SIU-ICUD: Prevention of Lethal Prostate Cancer via Modifiable Heart-Healthy Lifestyle Changes, Metrics, and Repurposed Medications
Abstract
1. Introduction and Conclusion of the Committee
2. Materials and Methods
3. Results
3.1. Exercise, Physical Activity, Cardiovascular Health, and Lethal Prostate Cancer
3.2. Dietary Patterns (Not a Specific Diet) and Lethal Prostate Cancer
3.3. Alcohol Minimization/Elimination and Tobacco Cessation
3.4. Obesity and Cumulative Metabolic Health Parameters (Metabolic Syndrome)
3.5. Heritability of Prostate Cancer, Lifestyle Behaviors, Metric Lessons, and Cardiovascular Health
3.6. Dietary Supplements and Prostate Cancer
3.7. Repurposed Heart-Healthy Medications (Aspirin, GLP-1 Agonists, Metformin, Statins, etc.)
3.8. Aspirin, Cancer, Lethal Prostate Cancer, and the ADD-ASPIRIN Phase 3 Trial
3.9. Metformin and GLP-1 Agonists
3.10. Statins (PCSK9 Inhibitors, Other Novel Cholesterol Reducing Compounds, etc.)
3.11. Miscellaneous (Environmental, Sleep, etc.)
4. Discussion
5. Conclusions of the Committee
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Moyad, M.A. Preventing lethal prostate cancer with diet, supplements, and Rx: Heart healthy continues to be prostate healthy and “first do no harm” part I. Curr. Urol. Rep. 2018, 19, 104. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Y.; Zhao, M.; Yu, X.; Zhang, C.; Magnussen, C.G.; Xi, B. Association of the American Heart Association’s new “Life’s Essential 8” with all-cause and cardiovascular disease-specific mortality: Prospective cohort study. BMC Med. 2023, 21, 116. [Google Scholar] [CrossRef]
- Abramov, D.; Kobo, O.; Mamas, M.A. Association of cardiovascular health metrics and mortality among individuals with and without cancer. J. Am. Heart Assoc. 2024, 13, e032683. [Google Scholar] [CrossRef]
- Jayalath, V.H.; Clark, R.; Lajkosz, K.; Fazelzad, R.; Fleshner, N.; Klotz, L.H.; Hamilton, R.J. Statin use and survival among men receiving androgen-ablative therapies for advanced prostate cancer: A systematic review and meta-analysis. JAMA Netw. Open. 2022, 5, e2242676. [Google Scholar] [CrossRef]
- Perez-Cornago, A.; Dunneram, Y.; Watts, E.L.; Key, T.J.; Travis, R.C. Adiposity and risk of prostate cancer death: A prospective analysis in UK Biobank and meta-analysis of published studies. BMC Med. 2022, 20, 143. [Google Scholar] [CrossRef]
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Gibbs, B.B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 heart disease and stroke statistics: A report of US and global data from the American Heart Association. Circulation. 2024, 149, e347–e913. [Google Scholar] [CrossRef]
- Ye, Y.; Zheng, Y.; Miao, Q.; Ruan, H.; Zhang, X. Cause of death among prostate cancer patients aged 40 years and older in the United States. Front. Oncol. 2022, 12, 914875. [Google Scholar] [CrossRef]
- Weiner, A.B.; Li, E.V.; Desai, A.S.; Press, D.J.; Schaeffer, E.M. Cause of death during prostate cancer survivorship: A contemporary, US population-based analysis. Cancer 2021, 127, 2895–2904. [Google Scholar] [CrossRef]
- Elmehrath, A.O.; Afifi, A.M.; Al-Husseini, M.J.; Saad, A.M.; Wilson, N.; Shohdy, K.S.; Pilie, P.; Sonbol, M.B.; Olhalabi, O. Causes of death among patients with metastatic prostate cancer in the US from 2000 to 2016. JAMA Netw. Open. 2021, 4, e2119568. [Google Scholar] [CrossRef]
- El-Taji, O.; Taktak, S.; Jones, C.; Brown, M.; Clarke, N.; Sachdeva, A. Cardiovascular events and androgen receptor signaling inhibitors in advanced prostate cancer: A systematic review and meta-analysis. JAMA Oncol. 2024, 10, 874–884. [Google Scholar] [CrossRef]
- Archer, M.; Dogra, N.; Kyprianou, N. Inflammation as a driver of prostate cancer metastasis and therapeutic resistance. Cancers 2020, 12, 2984. [Google Scholar] [CrossRef] [PubMed]
- Benke, I.N.; Leitzmann, M.F.; Behrens, G.; Schmid, D. Physical activity in relation to risk of prostate cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1154–1179. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Taaffe, D.R.; Galvão, D.A.; Clay, T.D.; Redfern, A.D.; Hart, N.H.; Gray, E.S.; Ryan, C.J.; Kenfield, S.A.; Saad, F.; et al. Acute effect of high-intensity interval aerobic exercise on serum myokine levels and resulting tumour-suppressive effect in trained patients with advanced prostate cancer. Prostate Cancer Prostatic Dis. 2023, 26, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.; Idorn, M.; Olofsson, G.H.; Lauenborg, B.; Nookaew, I.; Hansen, R.H.; Johannesen, H.H.; Becker, J.C.; Pedersen, K.S.; Dethlefsen, C.; et al. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metab. 2016, 23, 554–562. [Google Scholar] [CrossRef]
- El Assar, M.; Alvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodriguez-Manas, L. Effect of physical activity/exercise on oxidative stress and inflammation in muscle and vascular aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, S.Y.; Ross, K.N.; Balk, S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 2006, 66, 7783–7792. [Google Scholar] [CrossRef]
- Ahtiainen, J.P.; Hulmi, J.J.; Kraemer, W.J.; Lehti, M.; Nyman, K.; Selanne, H.; Alen, M.; Pakarinen, A.; Komulainen, J.; Kovanen, V.; et al. Heavy resistance exercise training and skeletal muscle androgen receptor expression in younger and older men. Steroids 2011, 76, 183–192. [Google Scholar] [CrossRef]
- Schumacher, O.; Galvão, D.A.; Taaffe, D.R.; Chee, R.; Spry, N.; Newton, R.U. Exercise modulation of tumour perfusion and hypoxia to improve radiotherapy response in prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 1–14. [Google Scholar] [CrossRef]
- Kang, D.W.; Fairey, A.S.; Boule, N.G.; Field, C.J.; Wharton, S.A.; Courneya, K.S. Effects of exercise on cardiorespiratory fitness and biochemical progression in men with localized prostate cancer under active surveillance: The ERASE randomized clinical trial. JAMA Oncol. 2021, 7, 1487–1495. [Google Scholar] [CrossRef]
- Kang, D.W.; Fairey, A.S.; Boule, N.G.; Field, C.J.; Wharton, S.A.; Courneya, K.S. A randomized trial of the effects of exercise on anxiety, fear of cancer progression, and quality of life in prostate cancer patients on active surveillance. J. Urol. 2022, 207, 814–822. [Google Scholar] [CrossRef]
- Yang, M.; Kenfield, S.A.; Van Blarigan, E.L.; Batista, J.L.; Sesso, H.D.; Ma, J.; Stampfer, M.J.; Chavarro, J.E. Dietary patterns after prostate cancer diagnosis in relation to disease-specific and total mortality. Cancer Prev. Res. 2015, 8, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Spei, M.-E.; Bellos, I.; Samoli, E.; Benetou, V. Post-diagnosis dietary patterns among cancer survivors in relation to all-cause mortality and cancer-specific mortality: A systematic review and meta-analysis of cohort studies. Nutrients 2023, 15, 3860. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.O.; Berdzuli, N.; Llbawi, A.; Kestel, D.; Kluge, H.P.; Krech, R.; Mikkelsen, B.; Neufeld, M.; Poznyak, V.; Rekve, D.; et al. Health and cancer risks associated with low levels of alcohol consumption. Lancet Public. Health 2023, 8, e6–e7. [Google Scholar] [CrossRef]
- Fowke, J.H.; Howard, L.; Andriole, G.L.; Freedland, S.J. Alcohol intake increases high-grade prostate cancer risk among men taking dutasteride in the REDUCE trial. Eur. Urol. 2014, 66, 1133–1138. [Google Scholar] [CrossRef]
- Gong, Z.; Kristal, A.R.; Schenk, J.M.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M. Alcohol consumption, finasteride, and prostate cancer risk: Results from the Prostate Cancer Prevention Trial. Cancer 2009, 115, 3661–3669. [Google Scholar] [CrossRef]
- D’Ecclesiis, O.D.; Pastore, E.; Gandini, S.; Caini, S.; Marvaso, G.; Jereczek-Fossa, B.A.; Corrao, G.; Raimondi, S.; Bellerba, F.; Ciceri, S.; et al. Association between alcohol intake and prostate cancer mortality and survival. Nutrients 2023, 15, 925. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zhang, S.; Chen, X.; Sheng, Y.; Pang, J. Association of cigarette smoking habits with the risk of prostate cancer: A systematic review and meta-analysis. BMC Public Health 2023, 23, 1150. [Google Scholar] [CrossRef]
- Shi, X.; Deng, G.; Wen, H.; Lin, A.; Wang, H.; Zhu, L.; Mou, W.; Liu, Z.; Li, X.; Zhang, J.; et al. Role of body mass index and weight change in the risk of cancer: A systematic review and meta-analysis of 66 cohort studies. J. Glob. Health 2024, 14, 04067. [Google Scholar] [CrossRef]
- Rivera-Izquierdo, M.; Perez de Rojas, J.; Martinez-Ruiz, V.; Arrabal-Polo, M.A.; Perez-Gomez, B.; Jimenez-Moleon, J.J. Obesity and biochemical recurrence in clinically localised prostate cancer: A systematic review and meta-analysis of 86,490 patients. Prostate Cancer Prostatic Dis. 2022, 25, 411–421. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: A systematic review and meta-analysis. Cancer Prev. Res. 2011, 4, 486–501. [Google Scholar] [CrossRef]
- Plym, A.; Zhang, Y.; Stopsack, K.H.; Delcoigne, B.; Wiklund, F.; Haiman, C.; Kenfield, S.A.; Kibel, A.S.; Giovannucci, E.; Penney, K.L.; et al. A healthy lifestyle in men at increased genetic risk for prostate cancer. Eur. Urol. 2023, 83, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Moller, S.; Unger, R.H.; et al. Familial risk and heritability of cancer among twins in Nordic countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.A.; Thompson, I.M., Jr.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Heer, E.; Ruan, Y.; Mah, B.; Nguyen, T.; Lyons, H.; Poirier, A.; Boyne, D.J.; O’Sullivan, D.E.; Heitman, S.J.; Hilsden, R.J.; et al. The efficacy of chemopreventive agents on the incidence of colorectal adenomas: A systematic review and network meta-analysis. Prev. Med. 2022, 62, 107169. [Google Scholar] [CrossRef] [PubMed]
- Emilsson, L.; Holme, O.; Bretthauer, M.; Cook, N.R.; Buring, J.E.; Loberg, M.; Adami, H.-O.; Sesso, H.D.; Gaziano, M.J.; Kalager, M. Systematic review with meta-analysis: The comparative effectiveness of aspirin vs. screening for colorectal cancer prevention. Aliment. Pharmacol. Ther. 2017, 45, 193–204. [Google Scholar] [CrossRef]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.-P.; Moslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. Lancet 2020, 395, 1855–1863. [Google Scholar] [CrossRef]
- Ma, S.; Xia, W.; Wu, B.; Sun, C.; Jiang, Y.; Liu, H.; Lowe, S.; Zhou, Z.; Xie, P.; Gao, J.; et al. Effect of aspirin on incidence, recurrence, and mortality in prostate cancer patients: Integrating evidence from randomized controlled trials and real-world studies. Eur. J. Clin. Pharmacol. 2023, 79, 1475–1503. [Google Scholar] [CrossRef]
- Downer, M.K.; Allard, C.B.; Preston, M.A.; Gaziano, J.M.; Stampfer, M.J.; Mucci, L.A.; Batista, J.L. Regular aspirin use and the risk of lethal prostate cancer in the Physicians’ Health Study. Eur. Urol. 2017, 72, 821–827. [Google Scholar] [CrossRef]
- Downer, M.K.; Allard, C.B.; Preston, M.A.; Wilson, K.M.; Kenfield, S.A.; Chan, J.M.; Mucci, L.A.; Giovannucci, E.; Stampfer, M.J. Aspirin use and lethal prostate cancer in the Health Professionals Follow-up Study. Eur. Urol. Oncol. 2019, 2, 126–134. [Google Scholar] [CrossRef]
- Tang, W.; Fowke, J.H.; Hurwitz, L.M.; Steinwandel, M.; Blot, W.J.; Ambs, S. Aspirin use and prostate cancer among African-American men in the Southern Community Cohort Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 539–544. [Google Scholar] [CrossRef]
- McQuilten, Z.K.; Thao, L.T.P.; Pasricha, S.R.; Artz, A.S.; Bailey, M.; Chan, A.T.; Cohen, H.J.; Lockery, J.E.; Murray, A.M.; Nelson, M.R.; et al. Effect of low-dose aspirin versus placebo on incidence of anemia in the elderly: A secondary analysis of the aspirin in reducing events in the elderly trial. Ann. Intern. Med. 2023, 176, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Joharatnam-Hogan, N.; Cafferty, F.; Hubner, R.; Swinson, D.; Sothi, S.; Gupta, K.; Falk, S.; Patel, K.; Warner, N.; Kunene, V.; et al. for the Add-Aspirin Trial Management Group. Aspirin as an adjuvant treatment for cancer: Feasibility results from the ADD-ASPIRIN randomised trial. Lancet Gastroenterol. Hepatol. 2019, 4, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Joharatnam-Hogan, N.; Hatem, D.; Cafferty, F.H.; Petrucci, G.; Cameron, D.A.; Ring, A.; Kynaston, H.G.; Gilbert, D.C.; Wilson, R.H.; Hubner, R.A.; et al. Thromboxane biosynthesis in cancer patients and its inhibition by aspirin: A sub-study of the Add-Aspirin trial. Br. J. Cancer. 2023, 129, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Fleshner, N.E.; Barnardino, R.M.; Lajkosz, K.; Saad, F.; Izawa, J.; Drachenberg, D.; Saranchuk, J.W.; Tanguay, S.; Rendon, R.A.; Leveridge, M.; et al. A randomized, double-blind, placebo-controlled trial of metformin in reducing progression among men on expectant management for low-risk prostate cancer: The MAST (Metformin Active Surveillance Trial) study. J. Clin. Oncol. 2024, 42 (Suppl. S17), LBA5002. [Google Scholar] [CrossRef]
- Alghandour, R.; Ebrahim, M.A.; Elshal, A.M.; Ghobrial, F.; Elzaafarany, M.; ELbaiomy, M.A. Repurposing metformin as anticancer drug: Randomized controlled trial in advanced prostate cancer (MANSMED). Urol. Oncol. 2021, 39, e1–e831. [Google Scholar] [CrossRef]
- Gillessen, S.; Murphy, L.R.; James, N.D.; Sachdeva, A.; Attard, G.; Jones, R.J.; Adler, A.; El-Taji, O.; Varughese, M.; Gale, J.; et al. Adding metformin to androgen deprivation therapy (ADT) for patients (pts) with metastatic hormone sensitive prostate cancer (mHSPC): Overall survival (OS) results from the multi-arm, multi-stage randomized platform trial STAMPEDE. In Proceedings of the 2024 European Society for Medical Oncology (ESMO) Annual Congress, Barcelona, Spain, 13–17 September 2024; Abstract LBA70. Available online: https://s3.eu-central-1.amazonaws.com/m-anage.com.storage.esmo/static/esmo2024_abstracts/LBA70.html.pdf (accessed on 1 December 2024).
- Zhao, T.; Yang, Q.; Feuerbacher, J.F.; Yu, B.; Brinkmann, C.; Cheng, S.; Bloch, W.; Schumann, M. Effects of exercise, metformin and their combination on glucose metabolism in individuals with abnormal glycaemic control: A systematic review and network meta-analysis. Br. J. Sports Med. 2024, 58, 1452–1460. [Google Scholar] [CrossRef]
- Moyad, M.A. Embracing the pros and cons of the new weight loss medications (semaglutide, tirzepatide, etc.). Curr. Urol. Rep. 2023, 24, 515–525. [Google Scholar] [CrossRef]
- Badve, S.V.; Bilal, A.; Lee, M.M.Y.; Sattar, N.; Gerstein, H.C.; Ruff, C.T.; McMurray, J.J.V.; Rossing, P.; Bakris, G.; Mahaffey, K.W.; et al. Effects of GLP-1 receptor agonists on kidney and cardiovascular disease outcomes: A meta-analysis of randomized controlled trials. Lancet Diabetes Endocrinol. 2024, 13, 15–28. [Google Scholar] [CrossRef]
- Yu, X.; Liu, J. Effect of glucagon-like peptide-1 receptor agonists on prostate cancer: A review. Medicine 2024, 103, e39956. [Google Scholar] [CrossRef]
- Yin, P.; Han, S.; Hu, Q.; Tong, S. The association of statin use and biochemical recurrence after curative treatment for prostate cancer: A systematic review and meta-analysis. Medicine 2022, 101, e28513. [Google Scholar] [CrossRef]
- Mariano, R., Jr.; Tavares, K.L.; Panhoca, R.; Sadi, M. Influence of statins in metastatic castration-resistant prostate cancer patients treated with new antiandrogen therapies: A systematic review and meta-analysis. Einstein 2022, 20, eRW6339. [Google Scholar] [CrossRef] [PubMed]
- Onyije, F.M.; Hosseini, B.; Togawa, K.; Schuz, J.; Olsson, A. Cancer incidence and mortality among petroleum industry workers and residents living in oil producing communities: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 4343. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, S.; Zhang, B.; Guo, M.; Zhang, Y. The association between sleep duration and prostate cancer: A systematic review and meta-analysis. Medicine 2020, 99, e21180. [Google Scholar] [CrossRef]
- Stone, C.R.; Haig, T.R.; Fiest, K.M.; McNeil, J.; Brenner, D.R.; Friedenreich, C.M. The association between sleep duration and cancer-specific mortality: A systematic review and meta-analysis. Cancer Causes Control 2019, 30, 501–525. [Google Scholar] [CrossRef]
Greater exercise volume and intensity (aerobic and resistance activities should receive equal awareness to improve mental and physical health). Exercise also discourages muscle (sarcopenia) and bone mineral-density (BMD) loss associated with some forms of prostate cancer treatment (androgen deprivation therapy (ADT)), aging, caloric reduction dietary patterns, and/or weight-loss medications [12,18,19,20,48]. |
Primarily plant-based dietary patterns, including generally whole, unprocessed, healthier foods and beverages, which supports the consumption of vegetables, fruits, legumes/beans/lentils, whole grains, nuts, seeds, healthy fish, water, tea, coffee, etc., and minimizing processed foods, including red and processed meats, higher-fat dairy, dietary cholesterol, refined grains, sodium-replete products/snacks, sugar-sweetened beverages, etc. [1,21,22]. Also, other dietary patterns associated with an improvement in a patient’s cardiovascular healthy metabolic metrics should be supported based on individual preferences, beliefs, compliance, and mental health/quality-of-life considerations [48]. |
Alcohol reduction and tobacco elimination [23,24,25,26,27]. |
Cardiovascular healthy metabolic metrics (weight/waist circumference, blood sugar/insulin sensitivity, cholesterol, blood pressure, inflammatory markers, etc.) [1,2,3,6,28,29,30]. |
Repurposed medications (aspirin, GLP-1 agonists, metformin, statins, etc.) for those who would qualify based primarily on cardiovascular disease (CVD) risk assessment [1,4,46,47,48,49,51,52]. Prostate cancer research data available recently should soon help further guide this category and discussion (results of ADD-ASPIRIN trial, Metformin Active Surveillance Trial (MAST), Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy (STAMPEDE), etc.). |
Other modifiable changes, such as sleep quality and quantity, may have a future role in prostate cancer risk prevention akin to what has been observed recently in cardiovascular medicine [2,3,6,54,55]. Regardless, healthy sleep is currently associated with the other healthy lifestyle recommendations in this table. |
Note: An increased risk of lethal prostate cancer from genetic testing and/or family history continues to support the heart-healthy behaviors and metabolic metrics listed in this table as a potential pathway to reducing this increased risk of lethality and cardiovascular disease events, and improve quality and quantity of life (all-cause mortality) [2,3,6,7,8,9,10,31]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Société Internationale d’Urologie. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyad, M.A.; Tiwari, R.V.; Galvão, D.A.; Taaffe, D.R.; Newton, R.U. SIU-ICUD: Prevention of Lethal Prostate Cancer via Modifiable Heart-Healthy Lifestyle Changes, Metrics, and Repurposed Medications. Soc. Int. Urol. J. 2025, 6, 40. https://doi.org/10.3390/siuj6030040
Moyad MA, Tiwari RV, Galvão DA, Taaffe DR, Newton RU. SIU-ICUD: Prevention of Lethal Prostate Cancer via Modifiable Heart-Healthy Lifestyle Changes, Metrics, and Repurposed Medications. Société Internationale d’Urologie Journal. 2025; 6(3):40. https://doi.org/10.3390/siuj6030040
Chicago/Turabian StyleMoyad, Mark A., Raj V. Tiwari, Daniel A. Galvão, Dennis R. Taaffe, and Robert U. Newton. 2025. "SIU-ICUD: Prevention of Lethal Prostate Cancer via Modifiable Heart-Healthy Lifestyle Changes, Metrics, and Repurposed Medications" Société Internationale d’Urologie Journal 6, no. 3: 40. https://doi.org/10.3390/siuj6030040
APA StyleMoyad, M. A., Tiwari, R. V., Galvão, D. A., Taaffe, D. R., & Newton, R. U. (2025). SIU-ICUD: Prevention of Lethal Prostate Cancer via Modifiable Heart-Healthy Lifestyle Changes, Metrics, and Repurposed Medications. Société Internationale d’Urologie Journal, 6(3), 40. https://doi.org/10.3390/siuj6030040