Inspiratory Muscle Training Improved Cardiorespiratory Performance in Patients Undergoing Open Heart Surgery: A Randomized Controlled Trial
Abstract
:Highlights
- Inspiratory muscle training effectively improved inspiratory muscle strength and cardiorespiratory performance in patients undergoing open heart surgery.
- Inspiratory muscle training can be performed using maximum pressure resistors such as the TU-Breath Trainer devices and is an important strategy for inspiratory muscle strength and cardiorespiratory performance in patients undergoing open heart surgery.
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Design and Participants
2.2. Outcomes and Measures
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IMT | Inspiratory muscle training |
MIP | Maximal inspiratory pressure |
MEP | Maximal expiratory pressure |
6MWD | 6 min walking distance |
SD | Standard deviation |
SE | Standard error of mean |
IG | Intervention group |
CG | Control group |
CABG | Coronary artery bypass graft |
NYHA | New York Heart Association |
LVEF | Left ventricular ejection fraction |
BMI | Body Mass Index |
IMT | Inspiratory muscle training |
IMS | Inspiratory muscle strength |
OHS | Open heart surgery |
References
- Melly, L.; Torregrossa, G.; Lee, T.; Jansens, J.-L.; Puskas, J.D. Fifty years of coronary artery bypass grafting. J. Thorac. Dis. 2018, 10, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
- Sellke, F.W.; DiMaio, J.M.; Caplan, L.R.; Ferguson, T.B.; Gardner, T.J.; Hiratzka, L.F.; Isselbacher, E.M.; Lytle, B.W.; Mack, M.J.; Murkin, J.M.; et al. Comparing On-Pump and off-pump coronary artery bypass grafting. Circulation 2005, 111, 2858–2864. [Google Scholar] [CrossRef] [PubMed]
- Hillis, L.D.; Smith, P.K.; Anderson, J.L.; Bittl, J.A.; Bridges, C.R.; Byrne, J.G.; Cigarroa, J.E.; DiSesa, V.J.; Hiratzka, L.F.; Hutter, A.M.; et al. ACCF/AHA Guideline for coronary artery bypass graft surgery: Executive Summary. Circulation 2011, 124, 2610–2642. [Google Scholar] [CrossRef] [PubMed]
- He, G.-W. Arterial grafts for coronary artery bypass grafting: Biological characteristics, functional classification, and clinical choice. Ann. Thorac. Surg. 1999, 67, 277–284. [Google Scholar] [CrossRef]
- Naseer, B.A.; Al-Shenqiti, A.M.; Ali, A.R.H.; Aljeraisi, T. Effect of cardiac surgery on respiratory muscle strength. J. Taibah Univ. Med. Sci. 2019, 14, 337–342. [Google Scholar] [CrossRef]
- Jensen, L.; Yang, L. Risk factors for postoperative pulmonary complications in coronary artery bypass graft surgery patients. Eur. J. Cardiovasc. Nurs. 2007, 6, 241–246. [Google Scholar] [CrossRef]
- Sasseron, A.B.; De Figueiredo, L.C.; Trova, K.; Cardoso, A.L.; Lima, N.M.F.V.; Olmos, S.C.; Petrucci, O. Does the pain disturb the respiratory function after open heart surgery? Braz. J. Cardiovasc. Surg. 2009, 24, 490–496. [Google Scholar] [CrossRef]
- Alwardt, C.M.; Redford, D.; Larson, D.F. General anesthesia in cardiac surgery: A review of drugs and practices. J. Extracorpor. Technol. 2005, 37, 227–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cordeiro, A.L.L.; De Melo, T.A.; Neves, D.; Luna, J.; Esquivel, M.S.; Guimarães, A.R.F.; Borges, D.L.; Petto, J. Inspiratory muscle training and functional capacity in patients submitted to cardiac surgery. Braz. J. Cardiovasc. Surg. 2016, 31, 140–144. [Google Scholar] [CrossRef]
- Savci, S.; Degirmenci, B.; Saglam, M.; Arikan, H.; Inal-Ince, D.; Turan, H.N.; Demircin, M. Short-term effects of inspiratory muscle training in coronary artery bypass graft surgery: A randomized controlled trial. Scand. Cardiovasc. J. 2011, 45, 286–293. [Google Scholar] [CrossRef]
- Fortes, J.V.S.; Borges, M.G.B.; Da Silva Marques, M.J.; Oliveira, R.L.; Da Rocha, L.R.; De Castro, É.M.; Esquivel, M.S.; Borges, D.L. Effects of inspiratory muscle training using an electronic device on patients undergoing cardiac surgery: A randomized controlled trial. Rev. Bras. Cir. Cardiovasc. 2020, 34, 44–52. [Google Scholar] [CrossRef]
- Songsorn, P.; Buranapuntalug, S. Effect of inspiratory muscle training on functional capacity in patients undergoing open heart surgery. Thai J. Phys. Ther. 2014, 36, 89–96. [Google Scholar]
- Winkelmann, E.R.; Dallazen, F.; Bronzatti, A.B.S.; Lorenzoni, J.C.W.; Windmoller, P. Analysis of a STEPs adapted protocol in Cardiac Rehabilitation in Phase Hospital. Braz. J. Cardiovasc. 2014, 30, 40. [Google Scholar] [CrossRef]
- Stein, R.; Maia, C.P.; Silveira, A.D.; Chiappa, G.R.; Myers, J.; Ribeiro, J.P. Inspiratory muscle strength as a determinant of functional capacity early after coronary artery bypass graft surgery. Arch. Phys. Med. Rehabil. 2009, 90, 1685–1691. [Google Scholar] [CrossRef]
- Elmarakby, A. Effect of threshold inspiratory muscle training on maximal inspiratory pressure and pulmonary gas exchange in patients undergoing coronary artery bypass graft surgery. Crit. Rev. Phys. Rehabil. Med. 2016, 28, 249–261. [Google Scholar] [CrossRef]
- Zanini, M.; Nery, R.M.; De Lima, J.B.; Buhler, R.P.; Da Silveira, A.D.; Stein, R. Effects of different rehabilitation protocols in inpatient cardiac rehabilitation after coronary artery bypass graft surgery. J. Cardiopulm. Rehabil. Prev. 2019, 39, E19–E25. [Google Scholar] [CrossRef] [PubMed]
- Cargnin, C.; Karsten, M.; Da Costa Guaragna, J.C.V.; Lago, P.D. Inspiratory muscle training after heart valve replacement surgery improves inspiratory muscle strength, lung function, and functional capacity. J. Cardiopulm. Rehabil. Prev. 2019, 39, E1–E7. [Google Scholar] [CrossRef]
- Dsouza, F.V.; Amaravadi, S.K.; Samuel, S.R.; Raghavan, H.; Ravishankar, N. Effectiveness of inspiratory muscle training on respiratory muscle strength in patients undergoing cardiac surgeries: A Systematic Review with Meta-Analysis. Ann. Rehabil. Med. 2021, 45, 264–273. [Google Scholar] [CrossRef]
- Renault, J.A.; Costa-Val, R.; Rossetti, M.B. Respiratory physiotherapy in the pulmonary dysfunction after cardiac surgery. Braz. J. Cardiovasc. Surg. 2008, 23, 562–569. [Google Scholar] [CrossRef]
- Green, M.; Road, J.; Sieck, G.C.; Similowski, T. Tests of respiratory muscle strength: ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Yuenyongchaiwat, K.; Thanawattano, C.; Buekban, C.; Charususin, N.; Pongpanit, K.; Hanmanop, S.; Namdang, P.; Traitanon, O. Efficiency of the Respiratory Training Prototype for Application in Hemodialysis Patients: A Preliminary Study. Philipp. J. Sci. 2021, 150, 1225–1230. [Google Scholar] [CrossRef]
- Yuenyongchaiwat, K.; Thanawattano, C.; Buranapuntalug, S.; Pongpanit, K.; Saengkrut, P. Development and application of a respiratory device on blood pressure in adults with high blood pressure. Interv. Med. Appl. Sci. 2019, 11, 21–26. [Google Scholar] [CrossRef]
- Yuenyongchaiwat, K.; Namdang, P.; Vasinsarunkul, P.; Phongsukree, P.; Chaturattanachaiyaporn, K.; Pairojkittrakul, S.; Traitanon, O. Effectiveness of inspiratory muscle training on respiratory fitness and breathlessness in chronic renal failure: A randomized control trial. Physiother. Res. Int. 2021, 26, 1879. [Google Scholar] [CrossRef] [PubMed]
- Yuenyongchaiwat, K.; Buranapuntalug, S.; Pongpanit, K.; Kulchanarat, C. Walking performance in the 6-min walk test and gait speed in patients undergoing open heart surgery: A preliminary cohort study. Res. Cardiovasc. Med. 2019, 8, 19–22. [Google Scholar] [CrossRef]
- Day, J.R.; Taylor, K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005, 3, 129–140. [Google Scholar] [CrossRef]
- Bignami, E.; Saglietti, F.; Di Lullo, A. Mechanical ventilation management during cardiothoracic surgery: An open challenge. Ann. Transl. Med. 2018, 6, 380. [Google Scholar] [CrossRef]
- Tanner, T.G.; Colvin, M.O. Pulmonary Complications of Cardiac Surgery. Lung 2020, 198, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Mehta, Y.; Vats, M.; Singh, A.; Trehan, N. Incidence and management of diaphragmatic palsy in patients after cardiac surgery. Indian J. Crit. Care Med. 2008, 12, 91–95. [Google Scholar] [CrossRef]
- Sabate, S.; Mazo, V.; Canet, J. Predicting postoperative pulmonary complications: Implications for outcomes and costs. Curr. Opin. Anesthesiol. 2014, 27, 201–209. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Meng, X.; Zuo, H.; Hu, D. The Effects of inspiratory Muscle Training on patients undergoing Coronary Artery bypass graft surgery: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2023, 24, 16. [Google Scholar] [CrossRef]
- Nery, R.M.; Martini, M.R.; Vidor, C.R.; Mahmud, M.I.; Zanini, M.; Loureiro, A. Changes in functional capacity of patients two years after coronary artery bypass grafting surgery. Braz. J. Cardiovasc. Surg. 2010, 25, 224–228. [Google Scholar] [CrossRef] [PubMed]
IG (N = 29) | CG (N = 29) | p-Value | |
---|---|---|---|
Demographic characteristics | |||
Sex, Female/male | 9/20 | 13/16 | 0.29 |
Age (year) | 61 (8.61) | 64.83 (8.08) | 0.62 |
BMI (kg/m2) | 24.72 (4.13) | 24.25 (4.9) | 0.36 |
Risk factors | |||
Tobacco smoking | 8 (26.7) | 11 (36.7) | 0.40 |
Hypertension | 24 (80) | 24 (80) | 0.71 |
Diabetes | 17 (56.7) | 21 (70) | 0.28 |
Dyslipidemia | 20 (66.7) | 21 (70) | 0.78 |
LVEF < 35(%) | 7 (23.3) | 9 (30) | 0.56 |
Time of surgery (min) | 323.67 (90.4) | 390 (137.6) | 0.04 b |
CPB time (min) | 109.4 (45.1) | 120.6 (48.7) | 0.39 |
Prolonged ventilation (min) | 720.9 (274.3) | 891.4 (610.5) | 0.04 b |
Length of stay (day) | 8.73 (3.69) | 11.7 (6.9) | 0.01 b |
Pulmonary Complications | IG (%) | CG (%) | p-Value |
---|---|---|---|
Atelectasis | 2 (6.7) | 11 (36.7) | <0.001 |
Pleural effusion | 1 (3.3) | 10 (33.3) | <0.001 |
Pneumonia | 0 (0) | 9 (30) | <0.001 |
No complication | 27 (90) | 0 (0) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Polish Respiratory Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulchanarat, C.; Choeirod, S.; Thadatheerapat, S.; Piathip, D.; Satdhabudha, O.; Yuenyongchaiwat, K. Inspiratory Muscle Training Improved Cardiorespiratory Performance in Patients Undergoing Open Heart Surgery: A Randomized Controlled Trial. Adv. Respir. Med. 2025, 93, 10. https://doi.org/10.3390/arm93030010
Kulchanarat C, Choeirod S, Thadatheerapat S, Piathip D, Satdhabudha O, Yuenyongchaiwat K. Inspiratory Muscle Training Improved Cardiorespiratory Performance in Patients Undergoing Open Heart Surgery: A Randomized Controlled Trial. Advances in Respiratory Medicine. 2025; 93(3):10. https://doi.org/10.3390/arm93030010
Chicago/Turabian StyleKulchanarat, Chitima, Suphannee Choeirod, Supattra Thadatheerapat, Dusarkorn Piathip, Opas Satdhabudha, and Kornanong Yuenyongchaiwat. 2025. "Inspiratory Muscle Training Improved Cardiorespiratory Performance in Patients Undergoing Open Heart Surgery: A Randomized Controlled Trial" Advances in Respiratory Medicine 93, no. 3: 10. https://doi.org/10.3390/arm93030010
APA StyleKulchanarat, C., Choeirod, S., Thadatheerapat, S., Piathip, D., Satdhabudha, O., & Yuenyongchaiwat, K. (2025). Inspiratory Muscle Training Improved Cardiorespiratory Performance in Patients Undergoing Open Heart Surgery: A Randomized Controlled Trial. Advances in Respiratory Medicine, 93(3), 10. https://doi.org/10.3390/arm93030010