River Systems and the Anthropocene: A Late Pleistocene and Holocene Timeline for Human Influence
Abstract
:1. Introduction
2. Major Anthropogenic Influences and Their Effects
3. Methods
4. Early Hominins and Fire
5. Domestication of Plants
6. Domestication of Animals
7. River and Floodplain Modification for Surface Water and Groundwater
8. Riverine Cities and Water Supplies
9. Navigation and Trade Routes
10. Resources of Channels and Floodplains
11. Early Legacy Sediments and Geomorphic Change (Middle to Early Late Holocene)
12. Pre-Industrial and Industrial Changes (Past Millennium)
13. Stages in River Modification
14. Comparison of Stages with Models for Population Growth and Land Use
15. Implications for the Concept of the Anthropocene
16. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hooke, R.L. On the history of humans as geomorphic agents. Geology 2000, 28, 843–846. [Google Scholar] [CrossRef]
- Wilkinson, B.H. Humans as geologic agents: A deep-time perspective. Geology 2005, 33, 161–164. [Google Scholar] [CrossRef]
- Crutzen, P.J. Geology of mankind. Nature 2002, 415, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio 2007, 36, 614–621. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Galuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351. [Google Scholar] [CrossRef] [PubMed]
- Klein Goldewijk, K.; Beusen, A.; van Drecht, G.; de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 2011, 20, 73–86. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Dekker, S.C.; van Zanden, J.L. Per-capita estimations of long-term historical land use and the consequences for global change research. J. Land Use Sci. 2017, 12, 313–337. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Ellis, E.C.; Fuller, D.Q.; Kaplan, J.O.; Lutters, W.G. Dating the Anthropocene: Towards an empirical global history of human transformation of the terrestrial biosphere. Elementa Sci. Anthr. 2013. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q. Defining the epoch we live in. Science 2015, 348, 38–39. [Google Scholar] [CrossRef] [PubMed]
- Braje, T.J.; Erlandson, J.M. Human acceleration of animal and plant extinctions: A Late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 2013, 4, 14–23. [Google Scholar] [CrossRef]
- Ruddiman, W.F. The anthropogenic greenhouse era began thousands of years ago. Clim. Chang. 2003, 61, 261–293. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 2011, 21, 1269–1274. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Vavrus, S.; Kutzbach, J.; He, F. Does pre-industrial warming double the anthropogenic total? Anthr. Rev. 2014, 1, 147–153. [Google Scholar] [CrossRef]
- Edgeworth, M.; Richter, D.D.; Waters, C.N.; Haff, P.; Neal, C.; Price, S.J. Diachronous beginnings of the Anthropocene: The lower bounding surface of anthropogenic deposits. Anthr. Rev. 2015, 2, 33–58. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.; Toms, P.; Carey, C.; Rhodes, E. Geomorphology of the Anthropocene: Time-transgressive discontinuities of human-induced alluviation. Anthropocene 2013, 1, 3–13. [Google Scholar] [CrossRef]
- Brown, A.G.; Tooth, S.; Bullard, J.E.; Thomas, D.S.G.; Chiverrell, R.C.; Plater, A.J.; Murton, J.; Thorndycraft, V.R.; Tarolli, P.; Rose, J.; et al. The geomorphology of the Anthropocene: Emergence, status and implications. Earth Surf. Process. Landf. 2017, 42, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.M.; Williams, C.E.; Pittock, J.; Collier, U.; Schelle, P. World’s Top 10 Rivers at Risk; WWF (World Wildlife Fund) International: Gland, Switzerland, 2007; 53p. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodbred, S.L.; Kuehl, S.A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 2000, 28, 1083–1086. [Google Scholar] [CrossRef]
- Gibling, M.R.; Tandon, S.K.; Sinha, R.; Jain, M. Discontinuity-bounded alluvial sequences of the southern Gangetic Plains, India: Aggradation and degradation in response to monsoonal strength. J. Sediment. Res. 2005, 75, 369–385. [Google Scholar] [CrossRef]
- Rittenour, T.M.; Blum, M.D.; Goble, R.J. Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: Response to glaciation and sea-level change. Geol. Soc. Am. Bull. 2007, 119, 586–608. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Westaway, R. Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology 2008, 98, 288–315. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, J. River terraces as a response to climatic forcing: Formation processes, sedimentary characteristics and sites for human occupation. Quat. Int. 2015, 370, 3–11. [Google Scholar] [CrossRef]
- Cordier, S.; Adamson, K.; Delmas, M.; Calvet, M.; Harmand, D. Of ice and water: Quaternary fluvial response to glacial forcing. Quat. Sci. Rev. 2017, 166, 57–73. [Google Scholar] [CrossRef]
- Macklin, M.G.; Toonen, W.H.J.; Woodward, J.C.; Williams, M.A.J.; Flaux, C.; Marriner, N.; Nicoll, K.; Verstraeten, G.; Spencer, N.; Welsby, D. A new model of river dynamics, hydroclimatic change and human settlement in the Nile Valley derived from meta-analysis of the Holocene fluvial archive. Quat. Sci. Rev. 2015, 130, 109–123. [Google Scholar] [CrossRef]
- Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: The Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat. Sci. Rev. 2008, 27, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Vannière, B.; Blarquez, O.; Rius, D.; Doyen, E.; Brücher, T.; Colombaroli, D.; Connor, S.; Feurdean, A.; Hickler, T.; Kaltenrieder, P.; et al. 7000-year human legacy of elevation-dependent European fire regimes. Quat. Sci. Rev. 2016, 132, 206–212. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The effect of riparian tree roots on the mass-stability of riverbanks. Earth Surf. Process. Landf. 2000, 25, 921–937. [Google Scholar] [CrossRef]
- Brooks, A.P.; Brierley, G.J.; Millar, R.G. The long-term control of vegetation and woody debris on channel and flood-plain evolution: Insights from a paired catchment study in southeastern Australia. Geomorphology 2003, 51, 7–29. [Google Scholar] [CrossRef]
- Vanacker, V.; Bellin, N.; Molina, A.; Kubik, P.W. Erosion regulation as a function of human disturbances to vegetation cover: A conceptual model. Landsc. Ecol. 2013, 29, 293–309. [Google Scholar] [CrossRef]
- Trimble, S.W. Erosional effects of cattle on streambanks in Tennessee, U.S.A. Earth Surf. Process. Landf. 1994, 19, 451–464. [Google Scholar] [CrossRef]
- Trimble, S.W.; Mendel, A.C. The cow as a geomorphic agent—A critical review. Geomorphology 1995, 13, 233–253. [Google Scholar] [CrossRef]
- Mwendera, E.J.; Saleem, M.A.M. Hydrologic response to cattle grazing in the Ethiopian highlands. Agric. Ecosyst. Environ. 1997, 64, 33–41. [Google Scholar] [CrossRef]
- Deluca, T.H.; Patterson, W.A.I.; Freimund, W.A.; Cole, D.N. Influence of llamas, horses, and hikers on soil erosion from established recreation trails in western Montana, USA. Environ. Manag. 1998, 22, 255–262. [Google Scholar] [CrossRef]
- Lefrancois, J.; Grimaldi, C.; Gascuel-Odoux, C.; Gilliet, N. Suspended sediment and discharge relationships to identify bank degradation as a main sediment source on small agricultural catchments. Hydrol. Process. 2007, 21, 2923–2933. [Google Scholar] [CrossRef]
- Dunne, T.; Western, D.; Dietrich, W.E. Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. J. Arid Environ. 2011, 75, 58–69. [Google Scholar] [CrossRef]
- Butler, D.R. Zoogeomorphology in the Anthropocene. Geomorphology 2018, 303, 146–154. [Google Scholar] [CrossRef]
- Dodgen, R.A. Controlling the Dragon: Confucian Engineers and the Yellow River in Late Imperial China; University of Hawai’i Press: Honolulu, HI, USA, 2001; 243p. [Google Scholar]
- Xu, J. Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change. Hydrol. Process. 2003, 17, 3359–3371. [Google Scholar] [CrossRef] [Green Version]
- Hudson, P.F.; Middelkoop, H.; Stouthamer, E. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment. Geomorphology 2008, 101, 209–236. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry water: Effects of dams and gravel mining on river channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, L.; Lu, X.X.; Xin, Z.; Yang, X. Cumulative sediment trapping by reservoirs in large river basins: A case study of the Yellow River basin. Glob. Planet. Chang. 2013, 100, 308–319. [Google Scholar] [CrossRef]
- Smith, N.D.; Morozova, G.S.; Perez-Arlucea, M.; Gibling, M.R. Dam-induced and natural channel changes in the Saskatchewan River below the E.B. Campbell Dam, Canada. Geomorphology 2016, 269, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Sedell, J.R.; Reeves, G.H.; Hauer, F.R.; Stanford, J.A.; Hawkings, C.P. Role of refugia in recovery from disturbances: Modern fragmented and disconnected river systems. Environ. Manag. 1990, 14, 711–724. [Google Scholar] [CrossRef]
- Syvitski, J.; Kettner, A. Sediment flux and the Anthropocene. Philos. Trans. R. Soc. A 2011, 369, 957–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.A.; Jones, M.K.; Powell, W.; Allaby, R.G. The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol. Evol. 2009, 24, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lary, D. Drowned earth: The strategic breaching of the Yellow River Dyke, 1938. War Hist. 2001, 8, 191–207. [Google Scholar] [CrossRef]
- Dutch, S.I. The largest act of environmental warfare in history. Environ. Eng. Geosci. 2009, 15, 287–297. [Google Scholar] [CrossRef]
- Gilbert, G.K. Hydraulic-Mining Debris in the Sierra Nevada; Professional Paper 105; United States Geological Survey: Reston, VA, USA, 1917; 154p. [Google Scholar]
- Anbazhagan, S.; Dash, P. Environmental case study of Cauvery river floodplain. GIS Dev. 2003, 7, 30–35. [Google Scholar]
- Santhosh, V.; Padmalal, D.; Baijulal, B.; Maya, K. Brick and tile clay mining from the paddy lands of Central Kerala (southwest coast of India) and emerging environmental issues. Environ. Earth Sci. 2013, 68, 2111–2121. [Google Scholar] [CrossRef]
- Leonard, L.A.; Wren, P.A.; Beavers, R.L. Flow dynamics and sedimentation in Spartina alterniflora and Phragmites australis marshes of the Chesapeake Bay. Wetlands 2002, 22, 415–424. [Google Scholar] [CrossRef]
- Khaleej Times. 11 March 2013. Available online: https://www.khaleejtimes.com/article/20130311/ARTICLE/303119878/1028 (accessed on 15 June 2018).
- Vera, F.W.M. Grazing Ecology and Forest History; CAB International: Wallingford, UK, 2000; 506p. [Google Scholar]
- Bakker, E.S.; Gill, J.L.; Johnson, C.N.; Vera, F.W.M.; Sandom, C.J.; Asner, G.P.; Svenning, J.-C. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. USA 2016, 113, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Sojka, R.E.; Bjorneberg, D.L.; Entry, J.A. Irrigation: An historical perspective. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 745–749. [Google Scholar]
- Zalasiewicz, J.; Williams, M.; Waters, C.N.; Barnosky, A.D.; Haff, P. The technofossil record of humans. Anthr. Rev. 2014, 1, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Gibbard, P. Formal Subdivision of the Holocene Series/Epoch. Available online: https://www.qpg.geog.cam.ac.uk/news/formalsubdivisionoftheholoceneseriesgeogr18.pdf (accessed on 16 September 2018).
- Brunet, M.; Guy, F.; Pilbeam, D.; Lieberman, D.E.; Likius, A.; Mackaye, H.T.; Ponce de Leon, M.S.; Zollikofer, C.P.E.; Vignaud, P. New material of the earliest hominid from the Upper Miocene of Chad. Nature 2005, 434, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semaw, S.; Rogers, M.J.; Quade, J.; Renne, P.R.; Butler, R.F.; Domínguez-Rodrigo, M.; Stout, D.; Hart, W.S.; Pickering, T.; Simpson, S.W. 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J. Hum. Evol. 2003, 45, 169–177. [Google Scholar] [CrossRef]
- Bridgland, D.R.; Antoine, P.; Limondin-Lozouet, N.; Santisteban, J.K.; Westaway, R.; White, M.J. The Palaeolithic occupation of Europe as revealed by evidence from the rivers: Data from IGCP 449. J. Quat. Sci. 2006, 21, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Gibling, M.R.; Sinha, R.; Roy, N.G.; Tandon, S.K.; Jain, M. Quaternary fluvial and eolian deposits on the Belan River, India: Paleoclimatic setting of Paleolithic to Neolithic archeological sites over the past 85,000 years. Quat. Sci. Rev. 2008, 27, 391–410. [Google Scholar] [CrossRef]
- Barkai, R.; Liran, R. Midsummer sunset at Neolithic Jericho. Time Mind J. Archaeol. Conscious. Cult. 2008, 1, 273–284. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P. The geomorphic influences of beaver dams and failures of beaver dams. Geomorphology 2005, 71, 48–60. [Google Scholar] [CrossRef]
- Butler, D.R. Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems. Geomorphology 2006, 79, 448–459. [Google Scholar] [CrossRef]
- McCarthy, T.S.; Ellery, W.N.; Bloem, A. Some observations on the geomorphological impact of hippopotamus (Hippopotamus amphibilus L.) in the Okavango Delta, Botswana. Afr. J. Ecol. 1998, 36, 44–56. [Google Scholar] [CrossRef]
- Darwin, C. The Formation of Vegetated Mould through the Action of Worms with Observation of Their Habitats; Murray: London, UK, 1881; 328p. [Google Scholar]
- Johnson, M.F.; Rice, S.P.; Reid, I. Topographic disturbance of subaqueous gravel substrates by signal crayfish (Pacifastacus leniusculus). Geomorphology 2010, 123, 269–278. [Google Scholar] [CrossRef]
- Clark, J.D.; Harris, J.W.K. Fire and its roles in early hominid lifeways. Afr. Archaeol. Rev. 1985, 3, 3–27. [Google Scholar] [CrossRef]
- Roebroeks, W.; Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 5209–5214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahack-Gross, R.; Berna, F.; Karkanas, P.; Lemorini, C.; Gopher, A.; Barkai, R. Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. J. Archaeol. Sci. 2014, 44, 12–21. [Google Scholar] [CrossRef]
- Shimelmitz, R.; Kuhn, S.L.; Jelinek, A.J.; Ronen, A.; Clark, A.E.; Weinstein-Evron, M. ‘Fire at will’: The emergence of habitual fire use 350,000 years ago. J. Hum. Evol. 2014, 77, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, C.; Jacobs, Z.; Marwick, B.; Fullagar, R.; Wallis, L.; Smith, M.; Roberts, R.G.; Hayes, E.; Lowe, K.; Carah, X.; et al. Human occupation of northern Australia by 65,000 years ago. Nature 2017, 547, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Head, L. Prehistoric aboriginal impacts on Australian vegetation: An assessment of the evidence. Aust. Geogr. 1989, 20, 37–46. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Kershaw, A.P.; Moss, P.; Bird, M.I.; Fifield, L.K.; Cresswell, R.G.; Santos, G.M.; Di Tada, M.L.; Hausladen, P.A.; Zhou, Y. Redating the onset of burning at Lynch’s Crater (North Queensland): Implications for human settlement in Australia. J. Quat. Sci. 2001, 16, 767–771. [Google Scholar] [CrossRef]
- Black, M.P.; Mooney, S.D.; Haberle, S.G. The fire, human and climate nexus in the Sydney Basin, eastern Australia. Holocene 2007, 17, 469–480. [Google Scholar] [CrossRef]
- Haberle, S.G.; Hope, G.S.; DeFretes, Y. Environmental change in the Baliem Valley, montane Irian Jaya, Republic of Indonesia. J. Biogeogr. 1991, 18, 25–40. [Google Scholar] [CrossRef]
- Whitlock, C.; Higuera, P.E.; McWethy, D.B.; Briles, C.E. Paleoecological perspectives on fire ecology: Revisiting the fire-regime concept. Open Ecol. J. 2010, 3, 6–23. [Google Scholar] [CrossRef]
- Balter, M. Seeking agriculture’s ancient roots. Science 2007, 316, 1830–1835. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.Q.; Yo-Ichiro, S.; Castillo, C.; Qin, L.; Weisskopf, A.R.; Kingwell-Banham, E.J.; Song, J.; Ahn, S.-M.; van Etten, J. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeol. Anthropol. Sci. 2010, 2, 115–131. [Google Scholar] [CrossRef]
- Tanno, K.; Willcox, G. How fast was wild wheat domesticated? Science 2006, 311, 1886. [Google Scholar] [CrossRef] [PubMed]
- Zeder, M.A. Core questions in domestication research. Proc. Natl. Acad. Sci. USA 2015, 112, 3191–3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Őzkan, H.; Willcox, G.; Graner, A.; Salamini, F.; Kilian, B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet. Resour. Crop Evol. 2010, 58, 11–53. [Google Scholar] [CrossRef]
- Arranz-Otaegui, A.; Colledge, S.; Zapata, L.; Teira-Mayolini, L.C.; Ibanez, J.J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in southwest Asia. Proc. Natl. Acad. Sci. USA 2016, 113, 14001–14006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 2011, 20, 507–508. [Google Scholar] [CrossRef]
- Tengberg, M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.; Zhou, Q.; Chen, S. Holocene pedogenic change and the emergence and decline of rain-fed cereal agriculture on the Chinese Loess Plateau. Quat. Sci. Rev. 2004, 23, 2525–2535. [Google Scholar] [CrossRef]
- Liu, L.; Lee, G.-A.; Jiang, L.; Zhang, J. Evidence for the early beginning (c. 9000 cal. BP) of rice domestication in China: A response. Holocene 2007, 17, 1059–1068. [Google Scholar] [CrossRef]
- Molina, J.; Sikora, M.; Garud, N.; Flowers, J.M.; Rubinstein, S.; Reynolds, A.; Huang, P.; Jackson, S.; Schaal, B.A.; Bustamante, C.D.; et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. USA 2011, 108, 8351–8356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillehay, T.D.; Rossen, J.; Andres, T.C.; Williams, D.E. Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 2007, 316, 1890–1893. [Google Scholar] [CrossRef] [PubMed]
- Ranere, A.J.; Piperno, D.R.; Holst, I.; Dickau, R.; Iriarte, J. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. USA 2009, 106, 5014–5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denham, T.P.; Haberle, S.G.; Lentfer, C.; Fullagar, R.; Field, J.; Therin, M.; Porch, N.; Winsborough, B. Origins of agriculture at Kuk Swamp in the Highlands of New Guinea. Science 2003, 301, 189–193. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.E.; Zhang, J.; Tang, J.; Zhang, Z.; Hall, G.R.; Moreau, R.A.; Nunez, A.; Butrym, E.D.; Richards, M.P.; Wang, C.; et al. Fermented beverages of pre- and proto-historic China. Proc. Natl. Acad. Sci. USA 2004, 101, 17593–17598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGovern, P.; Jalabadze, M.; Batiuk, S.; Callahan, M.P.; Smith, K.E.; Hall, G.R.; Kvavadze, E.; Maghradze, D.; Rusishvili, N.; Bouby, L.; et al. Early Neolithic wine of Georgia in the South Caucasus. Proc. Natl. Acad. Sci. USA 2017, E10309–E10318. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.J.; Bollongino, R.; Scheu, A.; Chamberlain, A.; Tresset, A.; Vigne, J.-D.; Baird, J.F.; Larson, G.; Ho, S.Y.W.; Heupink, T.H.; et al. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proc. R. Soc. Lond. B 2007, 274, 1377–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, D. Development of the agro-pastoral economy in the Fertile Crescent during the Pre-Pottery Neolithic period. In The Dawn of Farming in the Near East; Cappers, R., Bottema, S., Eds.; Ex Oriente: Berlin, Germany, 2002; pp. 67–83. [Google Scholar]
- Staubwasser, M.; Weiss, H. Holocene climate and cultural evolution in late prehistoric—Early historic West Asia. Quat. Res. 2006, 66, 372–387. [Google Scholar] [CrossRef]
- Larson, G.; Albarella, U.; Dobney, K.; Rowley-Conwy, P.; Schibler, J.; Tresset, A.; Vigne, J.-D.; Edwards, C.J.; Schlumbaum, A.; Dinu, A.; et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc. Natl. Acad. Sci. USA 2007, 104, 15276–15281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Onsins, S.E.; Burgos-Paz, W.; Manunza, A.; Amills, M. Mining the pig genome to investigate the domestication process. Heredity 2014, 113, 471–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kierstein, G.; Vallinoto, M.; Silva, A.; Schneider, M.P.; Iannuzzi, L.; Brenig, B. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny. Mol. Phylogenet. Evol. 2004, 30, 308–324. [Google Scholar] [CrossRef]
- Outram, A.K.; Stear, N.A.; Bendrey, R.; Olsen, S.; Kasparov, A.; Zaibert, V.; Thorpe, N.; Evershed, R.P. The earliest horse harnessing and milking. Science 2009, 323, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P.; et al. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS ONE 2013, 8, e54997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almathen, F.; Charruau, P.; Mohandesan, E.; Mwacharo, J.M.; Orozco-terWengel, P.; Pitt, D.; Abdussamad, A.M.; Uerpmann, M.; Uerpmann, H.-P.; De Cupere, B.; et al. Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. Proc. Natl. Acad. Sci. USA 2016, 113, 6707–6712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossel, S.; Marshall, F.; Peters, J.; Pilgram, T.; Adams, M.D.; O’Connor, D. Domestication of the donkey: Timing, processes, and indicators. Proc. Natl. Acad. Sci. USA 2008, 105, 3715–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, B.; Marshall, F.; Beja-Pereira, A.; Mulligan, C. Donkey domestication. Afr. Archaeol. Rev. 2013, 30, 83–95. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R.; et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, J.C. Evolution and present situation of the South American Camelidae. Biol. J. Linn. Soc. 1995, 54, 271–295. [Google Scholar] [CrossRef]
- Kadwell, M.; Fernandez, M.; Stanley, H.F.; Baldi, R.; Wheeler, J.C.; Rosadio, R.; Bruford, M.W. Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc. R. Soc. Lond. B 2001, 268, 2575–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revedin, A.; Aranguren, B.; Becattini, R.; Longo, L.; Marconi, E.; Lippi, M.M.; Skakun, N.; Sinitsyn, A.; Spiridonova, E.; Svoboda, J. Thirty thousand-year-old evidence of plant food processing. Proc. Natl. Acad. Sci. USA 2010, 107, 18815–18819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lippi, M.M.; Foggi, B.; Aranguren, B.; Ronchitelli, A.; Revedin, A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. Proc. Natl. Acad. Sci. USA 2015, 112, 12075–12080. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yosef, O. The Natufian culture in the Levant, threshold to the origins of agriculture. Evolut. Anthropol. Issues News Rev. 1998, 6, 159–177. [Google Scholar] [CrossRef]
- Nadel, D.; Piperno, D.R.; Holst, I.; Snir, A.; Weiss, E. New evidence for the processing of wild cereal grains at Ohalo II, a 23 000-year-old campsite on the shore of the Sea of Galilee, Israel. Antiquity 2012, 86, 990–1003. [Google Scholar] [CrossRef]
- Balter, M. The tangled roots of agriculture. Science 2010, 327, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, M. Wheat evolution: Integrating archaeological and biological evidence. In Wheat Taxonomy: The Legacy of John Percival; Special Issue 3; Caligari, P.D.S., Brandham, P.E., Eds.; Linnean Society: London, UK, 2001; pp. 37–59. [Google Scholar]
- Lazaridis, I.; Nadel, D.; Rollefson, G.; Merrett, D.C.; Rohland, N.; Mallick, S.; Fernandes, D.; Novak, M.; Gamarra, B.; Sirak, K.; et al. Genomic insights into the origin of farming in the ancient Near East. Nature 2016, 536, 419–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flad, R.; Li, S.; Wu, X.; Zhao, Z. Early wheat in China: Results from new studies at Donghuishan in the Hexi Corridor. Holocene 2010, 20, 955–965. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.-X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, A.M. The impact of environmental change and human land use on alluvial valleys in the Loess Plateau of China during the Middle Holocene. Geomorphology 2008, 101, 298–307. [Google Scholar] [CrossRef]
- Harvey, E.L.; Fuller, D.Q. Investigating crop processing using phytolith analysis: The example of rice and millets. J. Archaeol. Sci. 2005, 32, 739–752. [Google Scholar] [CrossRef]
- Fuller, D.Q. Agricultural origins and frontiers in South Asia: A working synthesis. J. World Prehist. 2006, 20, 1–86. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The “Terra Preta” phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Stinchcomb, G.E.; Messner, T.C.; Driese, S.G.; Nordt, L.C.; Stewart, R.M. Pre-colonial (A.D. 1100-1600) sedimentation related to prehistoric maize agriculture and climate change in eastern North America. Geology 2011, 39, 363–366. [Google Scholar] [CrossRef]
- Downie, A.E.; Van Zwieten, L.; Smernik, R.J.; Morris, S.; Munroe, P.R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agric. Ecosyst. Environ. 2011, 140, 137–147. [Google Scholar] [CrossRef]
- Tarolli, P.; Preti, F.; Romano, N. Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment. Anthropocene 2014, 6, 10–25. [Google Scholar] [CrossRef]
- Hillel, D. Rivers of Eden; Oxford University Press: New York, NY, USA, 1994; 355p. [Google Scholar]
- Wilkinson, T.J. Soil erosion and valley fills in the Yemen Highlands and southern Turkey: Integrating settlement, geoarchaeology, and climate change. Geoarchaeology 2005, 20, 169–192. [Google Scholar] [CrossRef]
- Evershed, R.P.; Payne, S.; Sherratt, A.G.; Copley, M.S.; Coolidge, J.; Urem-Kotsu, D.; Kotsakis, K.; Özdoğan, M.; Özdoğan, A.E.; Nieuwenhuyse, O.; et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 2008, 455, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Bogaard, A.; Fraser, R.; Heaton, T.H.E.; Wallace, M.; Vaiglova, P.; Charles, M.; Jones, G.; Evershed, R.P.; Styring, A.K.; Andersen, N.H.; et al. Crop maturing and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA 2013, 110, 12589–12594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mays, L.W. A very brief history of hydraulic technology during antiquity. Environ. Fluid Mech. 2008, 8, 471–484. [Google Scholar] [CrossRef]
- Gillmore, G.K.; Coningham, R.A.E.; Fazeli, H.; Young, R.L.; Magshoudi, M.; Batt, C.M.; Rushworth, G. Irrigation on the Tehran Plain, Iran: Tepe Pardis—The site of a possible Neolithic irrigation feature? Catena 2009, 78, 285–300. [Google Scholar] [CrossRef]
- Wilkinson, T.J. Archaeological Landscapes of the Near East; The University of Arizona Press: Tucson, AZ, USA, 2003; 260p. [Google Scholar]
- Huckleberry, G. Assessing Hohokam canal stability through stratigraphy. J. Field Archaeol. 1999, 26, 1–18. [Google Scholar]
- Nichols, D.L.; Spence, M.W.; Borland, M.D. Watering the fields of Teotihuacan: Early irrigation at the ancient city. Anc. Mesoam. 1991, 2, 119–129. [Google Scholar] [CrossRef]
- Khayat, S.; Hotzl, H.; Geyer, S.; Ali, W. Hydrochemical investigation of water from the Pleistocene wells and springs, Jericho area, Palestine. Hydrol. J. 2006, 14, 192–202. [Google Scholar] [CrossRef]
- Cullen, H.M.; deMenocal, P.B. North Atlantic influence on Tigris-Euphrates streamflow. Int. J. Climatol. 2000, 20, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Weiss, H.; Courty, M.-A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Curnow, A. The genesis and collapse of third millennium North Mesopotamian Civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, T.; Adams, R.M. Salt and silt in ancient Mesopotamian agriculture. Science 1958, 128, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Butzer, K.W. Early Hydraulic Civilization in Egypt; The University of Chicago Press: Chicago, IL, USA, 1976; 134p. [Google Scholar]
- Eyre, C.J. The agriculture cycle, farming, and water management. In Civilizations of the Ancient Near East; Sasson, J.M., Ed.; Charles Scribner’s Sons: New York, NY, USA, 1995; Volume I, pp. 175–189. [Google Scholar]
- Viollet, P.-L. Water Engineering in Ancient Civilizations: 5000 Years of History; Taylor and Francis Group: Boca Rotan, FL, USA, 2007; 322p. [Google Scholar]
- Will, P.-E. The Zheng-Bai irrigation system of Shaanxi Province in the Late-Imperial period. In Sediments of Time, Environment and Society in Chinese History; Elvin, M., Ts’ui-Jung, L., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 282–343. [Google Scholar]
- Pearsall, D.M. Plant domestication. In Encyclopedia of Archaeology; Pearsall, D.M., Ed.; Academic Press: Oxford, UK, 2008; pp. 1822–1842. [Google Scholar]
- McNamee, G. Gila: The Life and Death of an American River; Orion Books: New York, NY, USA, 1994; 215p. [Google Scholar]
- Masse, W.B. Prehistoric irrigation systems in the Salt River Valley, Arizona. Science 1981, 214, 408–415. [Google Scholar] [CrossRef] [PubMed]
- McCully, P. Silenced Rivers; Zed Books: London, UK, 1996; 350p. [Google Scholar]
- Tanchev, L. Dams and Appurtenant Hydraulic Structures, 2nd ed.; CRC Press, Taylor and Francis: Abingdon, UK, 2014. [Google Scholar]
- Kamash, Z. Irrigation technology, society and environment in the Roman Near East. J. Arid Environ. 2012, 86, 65–74. [Google Scholar] [CrossRef]
- Barnett, J.; Rogers, S.; Webber, M.; Finlayson, B.; Wang, M. Transfer project cannot meet China’s water needs. Nature 2015, 527, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Weinberger, R.; Sneh, A.; Shalev, E. Hydrogeological insights in antiquity as indicated by Canaanite and Israelite water systems. J. Archaeol. Sci. 2008, 35, 3035–3042. [Google Scholar] [CrossRef]
- Frumkin, A.; Shimron, A. Tunnel engineering in the Iron Age: Geoarcheology of the Siloam Tunnel, Jerusalem. J. Archaeol. Sci. 2006, 33, 227–237. [Google Scholar] [CrossRef]
- Ward, C. Ships and shipbuilding. In The Oxford Encyclopedia of Ancient Egypt; Redford, D.B., Ed.; Oxford University Press: New York, NY, USA, 2001; Volume III, pp. 281–284. [Google Scholar]
- Bass, G.F. Sea and river craft in the ancient Near East. In Civilizations of the Ancient Near East; Sasson, J.M., Ed.; Charles Scribner’s Sons: New York, NY, USA, 1995; Volume III, pp. 1421–1431. [Google Scholar]
- Ball, P. The Water Kingdom: A Secret History of China; The University of Chicago Press: Chicago, IL, USA, 2017; 341p. [Google Scholar]
- Erickson-Gini, T. Nabatean agriculture: Myth and reality. J. Arid Environ. 2012, 86, 50–54. [Google Scholar] [CrossRef]
- Nordt, L.C.; Hayashida, F.; Hallmark, T.; Crawford, C. Late prehistoric soil fertility, irrigation management, and agricultural production in northwest coastal Peru. Geoarchaeology 2004, 19, 21–46. [Google Scholar] [CrossRef]
- Ertsen, M.W.; van der Spek, J. Modeling an irrigation ditch opens up the world. Hydrology and hydraulics of an ancient irrigation system in Peru. Phys. Chem. Earth 2009, 34, 176–191. [Google Scholar] [CrossRef]
- Elvin, M.; Ninghu, S. The influence of the Yellow River on Hangzhou Bay since A.D. 1000. In Sediments of Time, Environment and Society in Chinese History; Elvin, M., Ts’ui-Jung, L., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 344–407. [Google Scholar]
- Morozova, G.S. A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in Lower Mesopotamia. Geoarchaeology 2005, 20, 401–423. [Google Scholar] [CrossRef]
- Dietrich, O.; Heun, M.; Notroff, J.; Schmidt, K.; Zarnkow, M. The role of cult and feasting in the emergence of Neolithic communities. New evidence from Göbekli Tepe, south-eastern Turkey. Antiquity 2012, 86, 674–695. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.; Shackley, M.S. Sourcing obsidian from Neolithic Çatalhöyük (Turkey) using energy dispersive X-ray fluorescence. Archaeometry 2007, 3, 437–454. [Google Scholar] [CrossRef]
- Lawrence, D.; Philip, G.; Wilkinson, K.; Buylaert, J.P.; Murray, A.S.; Thompson, W.; Wilkinson, T.J. Regional power and local ecologies: Accumulated population trends and human impacts in the northern Fertile Crescent. Quat. Int. 2017, 437, 60–81. [Google Scholar] [CrossRef] [Green Version]
- McMahon, A. Mesopotamia, Sumer, and Akkad. In Encyclopedia of Archaeology; Pearsall, D.M., Ed.; Academic Press: Oxford, UK, 2008; pp. 854–865. [Google Scholar]
- Nichols, D.L.; Cover, R.A.; Abdi, K. Rise of civilization and urbanism. In Encyclopedia of Archaeology; Pearsall, D.M., Ed.; Academic Press: Oxford, UK, 2008; pp. 1003–1015. [Google Scholar]
- Khan, A.M.; Lemmen, C. Bricks and urbanism in the Indus Civilization. Hist. Philos. Phys. 2014, 24, 1–11. [Google Scholar]
- Kenoyer, J.M. Indus Civilization. In Encyclopedia of Archaeology; Pearsall, D.M., Ed.; Academic Press: Oxford, UK, 2008; pp. 715–733. [Google Scholar]
- Zhang, R.; Pian, H.; Santosh, M.; Zhang, S. The history and economics of gold mining in China. Ore Geol. Rev. 2015, 65, 718–727. [Google Scholar] [CrossRef]
- Lacovara, P. Bricks and brick architecture. In The Oxford Encyclopedia of Ancient Egypt; Redford, D.B., Ed.; Oxford University Press: New York, NY, USA, 2001; Volume I, pp. 198–200. [Google Scholar]
- Wu, X.; Zhang, C.; Goldberg, P.; Cohen, D.; Pan, Y.; Arpin, T.; Bar-Yosef, O. Early pottery at 20,000 years ago in Xianrendong Cave, China. Science 2012, 336, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Craig, O.E.; Saul, H.; Lucquin, A.; Nishida, Y.; Tache, K.; Clarke, L.; Thompson, A.; Altoft, D.T.; Uchiyama, J.; Ajimoto, M.; et al. Earliest evidence for the use of pottery. Nature 2013, 496, 351–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuyse, O.P.; Akkermans, P.M.M.G.; van der Plicht, J. Not so coarse, nor always plain—The earliest pottery of Syria. Antiquity 2010, 84, 71–85. [Google Scholar] [CrossRef]
- Roosevelt, A.C.; Housley, R.A.; Imazio da Silveira, M.; Maranca, S.; Johnson, R. Eighth millennium pottery from a prehistoric shell midden in the Brazilian Amazon. Science 1991, 254, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Kalicki, T.; Fraczek, M.; Przepiora, P. Evolution of River Valleys in Central Europe: Field Guide; Fluvial Archives Group Biennial Meeting, Kielce, Poland, 2016; FLAG: Amsterdam, The Netherlands, 2016; 132p. [Google Scholar]
- Schild, R.; Królik, H. Rydno: A final Paleolithic ochre mining complex. Prz. Archeol. 1981, 29, 53–100. [Google Scholar]
- Roaf, M. Palaces and temples in ancient Mesopotamia. In Civilizations of the Ancient Near East; Sasson, J.M., Ed.; Charles Scribner’s Sons: New York, NY, USA, 1995; Volume I, pp. 423–441. [Google Scholar]
- Hikade, T. Egypt, Pharaonic. In Encyclopedia of Archaeology; Pearsall, D.M., Ed.; Academic Press: Oxford, UK, 2008; pp. 31–45. [Google Scholar]
- Leach, B.; Tait, J. Papyrus. In The Oxford Encyclopedia of Ancient Egypt; Redford, D.B., Ed.; Oxford University Press: New York, NY, USA, 2001; Volume III, pp. 22–24. [Google Scholar]
- Tallet, P.; Marouard, G. The harbour of Khufu on the Red Sea coast at Wadi al-Jarf, Egypt. Near East. Archaeol. 2014, 77, 4–14. [Google Scholar] [CrossRef]
- Roosevelt, A.C.; Lima da Costa, M.; Lopes Machado, C.; Michab, M.; Mercier, N.; Valladas, H.; Feathers, J.; Barnett, W.; Imazio da Silveira, M.; Henderson, A.; et al. Paleoindian cave dwellers in the Amazon: The peopling of the Americas. Science 1996, 272, 373–384. [Google Scholar] [CrossRef]
- Butler, V.L.; O’Connor, J.E. 9000 years of salmon fishing on the Columbia River, North America. Quat. Res. 2004, 62, 1–8. [Google Scholar] [CrossRef]
- Jing, Y.; Flad, R.; Yunbing, L. Meat-acquisition patterns in the Neolithic Yangzi river valley, China. Antiquity 2008, 82, 351–366. [Google Scholar] [CrossRef]
- Maritan, L.; Iacumin, P.; Zerboni, A.; Venturelli, G.; Dal Sasso, G.; Linseele, V.; Talamo, S.; Salvatori, S.; Usai, D. Fish and salt: The successful recipe of White Nile Mesolithic hunter-gatherer-fishers. J. Archaeol. Sci. 2018, 92, 48–62. [Google Scholar] [CrossRef]
- Vermeesch, P.M. Fishing along the Nile. In Before Food Production in North Africa; di Lernia, S., Manzi, G., Eds.; ABACO Edizioni: La Spezia, Italy, 1998; pp. 103–111. [Google Scholar]
- Van Neer, W. Evolution of prehistoric fishing in the Nile Valley. J. Afr. Archaeol. 2004, 2, 251–269. [Google Scholar] [CrossRef]
- deMenocal, P.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quat. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Macklin, M.G.; Woodward, J.C.; Welsby, D.A.; Duller, G.A.T.; Williams, F.M.; Williams, M.A.J. Reach-scale river dynamics moderate the impact of rapid Holocene climate change on floodwater farming in the desert Nile. Geology 2013, 41, 695–698. [Google Scholar] [CrossRef]
- De Bruhl, M. The River Sea; Counterpoint: Berkeley, CA, USA, 2010; 235p. [Google Scholar]
- Bono, P.; Boni, C. Water supply of Rome in antiquity and today. Environ. Geol. 1996, 27, 126–134. [Google Scholar] [CrossRef]
- Leo, A.D.; Tallini, M. Irrigation, groundwater exploitation and cult of water in the rural settlements of Sabina, Central Italy, in Roman times. Water Sci. Technol. Water Supply 2007, 7, 191–199. [Google Scholar] [CrossRef]
- Caracuta, V.; Fiorentino, G. Wood for Fuel in Roman Hypocaust Baths: New data from the Late-Roman Villa of Faragola (SE Italy); Saguntum, Paleles del Laboratorio de Arqueología de Valencia, Extra-13; Universitat de València: València, Spain, 2011; pp. 167–168. [Google Scholar]
- Astour, M.C. Overland trade routes in ancient western Asia. In Civilizations of the Ancient Near East; Sasson, J.M., Ed.; Charles Scribner’s Sons: New York, NY, USA, 1995; Volume III, pp. 1401–1420. [Google Scholar]
- Lech, J. Flint mining among the early farming communities of Poland. Staringia 1981, 6, 39–45. [Google Scholar]
- Frankopan, P. The Silk Roads; Bloomsbury: London, UK, 2015; 636p. [Google Scholar]
- Parker, A.G.; Lucas, A.S.; Walden, J.; Goudie, A.S.; Robinson, M.A.; Allen, T.G. Late Holocene geoarchaeological investigation of the Middle Thames floodplain at Dorney, Buckinghamshire, UK: An evaluation of the Bronze Age, Iron Age, Roman and Saxon landscapes. Geomorphology 2008, 101, 471–483. [Google Scholar] [CrossRef]
- Lisé-Pronovost, A.; Salomon, F.; Goiran, J.-P.; St-Onge, G.; Herries, A.I.R.; Montero-Serrano, J.-C.; Heslop, D.; Roberts, A.P.; Levchenko, V.; Zawadzki, A.; et al. Dredging and canal gate technologies in Portus, the ancient harbour of Rome, reconstructed from event stratigraphy and multi-proxy sediment analysis. Quat. Int. 2018. [Google Scholar] [CrossRef]
- Rothenberg, B. Archaeo-metallurgical researches in the southern Arabah 1959-1990. Part 1: Late Pottery Neolithic to Early Bronze IV. Palest. Explor. Q. 1999, 131, 68–89. [Google Scholar] [CrossRef]
- Ottaway, B.S. Innovation, production and specialization in early prehistoric copper metallurgy. Eur. J. Archaeol. 2001, 4, 87–112. [Google Scholar] [CrossRef]
- Kaufman, B. Copper alloys from the ‘Enot Shuni Cemetery and the origins of bronze metallurgy in the EB IV–MB II Levant. Archaeometry 2013, 55, 663–690. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Storozum, M.J.; Li, H.; Cui, Y.; Dong, G. Copper smelting and sediment pollution in Bronze Age China: A case study in the Hexi corridor, Northwest China. Catena 2017, 156, 92–101. [Google Scholar] [CrossRef]
- Balter, M. Early start for human art? Ochre may revise timeline. Science 2009, 323, 569. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.C.; Merritts, D.J. Natural streams and the legacy of water-powered mills. Science 2008, 319, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Constante, A.; Pena-Monne, J.L.; Munoz, A. Alluvial geoarchaeology of an ephemeral stream: Implications for Holocene landscape change in the central part of the Ebro Depression, northeast Spain. Geoarchaeology 2010, 25, 475–496. [Google Scholar] [CrossRef]
- Beach, T.P.; Luzzadder-Beach, S. Geoarchaeology and aggradation around Kinet Hoyuk, an archaeological mound in the Eastern Mediterranean, Turkey. Geomorphology 2008, 101, 416–428. [Google Scholar] [CrossRef]
- Casana, J. Mediterranean valleys revisited: Linking soil erosion, land use and climate variability in the Northern Levant. Geomorphology 2008, 101, 429–442. [Google Scholar] [CrossRef]
- Cordova, C.E. Floodplain degradation and settlement history in Wadi al-Wala and Wadi ash-Shallalah, Jordan. Geomorphology 2008, 101, 443–457. [Google Scholar] [CrossRef]
- Maghsoudi, M.; Simpson, I.A.; Kourampas, N.; Nashli, H.F. Archaeological sediments from settlement mounds of the Sagzabad Cluster, central Iran: Human-induced deposition on an arid alluvial plain. Quat. Int. 2014, 324, 67–83. [Google Scholar] [CrossRef]
- Sharma, G.R.; Misra, V.D.; Mandal, D.; Misra, B.B.; Pal, J.N. Beginnings of Agriculture; Abinash Prakashan: Allahabad, India, 1980; 320p. [Google Scholar]
- Milàn, J.; Clemmensen, L.B.; Buchardt, B.; Noe-Nygaard, N. Tracking the Bronze Age fauna: Preliminary investigations of a new Late Holocene tracksite, Lodbjerg dune system, northwest Jylland, Denmark. Hantkeniana 2006, 5, 42–45. [Google Scholar]
- Goswami, D.C. Brahmaputra River, Assam, India: Physiography, basin denudation, and channel aggradation. Water Resour. Res. 1985, 21, 959–978. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Dodson, J.; Zhou, X. Holocene agriculture in the Guanzhong Basin in NW China indicated by pollen and charcoal evidence. Holocene 2009, 19, 1213–1220. [Google Scholar] [CrossRef]
- Zhuang, Y.; Kidder, T.R. Archaeology of the Anthropocene in the Yellow River region, China, 8000–2000 cal. BP. Holocene 2014, 24, 1602–1623. [Google Scholar] [CrossRef]
- Dearing, J.A. Landscape change and resilience theory: A palaeoenvironmental assessment from Yunnan, SW China. Holocene 2008, 18, 117–127. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X.; Wang, Y. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005): Impacts of climate change and human activities. Glob. Planet. Chang. 2007, 57, 331–354. [Google Scholar] [CrossRef]
- Marchetti, M. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology 2002, 44, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Bruno, L.; Amorosi, A.; Curina, R.; Severi, P.; Bitelli, R. Human-landscape interactions in the Bologna area (northern Italy) during the mid-late Holocene, with focus on the Roman period. Holocene 2013, 23, 1560–1571. [Google Scholar] [CrossRef]
- Goman, M.; Joyce, A.; Mueller, R. Stratigraphic evidence for anthropogenically induced coastal environmental change from Oaxaca, Mexico. Quat. Res. 2005, 63, 250–260. [Google Scholar] [CrossRef]
- Lenders, H.J.R.; Chamuleau, T.P.M.; Hendriks, A.J.; Lauwerier, R.C.G.M.; Leuven, R.S.E.W.; Verberk, W.C.E.P. Historical rise of waterpower initiated the collapse of salmon stocks. Sci. Rep. 2016, 6, 29269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crook, D.; Elvin, M. Bureaucratic control of irrigation and labour in late-imperial China: The uses of administrative cartography in the Miju catchment, Yunnan. Water Hist. 2013, 5, 287–305. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magone, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ. Sci. Technol. 2011, 45, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Segura, F.R.; Nunes, E.A.; Paniz, F.P.; Paulelli, A.C.C.; Rodrigues, G.B.; Braga, G.U.L.; Dos Reis Pedreira Filho, W.; Barbosa, F., Jr.; Cerchiaro, G.; Silva, F.F.; et al. Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environ. Pollut. 2016, 218, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Kalis, A.J.; Merkt, J.; Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—Human impact and natural causes. Quat. Sci. Rev. 2003, 22, 33–79. [Google Scholar] [CrossRef]
- Reale, O.; Shukla, J. Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period: Part II. Model simulation. Glob. Planet. Chang. 2000, 25, 185–214. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.; Chen, S.; Su, H.; Han, J.; Cao, Y.; Zhao, W.; Tan, Z. Charcoal records of fire history in the Holocene loess-soil sequences over the southern Loess Plateau of China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 28–44. [Google Scholar] [CrossRef]
- Brown, A.G. Learning from the past: Palaeohydrology and palaeoecology. Freshw. Biol. 2002, 47, 817–829. [Google Scholar] [CrossRef]
- Słowik, M. Transformation of a lowland river from a meandering and multi-channel pattern into an artificial canal: Retracing a path of river channel changes (the Middle Obra River, W Poland). Reg. Environ. Chang. 2013. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K.; van der Wal, D.; Neal, A. Long-term morphological change and its causes in the Mersey Estuary, NW England. Geomorphology 2006, 81, 185–206. [Google Scholar] [CrossRef]
- Gastaldo, R.A.; Degges, C.W. Sedimentology and paleontology of a Carboniferous log jam. Int. J. Coal Geol. 2007, 69, 103–118. [Google Scholar] [CrossRef]
- Nelson, A.D.; Church, M. Placer mining along the Fraser River, British Columbia: The geomorphic impact. Geol. Soc. Am. Bull. 2012, 124, 1212–1228. [Google Scholar] [CrossRef]
- Knighton, A.D. River adjustment to changes in sediment load: The effects of tin mining on the Ringarooma River, Tasmania, 1875-1984. Earth Surf. Process. Landf. 1989, 14, 333–359. [Google Scholar] [CrossRef]
- Sreebha, S.; Padmalal, D. Environmental impact assessment of sand mining from the small catchment rivers in the southwestern coast of India: A case study. Environ. Manag. 2011, 47, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Wohl, E. Wilderness is dead: Whither critical zone studies and geomorphology in the Anthropocene? Anthropocene 2013, 2, 4–15. [Google Scholar] [CrossRef]
- Herodotus. The History; The University of Chicago Press: Chicago, IL, USA, 1988; 699p. [Google Scholar]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Dubois, N.; Saulnier-Talbot, E.; Mills, K.; Gell, P.; Battarbee, R.; Bennion, H.; Chawchai, S.; Dong, X.; Francus, P.; Flower, R.; et al. First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthr. Rev. 2018, 5, 28–68. [Google Scholar] [CrossRef]
- Geobel, T.; Waters, M.R.; O’Rourke, D.H. The Late Pleistocene dispersal of modern humans in the Americas. Science 2008, 319, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- McWethy, D.B.; Whitlock, C.; Wilmshurst, J.M.; McGlone, M.S.; Fromont, M.; Li, X.; Dieffenbacher-Krall, A.; Hobbs, W.O.; Fritz, S.C.; Cook, E.R. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proc. Natl. Acad. Sci. USA 2010, 107, 21343–21348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, J.O.; Krumhardt, K.M.; Gaillard, M.-J.; Sugita, S.; Trondman, A.-K.; Fyfe, R.; Marquer, L.; Mazier, F.; Nielsen, A.B. Constraining the deforestation history of Europe: Evaluation of historical land use scenarios with pollen-based land cover reconstructions. Land 2017, 6, 91. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Ward, P.; Renssen, H.; Van Rompaey, A. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 2011, 126, 18–31. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Trimble, S.W. The fallacy of stream equilibrium in contemporary denudation studies. Am. J. Sci. 1977, 277, 876–887. [Google Scholar] [CrossRef]
- Reusser, L.; Bierman, P.; Rood, D. Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology 2015, 43, 171–174. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade. Sediment. Geol. 2003, 162, 83–104. [Google Scholar] [CrossRef]
- Jain, V.; Tandon, S.K. Conceptual assessment of (dis)connectivity and its application to the Ganga River dispersal system. Geomorphology 2010, 118, 349–358. [Google Scholar] [CrossRef]
- Blöthe, J.H.; Korup, O. Millennial lag times in the Himalayan sediment routing system. Earth Planet. Sci. Lett. 2013, 382, 38–46. [Google Scholar] [CrossRef]
- Riehl, S. Archaeobotanical evidence for the interrelationship of agricultural decision-making and climate change in the ancient Near East. Quat. Int. 2009, 197, 93–114. [Google Scholar] [CrossRef]
- Roberts, N.; Eastwood, W.J.; Kuzucuoğlu, C.; Fiorentino, G.; Caracuta, V. Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. Holocene 2011, 21, 147–162. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, Z.; Liu, L.; Granger, D.E.; Wang, H.; Cohen, D.J.; Wu, X.; Ye, M.; Bar-Yosef, O.; Lu, B.; et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science 2016, 353, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.E.; Harrison, S.; Firth, C.R.; Jordan, J.T. The early Holocene sea level rise. Quat. Sci. Rev. 2011, 30, 1846–1860. [Google Scholar] [CrossRef]
- Stanley, D.J.; Chen, Z. Neolithic settlement distributions as a function of sea level-controlled topography in the Yangtze delta, China. Geology 1996, 24, 1083–1086. [Google Scholar] [CrossRef]
- Stanley, D.J.; Warne, A.G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 1993, 363, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Day, J.W., Jr.; Gunn, J.D.; Folan, W.J.; Yanez-Arancibia, A.; Horton, B.P. Emergence of complex societies after sea level stabilized. Eos Trans. Am. Geophys. Union 2007, 88, 169–176. [Google Scholar] [CrossRef]
- Wang, Z.; Zhuang, C.; Saito, Y.; Chen, J.; Zhan, Q.; Wang, X. Early mid-Holocene sea-level change and coastal environmental response on the southern Yangtze delta plain, China: Implications for the rise of Neolithic culture. Quat. Sci. Rev. 2012, 35, 51–62. [Google Scholar] [CrossRef]
- Ricklis, R.A.; Blum, M.D. The geoarchaeological record of Holocene sea level change and human occupation of the Texas Gulf Coast. Geoarchaeology 1997, 12, 287–314. [Google Scholar] [CrossRef]
Human Activity | Effects on Modern River Systems | References |
---|---|---|
Fire use | Vegetation loss promotes rapid runoff, soil erosion, and enhanced flux of sediment and charcoal to rivers. Change in soil properties enhances erosion. Fire may trigger vegetation change. | [28,29,30] |
Agriculture and deforestation | Reduced resistance of river banks and hillslopes where crops with shallow roots replace natural vegetation. Widening of channels and sediment coarsening. Slope failure, and increased sediment flux to fluvial, deltaic, and eolian systems. Change in palynomorph associations. | [17,31,32,33] |
Animals used for food, ploughing, and transport | Herds reduce vegetation cover and enhance soil erosion, gullying, and sediment flux to rivers. Trampling breaks down river banks, widens channels, and increases suspended load. Ploughing intensifies use of floodplains and hillslopes and, along with animal transport trails, enhances erosion. | [34,35,36,37,38,39,40] |
Embankments along channels | Embankments narrow channels, reduce their migration, increase flow velocity, funnel sediment to deltas, and reduce channel siltation; complex upstream feedbacks. Sediment trapping within embanked floodplains reduces inundation capacity. Embankments raise the channel base, promoting catastrophic avulsion. | [41,42,43] |
Dams and irrigation systems | Dams alter river flow regime, cause deposition in millponds and reservoirs, and increase downstream erosion. Irrigation reduces river discharge, and the use of river and groundwater promote soil waterlogging and salination. | [44,45,46,47] |
Navigation and bank structures | Riverside construction (wharves, steps, access roads, bridges) affects banks and channels. Dredging, riverbed scour, and removal of wood snags and jams to aid navigation alters river morphology. Reduced number of delta distributary channels aids year-round navigation. | [48,49] |
City water supplies | Remove river and groundwater from the hydrological system, with water pollution from sewage and waste. | [50] |
Warfare | River diversions during warfare causes catastrophic floods and floodplain aggradation. Deliberate 1938 breach of the Yellow River dikes caused death toll of >800,000. | [51,52] |
Extraction of channel and floodplain materials | Alluvial mining of channels and terraces for gold and other minerals increases aggradation and erosion rates locally. Pits on floodplains for bricks, tiles, pottery, and ochre, and on terraces for laterite remove fertile soil and aquifer media, cause soil erosion, increase suspended load, lower the water table, and cause waterlogging. | [43,53,54,55] |
Extraction of aquatic materials | Reeds, papyrus and other in-channel plants influence flow dynamics and sedimentation. Fisheries and aquatic harvesting enhance human activity along river banks. | [56] |
Cultural events | Water festivals involve large populations, with infrastructure on river banks and sand bars. Khumbha Mela festival at Allahabad, India, had 120 million attendees in 2 months in 2013. | [57] |
Crop or Animal | Data Sources | Approximate Date (years BP) | Location | References |
---|---|---|---|---|
Plant Domestication | ||||
Barley, emmer, and einkorn wheat | Varied sources, cal | c. 12,000–10,000 | Near East | [87] |
Approximate uncal date for domestic spikelets in einkorn wheat | 9250 | Near East | [85] | |
Varied sources, cal | 10,700–10,200 | Near East | [88] | |
Flax | Varied sources | 9000 | Near East | [89] |
Date palm | Varied cal and uncal sources | >6000 | Arabia | [90] |
Millet | Varied sources | 8000–7000 | China | [91] |
Rice | Varied cal sources for initiation of rice cultivation | 9000 | China | [92] |
Varied sources for domesticated rice, after 6000 cal BCE | 8000 | China | [84] | |
Varied sources | 9000–8000 | China | [93] | |
Squash | Cal date for charred or desiccated squash seed | 10,400–10,160 | Peru | [94] |
Cal dates on plant and other materials | >8700 | Mexico | [95] | |
Maize | Cal dates on plant and other materials | >8700 | Mexico | [95] |
Peanut | Cal dates for charred peanut hull | 8640–8440 | Peru | [94] |
Cotton | Cal dates for cotton boll | 6280–5950 | Peru | [94] |
Banana | Cal dates on materials that include banana phytoliths | 6950–6440 | New Guinea | [96] |
Grape and wine culture | Cal dates on pottery sherds, ca. 7000–6600 BCE | 9000 | China | [97] |
Cal dates on pottery sherds and soil, ca. 5900–5750 BCE | 8000 | Georgia | [98] | |
Animal Domestication | ||||
Cattle | Varied sources, cal date for Early Pre-Pottery Neolithic site, Syria | 10,650–10,250 | Near East | [99] |
Sheep, goats | Cal dates for Early Pre-Pottery Neolithic at Near East sites | 10,250–9500 | Near East | [100,101] |
Pigs | Intensification of relationship between humans and pigs, second half of 9th millennium BCE, sites in Turkey and Cyprus | >10,000 | Near East | [102] |
Assessment of zooarcheological data | 9000 | Near and Far East | [103] | |
Water buffalo | Varied sources suggest 3rd to 5th millennium BCE in parts of Asia and Near East; authors support origin in Indian Subcontinent | 5000 | Indian Subcontinent | [104] * |
Horses | Faunal remains, bridles and milk suggest mid-4th millennium BCE, using cal dates | 6000–5000 | Eurasian steppes | [105,106] * |
Dromedary | Varied archeological sources suggest late 2nd millennium BCE | >3000 | Arabia | [107] * |
Donkey | Varied archeological sources suggest late 5th to first half of 4th millennium BCE in Egypt | 7000–6000 | Africa | [108,109] * |
Yak | Genome model for domestication, confidence interval of 7914 to 7227 BP | 7300 | Tibetan Plateau | [110] ** |
Llama, Alpaca | Archaeozoological data at dated sites and genome models | 7000–6000 | Peruvian Andes | [111] *, [112] ** |
Location | Activity | Approximate Date (Years BP) | References |
---|---|---|---|
Irrigation and Drainage Systems | |||
Mesopotamia and uplands | Irrigation systems in existence in SW Iran by 5000 BCE, maybe by 6000 BCE, with large organised systems on Mesopotamian plains by 4500 BCE | ~8000–7000 | [129,135] |
Near East | Water raising systems: shaduf (well sweep) by 2300 BCE, with later appearance of saqia (water wheel) and Archimedes screw in Ptolemaic times | ~4300 | [133] |
New Guinea | Drainage ditches and channels, from cal dates on charcoal in ditch fills | 4350–3980 | [96] * |
China | Large-scale engineering of embankments and canals on Yellow River for flood control and irrigation, with large dike projects in first half of 7th century BCE [144] to the 1800s | ~3000 | [41,144,145] |
Peru | Irrigation canals dated at 5000 to 3750 cal BCE | ~7000 | [146] |
U.S.A. | Gila River, Arizona: large areas under irrigation by 900 BCE, and earth dam 5 km long and 7 m high with irrigation canals by 1000 CE [147]; individual irrigation systems of 10,000 hectares (100 km2), with large developments in 850–1450 CE [148]; distinction of canals from natural channels [136] | ~2900 | [136,147,148] |
Dams | |||
Near East | Weirs of brushwood, stones and earth divert water into irrigation canals [135], estimated at 8000 years ago on E flank of Mesopotamia [149] | ~8000 | [135,149] |
Mesopotamia | Nimrud Dam, probably an earth dam, diverted Tigris; dam later failed and returned the Tigris to its former course | >4000 | [133,150] |
Egypt | Sadd-el-Kafara Dam (Dam of the Pagans), 14 m high, >100 m long, with 17,000 cut stone blocks; built to aid quarrying ca. 2650 BCE | 4650 | [133] |
Near East and Europe | 45 dams built under the Roman Empire in the Near East, with irrigation canals, waterwheels, aqueducts, and qanat systems, from 63 BCE to 636 CE [151]. Earthen dams in Spain: Prosperina 12 m high and 427 m long, Cornalvo 20 m high and 194 m long with dam crest 8 m wide [133]. | 2700–1400 | [133,151] |
China | Dam at Anfeng Tan, east China, ca. 600 BCE | 2600 | [152] |
Groundwater Systems | |||
Iran | Qanat systems of sloping tunnels that bring water from water table or springs at a high elevation to fields downslope, dated to ca. 3000 years ago in Iran, introduced from Indus to Nile under Persian rule, 550–331 BCE | ~3000 | [133] |
Israel | Chamber excavated at Hazor, where water rises up the Dead Sea Fault; access to the underground water table by staircases; construction coeval with stratum dated at 9th century BCE | 2800 | [153] |
Israel | Tunnel at Siloam, Jerusalem, routes spring within walls, dated by U-Th dating of speleothems, cal radiocarbon dating, and historically to ca. 700 BCE | 2700 | [154] |
River Navigation | |||
Egypt | Models of reed and log rafts at ca. 5500 to 4000 BCE [155]. Boats preserved to >5000 years ago, with a wooden boat 43.6 m long preserved from 4th dynasty, ~2500 BCE; barge with two 350-ton obelisks towed by 27 boats with 810 oarsmen, ca. 1472 to 1458 BCE [156]. | >7500 | [155,156] |
Mesopotamia | Fleets for transport and warfare on Tigris, Euphrates, and canals; request for 600 vessels to bring grain to Ur in 3rd Dynasty [156]; channel straightening for boats, 3rd to 1st millennium BCE [135]. | ~4000 | [135,156] |
China | Grand Canal, 1800 km long, linked pre-existing canals, rivers, and lakes; connected southern and northern plains, locks across Yellow River; built by 5 million workers | 609 CE | [157] |
Activity and Location | Approximate Date (Years BP) | References | |
---|---|---|---|
Large settlements and cities | |||
Mesopotamia, Uruk period ca. 4000–3000 BCE (uncal) [166]; area of 400 ha by Early Dynastic II period, ca. 2700 BCE [167] | >6000 | [166,167] | |
Indus Civilisation, first cities in the region before 3500 BCE; >500 ha of large settlements in aggregate by late Mature phase; peak populations of 40,000 in Harappa and Mohenjodaro, and several million inhabitants in the region in the Mature phase | 5500 | [168] | |
Egypt, city of Memphis in Early Dynastic and Old Kingdom times, ca. 3000 to 2165 BCE | 5000 | [167] | |
China, Longshan times, ca. 2600 to 2000 BCE; Anyang covered 15 km2 along 6 km of the Yellow River by 1200 BCE | 4600 | [167] | |
Mesoamerican cities, lowland Maya cities from 900 to 300 BCE | 2900 | [167] | |
Urban water systems | |||
Indian Subcontinent | Indus Civilisation, with early urban phase ca. 2800 to 2600 BCE [167,169]; extensive public and private systems: wells, baths, street drains, and sewage pits during 3rd millennium BCE [133]. | ~4800 | [133,167,169] |
Crete | Minoan culture, with wells, cisterns, fountains, and aqueducts from rivers and springs, in Early Minoan period ca. 3500 to 2150 BCE | 5500–4150 | [133] |
Resources from channel and floodplain sediments | |||
Alluvial gold | Working of placer deposits in rivers in China (Xia, Shang, and Zhou dynasties, ca. 2100 to 256 BCE), with advances in dredging and hydraulic methods | 4100 | [170] |
Mud bricks (sun dried) | Earliest known bricks at Jericho ca. 7500 BCE, with later Indus cultural examples in Baluchistan ca. 7000 BCE | ~ 9500 | [168] |
Structures preserved in Egypt with bricks of Nile mud and straw; buildings with reed layers, ca. 3050 to 2687 BCE | ~5050--4690 | [171] | |
Baked bricks | Indus Civilisation, widely used in Mature Phase from 2800 BCE | 4800 | [168] |
Earliest pottery | China, with other Late Pleistocene occurrences in Asia, based on calibrated dates on associated bone and charcoal [172] and assessment of dates from varied calibrated sources [173] | ~ 20,000 | [172,173] * |
Continuous pottery record | At sites in Mesopotamia and Anatolia, with initial pottery levels dated to ca. 7000 BCE | ~ 9000 on | [174] |
Earliest pottery | At sites along the Amazon in Brazil, based on cal dates and a TL date | 8000–7000 | [175] * |
Ochre | Poland, excavation of 25 acres of red floodplain clay to >1 m depth; occupied from ca. 15,500 to 11,500 years ago [176] | 15,500 | [176,177] |
Aquatic resources | |||
Reeds | Large reed buildings in Uruk period of Mesopotamia, >5000 years ago [178]; reeds used in Egyptian tombs of Old Kingdom, ca. 2686 to 2160 BCE [179] | >5000 | [178,179] |
Papyrus | Used in Egypt since at least 3000 BCE, with large-scale production probably controlled by the state; Greco-Roman factories in the Nile Delta [180]. Oldest inscribed at Wadi al-Jarf with hundreds of fragments from reign of Khufu (2589–2566 BCE) [181] | >5000, ~ 4570 | [180,181] |
Fish and other aquatic organisms | Known from Middle Palaeolithic sites on the Nile. Prominent Nile fisheries from > ca. 14,000 years ago, with salting for storage from ca. 9000 years ago; along Amazon in Brazil from ca. 11,200 years ago, Yangtze in China from ca. 10,000 years ago, and Columbia in USA from ca. 9300 years ago. Sites include molluscs, turtles, and amphibians. Based on cal and uncal dates and OSL dates [182], cal dates [183], dates from varied sources with calibration not reported [184], and calibrated dates [185] | >14,000 | [182] *, [183] *, [184] *, [185] *, [186], [187] |
Location | Legacy Sediments | References |
---|---|---|
Middle Holocene to Early Late Holocene | ||
New Guinea | From 7800 cal yr BP on, clearance of forest, expansion of herbaceous vegetation, and increased charcoal from use of fire. Aggradation in Baliem River valley. Banana and other crops in an anthropogenic landscape by 6950 to 6440 cal yr BP. Drainage ditches and channels dated at ~4350–3980 cal yr BP. Based on calibrated dates. | [81,96] |
China | Agriculture and population growth after ~7700 cal yr BP in Yellow River system, based on charcoal, pollen and sediment records, with onset of slash-and-burn [213]. Widespread effects by 7000 cal yr BP [214]. Valley alluviation and hillslope erosion from ~5300/5010 BCE through 2130/1870 BCE, in Yiluo River system; pottery, bones, charcoal, and fossil evidence for rice farming [122]. Deforestation of Loess Plateau increased Yellow River sediment load at ~ 3000 cal yr BP [216]. Based on OSL and cal dates. | [122,213,214,216] |
Spain | Aggradation and incision episodes in the Ebro Basin, with valley-floor sedimentation from ~ 8000 cal yr BP (6000 BCE), intensifying during the Bronze and Iron Ages and through the Roman period. Associated charcoal and pottery. Based on cal dates and artefacts. | [205] |
UK | Clays dated at 4440–3560 cal yr BP, during change from woodland to scrubland with cereal crops. Overlying silty sand at ~ 4100 cal yr BP in Frome River system. Linked to deforestation and expanded arable farming, with increased sedimentation rate. Based on cal and OSL dates. | [17] |
Italy | Original vegetation lost by Bronze Age ~ 3300 cal yr BP in Po River plain. Drainage ditches and irrigation channels since Early Iron Age. Widespread Roman deforestation, intensification of farming, roads and ditches after ~ 2100 cal yr BP. River courses embanked and prevented from silting. Soil erosion caused Po delta to prograde further at ca. 300 CE than in previous centuries. Based on cal dates. | [217,218] |
Mexico | Agriculture and deforestation enhanced erosion by 3450 cal yr BP, intensifying with urban development after 2350 cal yr BP. Río Verde shows increased sediment load, aggradation, and change from meandering to braided. Spread of overbank fines expanded agricultural areas. Coastal morphology modified. Based on cal dates. | [219] |
Past Millennium | ||
NW Europe | Salmon stocks declined by 90% from Early Middle Ages (~ 450–900 CE) to ~1600 CE. Decline matches watermill expansion; weirs and millponds blocked access to upstream spawning grounds. River gravel covered with silt and mill waste. | [220] |
USA | Buildup of slackwater sediment from ~1700 CE, behind tens of thousands of 17–19th century milldams in northeastern rivers. Underlying soils and gravel represent forested wetlands with anabranching channels, now mainly lost. | [204] |
China | After ~1800 CE in SW China, intense cultivation and population pressure caused soil erosion and hillslope collapse. Fluvial aggradation of 2 m/yr, channel blockages. | [221] |
U.S.A. | Release of 1.3 billion m3 from hydraulic gold mining in Sacramento River system, California after 1849 gold rush. Aggradation of 60 m of alluvium, followed in a few decades by incision. Rapid sedimentation of San Francisco Bay. | [53] |
Global | Currently >50,000 large dams >15 m high. 17 million dammed reservoirs of all sizes, with a volume >8000 km3. Severe effects on sediment transport, flow regimes, and biodiversity of freshwater ecosystems. | [20,222] |
Global | Rivers swept by waves of millions of cubic metres of toxic waste and cyanide from mine-dam failures and pipeline breaks. | [223,224] |
China | South-North Diversion Project, with capacity to deliver 25 billion m3 from Yangtze to northern China along two routes, each >1000 km long. Partially constructed. | [152] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibling, M.R. River Systems and the Anthropocene: A Late Pleistocene and Holocene Timeline for Human Influence. Quaternary 2018, 1, 21. https://doi.org/10.3390/quat1030021
Gibling MR. River Systems and the Anthropocene: A Late Pleistocene and Holocene Timeline for Human Influence. Quaternary. 2018; 1(3):21. https://doi.org/10.3390/quat1030021
Chicago/Turabian StyleGibling, Martin R. 2018. "River Systems and the Anthropocene: A Late Pleistocene and Holocene Timeline for Human Influence" Quaternary 1, no. 3: 21. https://doi.org/10.3390/quat1030021
APA StyleGibling, M. R. (2018). River Systems and the Anthropocene: A Late Pleistocene and Holocene Timeline for Human Influence. Quaternary, 1(3), 21. https://doi.org/10.3390/quat1030021