D.R. Western Disturbances: A review. Rev. Geophys. 2015, 53, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Breitenbach, S.F.M.; Adkins, J.F.; Meyer, H.; Marwan, N.; Kumar, K.K.; Haug, G.H. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. EPSL 2010, 292, 212–220. [Google Scholar] [CrossRef]
- Murata, F.; Hayashi, T.; Matsumoto, J.; Asada, H. Rainfall on the Meghalaya plateau in northeastern India—One of the rainiest places in the world. Nat. Hazards 2007, 42, 391–399. [Google Scholar] [CrossRef]
- Kumar, K.K.; Soman, M.K.; Kumar, K.R. Seasonal forecasting of Indian summer monsoon rainfall: A review. Weather 1995, 50, 449–467. [Google Scholar] [CrossRef]
- Bookhagen, B.; Thiede, R.C.; Strecker, M.R. Abnormal monsoon years and their control on erosion and sediment flux in the high, arid northwest Himalaya. Earth Planet. Sci. Lett. EPSL 2005, 231, 131–146. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Blanford, H.F., II. On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc. R. Soc. Lond. 1884, 37, 3–22. [Google Scholar] [CrossRef]
- Hahn, D.G.; Shukla, J. An Apparent Relationship between Eurasian Snow Cover and Indian Monsoon Rainfall. J. Atmos. Sci. 1976, 33, 2461–2462. [Google Scholar] [CrossRef] [Green Version]
- Khandekar, M.L. Eurasian snow cover, Indian monsoon and El Niño/Southern Oscillation—A synthesis. Atmos.-Ocean 1991, 29, 636–647. [Google Scholar] [CrossRef]
- Kripalani, R.H.; Singh, S.V.; Vernekar, A.D.; Thapliyal, V. Empiriacal Study on Nimbus-7 Snow Mass and Indian Summer Monsoon Rainfall. Int. J. Climatol. 1996, 16, 23–34. [Google Scholar] [CrossRef]
- Bamzai, A.S.; Shukla, J. Relation between Eurasian Snow Cover, Snow Depth, and the Indian Summer Monsoon: An Observational Study. J. Clim. 1999, 12, 3117–3132. [Google Scholar] [CrossRef]
- Kumar, K.K. On the Weakening Relationship Between the Indian Monsoon and ENSO. Science 1999, 284, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- Ashok, K.; Guan, Z.; Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. GRL 2001, 28, 4499–4502. [Google Scholar] [CrossRef] [Green Version]
- Kripalani, R.; Kulkarni, A. Climate impact of El Nino/La Nina on the Indian monsoon: A new perspective. Weather 2012. [Google Scholar] [CrossRef]
- Goswami, B.N.; Mohan, R.S.A. Intraseasonal Oscillations and Interannual Variability of the Indian Summer Monsoon. J. Clim. 2001, 14, 1180–1198. [Google Scholar] [CrossRef] [Green Version]
- Guhathakurta, P.; Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Climatol. 2008, 28, 1453–1469. [Google Scholar] [CrossRef] [Green Version]
- Rajeevan, M.; Gadgil, S.; Bhate, J. Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci. 2010, 119, 229–247. [Google Scholar] [CrossRef] [Green Version]
- Annamalai, H.; Slingo, J.M. Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Clim. Dyn. 2001, 18, 85–102. [Google Scholar] [CrossRef]
- Mehta, V.M.; Lau, K.-M. Influence of solar irradiance on the Indian Monsoon-ENSO relationship at decadal-multidecadal time scales. Geophys. Res. Lett. GRL 1997, 24, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sugi, M. Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim. Dyn. 2003, 21, 233–242. [Google Scholar] [CrossRef]
- Chen, Z.; Auler, A.S.; Bakalowicz, M.; Drew, D.; Griger, F.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Richts, A.; Stevanovic, Z.; et al. The World Karst Aquifer Mapping project: Concept, mapping procedure and map of Europe. Hydrogeol. J. 2017, 25, 771–785. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Sinha, A.; Mudelsee, M.; Cheng, H.; Edwards, R.L.; Cannariato, K. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. EPSL 2010, 290, 166–172. [Google Scholar] [CrossRef]
- Singh Kotlia, B.; Singh, A.K. Stalagmite Inferred High Resolution Climatic Changes through Pleistocene-Holocene Transition in Northwest Indian Himalaya. J. Earth Sci. Clim. Chang. 2016, 07. [Google Scholar] [CrossRef]
- Berkelhammer, M.; Sinha, A.; Stott, L.; Cheng, H.; Pausata, F.S.R.; Yoshimura, K. An Abrupt Shift in the Indian Monsoon 4000 Years Ago. In Geophysical Monograph Series; Giosan, L., Fuller, D.Q., Nicoll, K., Flad, R.K., Clift, P.D., Eds.; American Geophysical Union: Washington, DC, USA, 2013; pp. 75–88. ISBN 978-1-118-70432-5. [Google Scholar]
- Huguet, C.; Routh, J.; Fietz, S.; Lone, M.A.; Kalpana, M.S.; Ghosh, P.; Mangini, A.; Kumar, V.; Rangarajan, R. Temperature and Monsoon Tango in a Tropical Stalagmite: Last Glacial-Interglacial Climate Dynamics. Sci. Rep. 2018, 8, 5386. [Google Scholar] [CrossRef] [PubMed]
- Genty, D. Munagamanu Cave Data: SISAL Database v1; University of Reading: Reading, UK, 2018. [Google Scholar]
- Joshi, L.M.; Kotlia, B.S.; Ahmad, S.M.; Wu, C.-C.; Sanwal, J.; Raza, W.; Singh, A.K.; Shen, C.-C.; Long, T.; Sharma, A.K. Reconstruction of Indian monsoon precipitation variability between 4.0 and 1.6 ka BP using speleothem δ18O records from the Central Lesser Himalaya, India. Arabian J. Geosci. 2017, 10, 356. [Google Scholar] [CrossRef]
- Raza, W.; Ahmad, S.M.; Lone, M.A.; Shen, C.-C.; Sarma, D.S.; Kumar, A. Indian summer monsoon variability in southern India during the last deglaciation: Evidence from a high resolution stalagmite δ18O record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 485, 476–485. [Google Scholar] [CrossRef]
- Lone, M.A.; Ahmad, S.M.; Dung, N.C.; Shen, C.-C.; Raza, W.; Kumar, A. Speleothem based 1000-year high resolution record of Indian monsoon variability during the last deglaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 395, 1–8. [Google Scholar] [CrossRef]
- Yadava, M.G.; Ramesh, R.; Pant, G.B. Past monsoon rainfall variations in peninsular India recorded in a 331-year-old speleothem. Holocene 2004, 14, 517–524. [Google Scholar] [CrossRef]
- Laskar, A.H.; Raghav, S.; Yadava, M.G.; Jani, R.A.; Narayana, A.C.; Ramesh, R. Potential of Stable Carbon and Oxygen Isotope Variations of Speleothems from Andaman Islands, India, for Paleomonsoon Reconstruction. J. Geol. Res. 2011. [Google Scholar] [CrossRef]
- Laskar, A.H.; Yadava, M.G.; Ramesh, R.; Polyak, V.J.; Asmerom, Y. A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosys. 2013. [Google Scholar] [CrossRef]
- Allu, N.C.; Tiwari, M.; Yadava, M.G.; Dung, N.C.; Shen, C.-C.; Belgaonkar, S.P.; Ramesh, R.; Laskar, A.H. Stalagmite δ18O variations in southern India reveal divergent trends of Indian Summer Monsoon and East Asian Summer Monsoon during the last interglacial. Quat. Int. 2015, 371, 191–196. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Zhao, J.-X.; Duan, W.; Tan, M.; Sharma, A.K.; Raza, W. Stalagmite based high resolution precipitation variability for past four centuries in the Indian Central Himalaya: Chulerasim cave re-visited and data re-interpretation. Quat. Int. 2017, 444, 35–43. [Google Scholar] [CrossRef]
- Sanwal, J.; Kotlia, B.S.; Rajendran, C.; Ahmad, S.M.; Rajendran, K.; Sandiford, M. Climatic variability in Central Indian Himalaya during the last ∼1800 years: Evidence from a high resolution speleothem record. Quat. Int. 2013, 304, 183–192. [Google Scholar] [CrossRef]
- Band, S.; Yadava, M.G.; Lone, M.A.; Shen, C.-C.; Sree, K.; Ramesh, R. High-resolution mid-Holocene Indian Summer Monsoon recorded in a stalagmite from the Kotumsar Cave, Central India. Quat. Int. 2018, 479, 19–24. [Google Scholar] [CrossRef]
- Sinha, N.; Gandhi, N.; Chakraborty, S.; Krishnan, R.; Ramesh, R.; Yadava, M.; Datye, A. Past rainfall reconstruction using speleothem from Nakarallu cave, kadapa, Andhra Pradesh, India. In Proceedings of the EGU General Assembly, Vienna, Austria, 17–22 April 2016; Volume 18, p. EPSC2016-811. [Google Scholar]
- Liang, F.; Brook, G.A.; Kotlia, B.S.; Railsback, L.B.; Hardt, B.; Cheng, H.; Edwards, R.L.; Kandasamy, S. Panigarh cave stalagmite evidence of climate change in the Indian Central Himalaya since AD 1256: Monsoon breaks and winter southern jet depressions. Quat. Sci. Rev. 2015, 124, 145–161. [Google Scholar] [CrossRef]
- Kotlia, B.S.; Singh, A.K.; Joshi, L.M.; Dhaila, B.S. Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quat. Int. 2015, 371, 244–253. [Google Scholar] [CrossRef]
- Breitenbach, S. Changes in Monsoonal Precipitation and Atmospheric Circulation During the Holocene Reconstructed from Stalagmites from Northeastern India. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2010. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 7: Khaddum (East Jaintia Hills District); Berliner Höhlenkundliche Berichte Series 67; Speläoclub Berlin: Berlin, Germany, 2017. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 6: Lumshnong (East Jaintia Hills); Berliner Höhlenkundliche Berichte Series 60; Speläoclub Berlin: Berlin, Germany, 2015. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 5: Syndai, Nongtalang and Lakadong; Berliner Höhlenkundliche Berichte Series 52; Speläoclub Berlin: Berlin, Germany, 2013. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 4: East Khasi Hills. Section 1 + 2; Berliner Höhlenkundliche Berichte Series 47–48; Speläoclub Berlin: Berlin, Germany, 2012. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 3: West Khasi Hills; Berliner Höhlenkundliche Berichte Series 42; Speläoclub Berlin: Berlin, Germany, 2011. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 2: Garo Hills; Berliner Höhlenkundliche Berichte Series 35; Speläoclub Berlin: Berlin, Germany, 2009. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Meghalaya State, India. Part 1: Overview; Berliner Höhlenkundliche Berichte Series 33; Speläoclub Berlin: Berlin, Germany, 2008. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Himachal Pradesh (India); Berliner Höhlenkundliche Berichte Series 21; Speläoclub Berlin: Berlin, Germany, 2006. [Google Scholar]
- Gebauer, H. Resources on the Speleology of Jammu & Kashmir State, India; Berliner Höhlenkundliche Berichte Series 18; Speläoclub Berlin: Berlin, Germany, 2005. [Google Scholar]
- Breitenbach, S.; Gebauer, H. Resources on the Speleology of Uttarakhand State (formerly Uttaranchal), India; Berliner Höhlenkundliche Berichte Series 50; Speläoclub Berlin: Berlin, Germany, 2013. [Google Scholar]
- Tewari, V.C. Speleothems from Uttarakhand and Meghalaya indicating Holocene Monsoon and Climate. J. Ind. Geol. Cong. 2011, 3, 87–104. [Google Scholar]
- Tewari, V.C. Speleothems as Paleoclimate and Paleomonsoon Indicator: Evidences from NW Himalaya and the Shillong Plateau, NE India. In Proceedings of Selected Topics in Earth System Sciences; Indian Academy of Sciences: Bengaluru, India, 2013; pp. 31–39. [Google Scholar]
- Tewari, V. Himalayan Speleothems as Proxy for the Past Climatic Change and Paleomonsoon. In Frontiers of Earth Science; Scientific Publishers: Jodhpur, India, 2015; pp. 243–250. [Google Scholar]
- Baskar, S.; Baskar, R.; Tewari, V.C.; Thorseth, I.H.; Øvreås, L.; Lee, N.M.; Routh, J. Cave Geomicrobiology in India: Status and Prospects. In Stromatolites: Interaction of Microbes with Sediments; Cellular Origin, Life in Extreme Habitats and Astrobiology; Springer: Dordrecht, The Netherlands, 2011; pp. 541–569. ISBN 978-94-007-0396-4. [Google Scholar]
- Brooks, S.; Smart, C. Caving in the Abode of the Clouds. The Caves and Karst of Meghalaya, North East India; Bristol Exploration Club: Somerset, UK; Orpheus Caving Club: Derbyshire, UK, 1995. [Google Scholar]
- Harries, D.B.; Ware, F.J.; Fischer, C.W.; Biswas, J.; Kharpran-Daly, B.D. A Review of Biospeleology of Meghalaya, India. Natl. Speleol. Soc. Bull. 2008, 163–176. [Google Scholar]
- Yadava, M.G.; Ramesh, R. Monsoon reconstruction from radiocarbon dated tropical Indian speleothems. Holocene 2005, 15, 48–59. [Google Scholar] [CrossRef]
- Biswas, J. Kotumsar Cave biodiversity: A review of cavernicoles and their troglobiotic traits. Biodivers. Conserv. 2010, 19, 275. [Google Scholar] [CrossRef]
- Biswas, J.; Shrotriya, S. Dandak: A mammalian dominated cave ecosystem of India. Subterr. Biol. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Dar, F.A.; Perrin, J.; Riotte, J.; Gebauer, H.D.; Narayana, A.C.; Shakeel, A. Karstification in the Cuddapah Sedimentary Basin, Southern India: Implications for Groundwater Resources. Acta Carsol. 2011, 40. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A.; Mauquoy, D.; van der Plicht, J.; Bennett, K.D. Testing the timing of radiocarbon-dated events between proxy archives. Holocene 2007, 17, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, C.B. Deposition models for chronological records. Quat. Sci. Rev. QSR 2008, 27, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Scholz, D.; Hoffmann, D.L. StalAge—An algorithm designed for construction of speleothem age models. Quat. Geochron. 2011, 6, 369–382. [Google Scholar] [CrossRef]
- Breitenbach, S.F.M.; Rehfeld, K.; Goswami, B.; Baldini, J.U.L.; Ridley, H.E.; Kennett, D.J.; Prufer, K.M.; Aquino, V.V.; Asmerom, Y.; Polyak, V.J.; et al. Constructing Proxy Records from Age models (COPRA). Clim. Past 2012, 8, 1765–1779. [Google Scholar] [CrossRef]
- Kim, S.-T.; Mucci, A.; Taylor, B.E. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chem. Geol. 2007, 246, 135–146. [Google Scholar] [CrossRef]
- Lachniet, M.S. Are aragonite stalagmites reliable paleoclimate proxies? Tests for oxygen isotope time-series replication and equilibrium. GSA Bull. 2015, 127, 1521–1533. [Google Scholar] [CrossRef]
- Breitenbach, S.F.M.; Lechleitner, F.A.; Meyer, H.; Diengdoh, G.; Mattey, D.; Marwan, N. Cave ventilation and rainfall signals in dripwater in a monsoonal setting – a monitoring study from NE India. Chem. Geol. 2015, 402, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Kathayat, G.; Cheng, H.; Sinha, A.; Berkelhammer, M.; Zhang, H.; Duan, P.; Li, H.; Li, X.; Ning, Y.; Edwards, R.L. Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Clim. Past 2018, 14, 1869–1879. [Google Scholar] [CrossRef]
- Lamb, H.H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1965, 1, 13–37. [Google Scholar] [CrossRef]
- Ahmed, M.; Anchukaitis, K.J.; Asrat, A.; Borgaonkar, H.P.; Braida, M.; Buckley, B.M.; Büntgen, U.; Chase, B.M.; Christie, D.A.; et al. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 2013, 6, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.; Heimann, M. Water isotope modeling in the Asian monsoon region. Quat. Int. 1997, 37, 115–128. [Google Scholar] [CrossRef]
- Vuille, M.; Werner, M.; Bradley, R.S.; Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, Y.; Yoshimura, K.; Kanae, S.; Kimoto, M.; Kurita, N.; Oki, T. Interannual variability of H218O in precipitation over the Asian monsoon region. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Midhun, M.; Ramesh, R. Validation of δ18O as a proxy for past monsoon rain by multi-GCM simulations. Clim. Dyn. 2016, 46, 1371–1385. [Google Scholar] [CrossRef]
- Midhun, M.; Lekshmy, P.R.; Ramesh, R.; Yoshimura, K.; Sandeep, K.K.; Kumar, S.; Sinha, R.; Singh, A.; Srivastava, S. The Effect of Monsoon Circulation on the Stable Isotopic Composition of Rainfall. J. Geophys. Res. Atmos. 2018, 123, 5205–5221. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L.; Bowen, G.J. Spatial-seasonal patterns reveal large-scale atmospheric controls on Asian Monsoon precipitation water isotope ratios. Earth Planet. Sci. Lett. 2018, 503, 158–169. [Google Scholar] [CrossRef]
- Maher, B.A.; Thompson, R. Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime. J. Quat. Sci. 2012, 27, 615–624. [Google Scholar] [CrossRef]
- Pausata, F.S.R.; Battisti, D.S.; Nisancioglu, K.H.; Bitz, C.M. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci. 2011, 4, 474–480. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Broecker, W.S.; Denton, G.H.; Kong, X.; Wang, Y.; Zhang, R.; Wang, X. Ice Age Terminations. Science 2009, 326, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, K.; Kanamitsu, M.; Noone, D.; Oki, T. Historical isotope simulation using Reanalysis atmospheric data. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Atwood, A.R.; Wu, E.; Frierson, D.M.W.; Battisti, D.S.; Sachs, J.P. Quantifying Climate Forcings and Feedbacks over the Last Millennium in the CMIP5–PMIP3 Models. J. Clim. 2015, 29, 1161–1178. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent Solar Influence on North Atlantic Climate During the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, K.; Marwan, N.; Breitenbach, S.F.M.; Kurths, J. Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Clim. Dyn. 2013, 41, 3–19. [Google Scholar] [CrossRef]
- Chen, J.; Chen, F.; Feng, S.; Huang, W.; Liu, J.; Zhou, A. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat. Sci. Rev. 2015, 107, 98–111. [Google Scholar] [CrossRef]
- Dixit, Y.; Tandon, S.K. Hydroclimatic variability on the Indian subcontinent in the past millennium: Review and assessment. Earth-Sci. Rev. 2016, 161, 1–15. [Google Scholar] [CrossRef]
- Jones, P.D.; Osborn, T.J.; Briffa, K.R. The Evolution of Climate Over the Last Millennium. Science 2001, 292, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, H. Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Hodell, D.A.; Curtis, J.H. Oxygen and carbon isotopes of detrital carbonate in North Atlantic Heinrich Events. Mar. Geol. 2008, 256, 30–35. [Google Scholar] [CrossRef]
- Broecker, W.S. Does the Trigger for Abrupt Climate Change Reside in the Ocean or in the Atmosphere? Science 2003, 300, 1519–1522. [Google Scholar] [CrossRef] [PubMed]
- McManus, J.F.; Francois, R.; Gherardi, J.-M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Brauer, A.; Haug, G.H.; Dulski, P.; Sigman, D.M.; Negendank, J.F.W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 2008, 1, 520–523. [Google Scholar] [CrossRef]
- Teller, J.T.; Leverington, D.W.; Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev. QSR 2002, 21, 879–887. [Google Scholar] [CrossRef]
- Schulz, H.; von Rad, U.; Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 1998, 393, 54–57. [Google Scholar] [CrossRef]
- Altabet, M.A.; Higginson, M.J.; Murray, D.W. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 2002, 415, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Ivanochko, T.S. Sub-Orbital Scale variations in the Intensity of the Arabian Sea Monsoon. Ph.D. Thesis, University of Edinburgh, Edinburgh, Scotland, 2005. [Google Scholar]
- McGee, D.; Moreno-Chamarro, E.; Green, B.; Marshall, J.; Galbraith, E.; Bradtmiller, L. Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts. Quat. Sci. Rev. QSR 2018, 180, 214–228. [Google Scholar] [CrossRef]
- Hemming, S.R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef] [Green Version]
- Stuiver, M.; Grootes, P.M.; Braziunas, T.F. The GISP2 δ18O Climate Record of the Past 16,500 Years and the Role of the Sun, Ocean, and Volcanoes. Quat. Res. 1995, 44, 341–354. [Google Scholar] [CrossRef]
- Cai, Y.; Fung, I.Y.; Edwards, R.L.; An, Z.; Cheng, H.; Lee, J.-E.; Tan, L.; Shen, C.-C.; Wang, X.; Day, J.A.; et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. 2015, 201424035. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Henderson, G.M.; Huang, J.; Xie, S.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.A.; Day, C.C.; Hu, C.-Y.; Liu, Y.-H.; Pointing, M.D.; Blättler, C.L.; Henderson, G.M. Calcium isotopes in caves as a proxy for aridity: Modern calibration and application to the 8.2 kyr event. Earth Planet. Sci. Lett. 2016, 443, 129–138. [Google Scholar] [CrossRef]
Site_Name | Site_ID | Latitude ° N | Longitude ° E | Elevation m a.s.l. | Entity_Name | Entity_ID | Min. Year BP | Max. Year BP | Reference |
---|---|---|---|---|---|---|---|---|---|
Bittoo cave | 1 | 30.79 | 77.78 | 3000 | BT-1 a | 1 | 12,209 | 56,236 | Kathayat et al., 2016 [13] |
BT-2.1 a | 2 | 24,957 | 43,676 | Kathayat et al., 2016 [13] | |||||
BT-2.2 a | 3 | 43,675 | 58,310 | Kathayat et al., 2016 [13] | |||||
BT-2.3 a | 4 | 58,310 | 179,204 | Kathayat et al., 2016 [13] | |||||
BT-2.4 a | 5 | 179,280 | 191,449 | Kathayat et al., 2016 [13] | |||||
BT-2.5 a | 6 | 227,021 | 234,000 | Kathayat et al., 2016 [13] | |||||
BT-4 a | 7 | 271,150 | 283,817 | Kathayat et al., 2016 [13] | |||||
BT-6 a | 8 | 199,872 | 225,988 | Kathayat et al., 2016 [13] | |||||
BT-8 a | 9 | 874 | 3477 | Kathayat et al., 2016 [13] | |||||
BT-9 a | 10 | 243,063 | 265,735 | Kathayat et al., 2016 [13] | |||||
Dandak cave | 130 | 19.00 | 82.00 | 400 | DAN-D a | 278 | 387.9 | 1325.25 | Berkelhammer et al., 2010 [43] Sinha et al., 2007 [9] |
Jhumar cave | 153 | 18.87 | 81.67 | 600 | JHU-1 a | 328 | −58 | 873.78 | Sinha et al., 2011 [11] |
Kalakot cave | 43 | 33.22 | 74.43 | 826 | KL 3 a | 119 | 9645 | 16,322 | Kotlia et al., 2016 [44] |
Mawmluh cave | 12 | 25.26 | 91.88 | 1160 | KM-A a | 61 | 3653 | 12,395 | Berkelhammer et al., 2013 [45] |
MWS-1 a | 62 | 5532 | 33,788 | Dutt et al., 2015 [16] | |||||
MAW-6 a | 63 | 6510 | 15,907 | Lechleitner et al., 2017 [17] | |||||
c | −62 | −16.4 | Myers et al., 2015 [14] | ||||||
a | 6600 | 22,700 | Huguet et al., 2018 [46] | ||||||
Munagamanu cave | 157 | 15.15 | 77.92 | 475 | Mun-stm2 c | 348 | −59.06 | 3852.2 | Genty et al., unpublished [20] |
Mun-stm1 c | 349 | −54.71 | 694.88 | Genty et al., unpublished [47] | |||||
Sahiya cave | 54 | 30.60 | 77.87 | 1190 | SAH-AB a | 132 | −59.06 | 3852.2 | Sinha et al., 2015 [10] |
a | 2080 | 5684 | Kathayat et al., 2017 [12] | ||||||
Timta cave | 61 | 29.84 | 82.03 | 1900 | T1 a | 145 | 11,664 | 15,215 | Sinha et al., 2005 [15] |
Tityana cave | 126 | 30.64 | 77.65 | 1470 | TC1 a | 262 | 1580 | 3907 | Joshi et al., 2017 [48] |
Valmiki cave | 28 | 15.15 | 77.82 | 420 | VSPM1 b | 99 | 13,161 | 15,607 | Raza et al., 2017 [49] |
VSPM4 b | 100 | 14,697 | 15,696 | Lone et al., 2014 [50] | |||||
Wah Shikhar cave | 64 | 25.25 | 91.87 | 1290 | WS-B a | 148 | −56.65 | 551 | Sinha et al., 2011 [11] |
Akalagavi cave | 14.98 | 74.52 | 521 | b | −47 | 284 | Yadava et al., 2004 [51] | ||
Baratang cave | 12.08 | 92.75 | 20 | a | ~0 | ~3300 | Laskar et al., 2011 [52] | ||
a | ~0 | ~800 | Laskar et al., 2013 [53] | ||||||
a | ~800 | ~3700 | Laskar et al., 2013 [53] | ||||||
Belum cave | 15.1 | 78.1 | 367 | a | ~99,000 | ~108,000 | Allu et al., 2014 [54] | ||
Chulerasim cave | 29.89 | 79.35 | 1254 | b | 0 | 328 | Kotlia et al., 2016 [55] | ||
Dharamjali cave | 29.52 | 80.21 | 2200 | b | −60 | 1780 | Sanwal et al., 2013 [56] | ||
Kotumsar cave | 19.00 | 82.00 | 32 | a | ~5600 | ~8400 | Band et al., 2018 [57] | ||
a | 1964 | 3218 | Kaushal et al., unpublished(Supplementary Materials) | ||||||
Nakarallu cave | 14.52 | 77.99 | 280 | c | ~1700 | ~3300 | Sinha et al., 2017 (EGU Abstract) [58] | ||
Panigarh cave | 29.55 | 80.12 | 1520 | c | −55 | 694 | Liang et al., 2015 [59] | ||
Sainji cave | 30.27 | 79.30 | 1478 | c | 200 | ~4000 | Kotlia et al., 2014 [60] | ||
Umsynrang cave | 25.18 | 92.37 | 875 | b | ~0 | ~11,000 | Breitenbach, 2009, PhD thesis [61] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushal, N.; Breitenbach, S.F.M.; Lechleitner, F.A.; Sinha, A.; Tewari, V.C.; Ahmad, S.M.; Berkelhammer, M.; Band, S.; Yadava, M.; Ramesh, R.; et al. The Indian Summer Monsoon from a Speleothem δ18O Perspective—A Review. Quaternary 2018, 1, 29. https://doi.org/10.3390/quat1030029
Kaushal N, Breitenbach SFM, Lechleitner FA, Sinha A, Tewari VC, Ahmad SM, Berkelhammer M, Band S, Yadava M, Ramesh R, et al. The Indian Summer Monsoon from a Speleothem δ18O Perspective—A Review. Quaternary. 2018; 1(3):29. https://doi.org/10.3390/quat1030029
Chicago/Turabian StyleKaushal, Nikita, Sebastian F. M. Breitenbach, Franziska A. Lechleitner, Ashish Sinha, Vinod C. Tewari, Syed Masood Ahmad, Max Berkelhammer, Shraddha Band, Madhusudan Yadava, Rengaswamy Ramesh, and et al. 2018. "The Indian Summer Monsoon from a Speleothem δ18O Perspective—A Review" Quaternary 1, no. 3: 29. https://doi.org/10.3390/quat1030029
APA StyleKaushal, N., Breitenbach, S. F. M., Lechleitner, F. A., Sinha, A., Tewari, V. C., Ahmad, S. M., Berkelhammer, M., Band, S., Yadava, M., Ramesh, R., & Henderson, G. M. (2018). The Indian Summer Monsoon from a Speleothem δ18O Perspective—A Review. Quaternary, 1(3), 29. https://doi.org/10.3390/quat1030029