Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Demographic and Clinical Characteristics
2.3. Cognitive Assessment
2.4. Quality of Life (QoL)
2.5. Brain Regions Volume (BRV) Assessment
2.6. Statistical Analysis
3. Results
3.1. Socio-Demographic and Clinical Characteristics of the Study Sample
3.2. Quality of Life
3.3. Brain Regions (BRV)
3.4. Relationships Among Clinical Variables, Brain Regions, and SF-36 Scores
3.5. Sensitivity Analysis and Stability of the Estimates
4. Discussion
4.1. SF-36 Mathematical Space and Variables
4.2. Brain Regions Approach
4.3. QoL as a Neuro-Social Marker and Pharmacoeconomic Surrogate and Sensitivity Analysis
4.4. Cultural Considerations
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
AD + VD | Alzheimer’s Disease + Vascular Dementia |
APC | Article Processing Charge |
BMI | Body Mass Index |
BP | Blood Pressure |
BRV | Brain Regions Volume |
FLAIR | Fluid Attenuated Inversion Recovery |
GH | General Health |
HBP | High Blood Pressure |
KMO | Kaiser–Meyer–Olkin |
MAS | Maracaibo Aging Study |
MH | Mental Health |
MMSE | Mini-Mental State Examination |
MRI | Magnetic Resonance Imaging |
mPFC | Medial Prefrontal Cortex |
PCA | Principal Component Analysis |
PF | Physical Functioning |
QoL | Quality of Life |
QALYs | Quality-Adjusted Life Years |
RE | Role Emotional |
RP | Role Physical |
SBP | Systolic Blood Pressure |
SD | Standard Deviation |
SF | Social Functioning |
SF-36 | Rand’s 36-Item Short Form Survey |
T2DM | Type 2 Diabetes Mellitus |
VT | Vitality |
VD | Vascular Dementia |
WMH | White Matter Hyperintensities |
References
- Luengo-Fernandez, R.; Gray, A.M.; Bull, L.; Welch, S.; Cuthbertson, F.; Rothwell, P.M.; Study, O.V. Quality of life after TIA and stroke: Ten-year results of the Oxford Vascular Study. Neurology 2013, 81, 1588–1595. [Google Scholar] [CrossRef]
- Lima, F.O.; Mont’Alverne, F.J.A.; Bandeira, D.; Nogueira, R.G. Pre-hospital Assessment of Large Vessel Occlusion Strokes: Implications for Modeling and Planning Stroke Systems of Care. Front. Neurol. 2019, 10, 955. [Google Scholar] [CrossRef]
- Cook, P.A.; McMillan, C.T.; Avants, B.B.; Peelle, J.E.; Gee, J.C.; Grossman, M. Relating brain anatomy and cognitive ability using a multivariate multimodal framework. Neuroimage 2014, 99, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.; Wadley, V.; Kapur, P.; DeRamus, T.; Singletary, B.; Nicholas, A.; Blanton, P.; Lokken, K.; Deshpande, H.; Marson, D.; et al. Lexical factors and cerebral regions influencing verbal fluency performance in MCI. Neuropsychologia 2014, 54, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.; Avula, R.; Senjem, M.; Kantarci, K.; Weigand, S.; Samikoglu, A.; Edmonson, H.; Vemuri, P.; Knopman, D.; Boeve, B.; et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 2010, 74, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- McGaugh, J.L. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu. Rev. Neurosci. 2004, 27, 1–28. [Google Scholar] [CrossRef]
- Mahut, H.; Zola-Morgan, S.; Moss, M. Hippocampal resections impair associative learning and recognition memory in the monkey. J. Neurosci. 1982, 2, 1214–1220. [Google Scholar] [CrossRef]
- Poldrack, R.A.; Gabrieli, J.D. Functional anatomy of long-term memory. J. Clin. Neurophysiol. 1997, 14, 294–310. [Google Scholar] [CrossRef]
- McCormick, C.; Rosenthal, C.R.; Miller, T.D.; Maguire, E.A. Mind-Wandering in People with Hippocampal Damage. J. Neurosci. 2018, 38, 2745–2754. [Google Scholar] [CrossRef]
- Addis, D.R.; Wong, A.T.; Schacter, D.L. Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elabora-tion. Neuropsychologia 2007, 45, 1363–1377. [Google Scholar] [CrossRef]
- Jung, R.E.; Haier, R.J. The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behav. Brain Sci. 2007, 30, 135–154, discussion 54-87. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Zhang, Z. Exploring Structural and Functional Brain Changes in Mild Cognitive Impairment: A Whole Brain ALE Meta-Analysis for Multimodal MRI. ACS Chem. Neurosci. 2019, 10, 2823–2829. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.R.; Ritchie, S.J.; Fawns-Ritchie, C.; Tucker-Drob, E.M.; Deary, I.J. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 2019, 76, 101376. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, Y.; Li, J.; Lai, H.; Qiu, C.; Pan, N.; Gong, Q. Neurostructural correlates of hope: Dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence. Soc. Cogn. Affect. Neurosci. 2020, 15, 395–404. [Google Scholar] [CrossRef]
- Walters, S.J.; Munro, J.F.; Brazier, J.E. Using the SF-36 with older adults: A cross-sectional community-based survey. Age Ageing 2001, 30, 337–343. [Google Scholar] [CrossRef]
- Markides, K.S.; Coreil, J. The health of Hispanics in the southwestern United States: An epidemiologic paradox. Public Health Rep. 1986, 101, 253–265. [Google Scholar]
- Fuster, J.M. The prefrontal cortex—an update: Time is of the essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef]
- Jobard, G.; Crivello, F.; Tzourio-Mazoyer, N. Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. Neuroimage 2003, 20, 693–712. [Google Scholar] [CrossRef]
- Lawrenson, C.; Bares, M.; Kamondi, A.; Kovács, A.; Lumb, B.; Apps, R.; Filip, P.; Manto, M. The mystery of the cerebellum: Clues from experimental and clinical observations. Cerebellum Ataxias 2018, 5, 8. [Google Scholar] [CrossRef]
- Jacobs, H.I.L.; Hopkins, D.A.; Mayrhofer, H.C.; Bruner, E.; van Leeuwen, F.W.; Raaijmakers, W.; Schmahmann, J.D. The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain 2018, 141, 37–47. [Google Scholar] [CrossRef]
- Maestre, G.E.; Mena, L.J.; Melgarejo, J.D.; Aguirre-Acevedo, D.C.; Pino-Ramírez, G.; Urribarrí, M.; Chacon, I.J.; Chávez, C.A.; Falque-Madrid, L.; Gaona, C.A.; et al. Incidence of dementia in elderly Latin Americans: Results of the Maracaibo Aging Study. Alzheimers Dement. 2018, 14, 140–147.20. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y.; Andrews, H.; Pittman, J.; Sano, M.; Tatemichi, T.; Lantigua, R.; Mayeux, R. Diagnosis of dementia in a heterogeneous population. Development of a neuropsychological paradigm-based diagnosis of dementia and quantified correction for the effects of education. Arch. Neurol. 1992, 49, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Blessed, G.; Tomlinson, B.E.; Roth, M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry 1968, 114, 797–811. [Google Scholar] [CrossRef]
- Kawas, C.; Segal, J.; Stewart, W.F.; Corrada, M.; Thal, L.J. A validation study of the Dementia Questionnaire. Arch. Neurol. 1994, 51, 901–906. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- McHorney, C.A.; Ware, J.E., Jr.; Raczek, A.E. The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care 1993, 31, 247–263. [Google Scholar] [CrossRef]
- Hays, R.D.; Sherbourne, C.D.; Mazel, R.M. The RAND 36-Item Health Survey 1.0. Health Econ. 1993, 2, 217–227. [Google Scholar] [CrossRef]
- Lins, L.; Carvalho, F.M. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016, 4, 2050312116671725. [Google Scholar] [CrossRef]
- Geschke, K.; Fellgiebel, A.; Laux, N.; Schermuly, I.; Scheurich, A. Quality of life in dementia: Impact of cognition and insight on applicability of the SF-36. Am. J. Geriatr. Psychiatry 2013, 21, 646–654. [Google Scholar] [CrossRef]
- Okazaki, H.; Sonoda, S.; Suzuki, T.; Saitoh, E.; Okamoto, S. Evaluation of use of the Medical Outcome Study 36-Item Short Form Health Survey and cognition in patients with stroke. J. Stroke Cerebrovasc. Dis. 2008, 17, 276–280. [Google Scholar] [CrossRef]
- Fischl, B. FreeSurfer. Neuroimage 2012, 62, 774–781. [Google Scholar] [CrossRef]
- Jennrich, R.I.; Sampson, P.F. Rotation for simple loadings. Psychometrika 1966, 31, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Bartlett, M.S. Properties of Sufficiency and Statistical Tests. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1937, 160, 268–282. [Google Scholar]
- Levine, M.S. Canonical analysis and factor comparison. In Quantitative Applications in the Social Sciences; Lewis-Beck, M.S., Ed.; Sage University Papers: Thousands Oaks, CA, USA, 1977; Volume 6. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM Corp.: Armonk, NY, USA, 2022. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 19, Stata MP 19; StataCorp LLC: College Station, TX, USA, 2025. [Google Scholar]
- Aguirre, S.I.; Ornelas, M.; Blanco, H.; Jurado-García, P.J.; Benavides, E.V.; Rodríguez-Villalobos, J.M.; Jiménez-Lira, C.; Blanco, J.R. Quality of Life in Mexican Older Adults: Factor Structure of the SF-36 Questionnaire. Healthcare 2022, 10, 200. [Google Scholar] [CrossRef]
- Hobart, J.; Freeman, J.; Lamping, D.; Fitzpatrick, R.; Thompson, A. The SF-36 in multiple sclerosis: Why basic assumptions must be tested. J. Neurol. Neurosurg. Psychiatry 2001, 71, 363–370. [Google Scholar] [CrossRef]
- Graham, J.E.; Stoebner-May, D.G.; Ostir, G.V.; Al Snih, S.; Peek, M.K.; Markides, K.; Ottenbacher, K.J. Health related quality of life in older Mexican Americans with diabetes: A cross-sectional study. Health Qual. Life Outcomes 2007, 5, 39. [Google Scholar] [CrossRef]
- Gonzalez, M.R.; Palmer, C.E.; Uban, K.A.; Jernigan, T.L.; Thompson, W.K.; Sowell, E.R. Economic, social, and physiological resilience predict brain structure and cognitive performance in 9–10-year-old children. bioRxiv 2019. bioRxiv:852988. [Google Scholar]
- Sousa, A.M.M.; Meyer, K.A.; Santpere, G.; Gulden, F.O.; Sestan, N. Evolution of the Human Nervous System Function, Structure, and Development. Cell 2017, 170, 226–247. [Google Scholar] [CrossRef]
- Schulte-Ruther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. J. Cogn. Neurosci. 2007, 19, 1354–1372. [Google Scholar] [CrossRef]
- Gillebert, C.R.; Mantini, D.; Peeters, R.; Dupont, P.; Vandenberghe, R. Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex. Neuroimage 2013, 67, 257–272. [Google Scholar] [CrossRef]
- Vossel, S.; Geng, J.J.; Fink, G.R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist 2014, 20, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; An, Y.; Zhang, M.; Li, H.J.; Lu, J. Altered Cerebro-Cerebellar Limbic Network in AD Spectrum: A Resting-State fMRI Study. Front. Neural Circuits 2019, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Diehl, M.; Wahl, H.-W.; Freund, A. Ecological Validity as a Key Feature of External Validity in Research on Human Development. Res. Human. Dev. 2017, 14, 177–181. [Google Scholar] [CrossRef]
- Molina, K.M.; Estrella, M.L.; Durazo-Arvizu, R.; Malcarne, V.L.; Llabre, M.M.; Isasi, C.R.; Ornelas, I.J.; Perreira, K.M.; Penedo, F.J.; Brondolo, E.; et al. Perceived discrimination and physical health-related quality of life: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Sociocultural Ancillary Study. Soc. Sci. Med. 2019, 222, 91–100. [Google Scholar] [CrossRef]
- Riegel, B.; Carlson, B.; Glaser, D.; Romero, T. Changes over 6-months in health-related quality of life in a matched sample of hispanics and non-hispanics with heart failure. Qual. Life Res. 2003, 12, 689–698. [Google Scholar] [CrossRef]
- Jaen, J.; Grodstein, F.; Lajous, M.; Bello-Chavolla, O.Y.; Gómez-Flores-Ramos, L.; Yang, J.; Bennett, D.A.; Marquez, D.X.; Lamar, M. Associations of Na-tivity and the Role of the Hispanic Paradox on the Cognitive Health of Older Latinos Liv-ing in the United States. J. Alzheimers Dis. 2024, 99, 981–991. [Google Scholar] [CrossRef]
- den Ouden, H.E.; Frith, U.; Frith, C.; Blakemore, S.J. Thinking about intentions. Neuroimage 2005, 28, 787–796. [Google Scholar] [CrossRef]
Baseline Characteristics (Units) | Total | Women | Men | p * |
---|---|---|---|---|
(n = 420) | (n = 300) | (n = 120) | ||
Age (y) | 56.1 ± 11.5 | 55.8 ± 11.2 | 57.1 ± 12.4 | 0.287 |
Education (y) | 6.8 ± 4.5 | 6.5 ± 4.5 | 7.3 ± 4.6 | 0.093 |
BMI, kg/m2 | 28.8 ± 5.8 | 29 ± 5.9 | 28.3 ± 5.6 | 0.226 |
Waist circumference (cm) | 91.4 ± 12.1 | 89.8 ± 11.9 | 95.5 ± 11.9 | <0.001 |
Systolic BP (mmHg) | 139.5 ± 24.1 | 137.2 ± 24.2 | 145.3 ± 23 | 0.002 |
Diastolic BP (mmHg) | 79.3 ± 10.8 | 77.3 ± 10.2 | 84.4 ± 10.5 | <0.001 |
Obesity (% of sample) | 39 [164/416] | 41.3 [123] | 34.7 [41] | 0.219 |
Diabetes mellitus (%) | 12 [52/418] | 11.7 [35] | 14.3 [17] | 0.471 |
24-h hypertension (%) | 52 [218/418] | 50.2 [150] | 57.1 [68] | 0.198 |
Use of antihypertensive treatment (%) | 29 [123/418] | 34 [101] | 19 [22] | 0.002 |
History of stroke (%) | 2 [8/416] | 2 [6] | 1.7 [2] | 0.82 |
Dementia at baseline (%) | 7 [29/416] | 6.4 [19] | 8.4 [10] | 0.468 |
Type of dementia at baseline (%) | ||||
Alzheimer’s disease (AD) | 1.4 [6/416] | 1.7 [5] | 0.8 [1] | 0.515 |
Vascular dementia (VD) | 4.3 (18/416) | 3.4 (10) | 6.7 (8) | 0.128 |
AD + VD | 0.7 (3/416) | 1.7 (2) | 0.3 (1) | 0.143 |
Variables | Total | Women | Men | p * |
---|---|---|---|---|
(n = 420) | (n = 300) | (n = 120) | ||
Memory score | 18.5 ± 4.9 | 18.3 ± 4.8 | 18.9 ± 5.2 | 0.249 |
Orientation score | 9.1 ± 1.4 | 9.1 ± 1.4 | 8.98 ± 1.4 | 0.30 |
SF-36 domain | ||||
Physical functioning | 62.5 ± 24.4 | 57.4 ± 23.4 | 75.3 ± 22.3 | <0.001 |
Physical role | 80.1 ± 37.9 | 77.4 ± 39.6 | 87 ± 32.5 | 0.012 |
Bodily pain | 65 ± 22.3 | 63.6 ± 21.3 | 68.6 ± 24.5 | 0.042 |
General Health | 72.9 ± 17.6 | 72.5 ± 17.2 | 74.1 ± 18.6 | 0.408 |
Vitality | 53.1 ± 12.7 | 51.6 ± 11.8 | 57 ± 14 | <0.001 |
Social functioning | 92 ± 17.7 | 91.9 ± 17.4 | 92.1 ± 18.5 | 0.921 |
Role emotional | 80.6 ± 36.6 | 77 ± 38.8 | 89.6 ± 28.7 | 0.001 |
Mental health | 62.6 ± 14.3 | 61.1 ± 14.4 | 66.5 ± 13.3 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopez-Alvarenga, J.C.; Melgarejo, J.D.; Rivera-Sanchez, J.; Velazquez-Alvarez, L.; Omaña-Guzmán, I.; Curtis-Lopez, C.; Pirela, R.V.; Mena, L.J.; Blangero, J.; Cavazos, J.E.; et al. Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach. Clin. Transl. Neurosci. 2025, 9, 33. https://doi.org/10.3390/ctn9030033
Lopez-Alvarenga JC, Melgarejo JD, Rivera-Sanchez J, Velazquez-Alvarez L, Omaña-Guzmán I, Curtis-Lopez C, Pirela RV, Mena LJ, Blangero J, Cavazos JE, et al. Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach. Clinical and Translational Neuroscience. 2025; 9(3):33. https://doi.org/10.3390/ctn9030033
Chicago/Turabian StyleLopez-Alvarenga, Juan C., Jesus D. Melgarejo, Jesus Rivera-Sanchez, Lorena Velazquez-Alvarez, Isabel Omaña-Guzmán, Carlos Curtis-Lopez, Rosa V. Pirela, Luis J. Mena, John Blangero, Jose E. Cavazos, and et al. 2025. "Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach" Clinical and Translational Neuroscience 9, no. 3: 33. https://doi.org/10.3390/ctn9030033
APA StyleLopez-Alvarenga, J. C., Melgarejo, J. D., Rivera-Sanchez, J., Velazquez-Alvarez, L., Omaña-Guzmán, I., Curtis-Lopez, C., Pirela, R. V., Mena, L. J., Blangero, J., Cavazos, J. E., Mahaney, M. C., Terwilliger, J. D., Lee, J. H., & Maestre, G. E. (2025). Perception of Quality of Life, Brain Regions, and Cognitive Performance in Hispanic Adults: A Canonical Correlation Approach. Clinical and Translational Neuroscience, 9(3), 33. https://doi.org/10.3390/ctn9030033