Implications of AAV Serotypes in Neurological Disorders: Current Clinical Applications and Challenges
Abstract
1. Introduction
2. Advancements in AAV Vector Design
3. Clinical Translation of AAV Gene Therapies in Neurological Disorders
4. Current Challenges of AAV-Mediated Gene Therapy
5. Discussion
6. Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hastie, E.; Samulski, R.J. Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, Research, and Gene Therapy Success—A Personal Perspective. Hum. Gene Ther. 2015, 26, 257–265. [Google Scholar] [CrossRef]
- Rose, J.A.; Hoggan, M.D.; Shatkin, A.J. Nucleic Acid from an Adeno-Associated Virus: Chemical and Physical Studies. Proc. Natl. Acad. Sci. USA 1966, 56, 86–92. [Google Scholar] [CrossRef]
- Bijlani, S.; Pang, K.M.; Sivanandam, V.; Singh, A.; Chatterjee, S. The Role of Recombinant AAV in Precise Genome Editing. Front. Genome Ed. 2022, 3, 799722. [Google Scholar] [CrossRef]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Naldini, L. Ex Vivo Gene Transfer and Correction for Cell-Based Therapies. Nat. Rev. Genet. 2011, 12, 301–315. [Google Scholar] [CrossRef]
- Grimm, D.; Kay, M. From Virus Evolution to Vector Revolution: Use of Naturally Occurring Serotypes of Adeno-Associated Virus (AAV) as Novel Vectors for Human Gene Therapy. Curr. Gene Ther. 2003, 3, 281–304. [Google Scholar] [CrossRef]
- Hu, C.; Lipshutz, G.S. AAV-Based Neonatal Gene Therapy for Hemophilia A: Long-term Correction and Avoidance of Immune Responses in Mice. Gene Ther. 2012, 19, 1166–1176. [Google Scholar] [CrossRef]
- Burdett, T.; Nuseibeh, S. Changing Trends in the Development of AAV-based Gene Therapies: A Meta-Analysis of Past and Present Therapies. Gene Ther. 2023, 30, 323–335. [Google Scholar] [CrossRef]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef]
- Calcedo, R.; Vandenberghe, L.H.; Gao, G.; Lin, J.; Wilson, J.M. Worldwide Epidemiology of Neutralizing Antibodies to Adeno-associated Viruses. J. Infect. Dis. 2009, 199, 381–390. [Google Scholar] [CrossRef]
- Schnepp, B.C.; Jensen, R.L.; Chen, C.-L.; Johnson, P.R.; Clark, K.R. Characterization of Adeno-Associated Virus Genomes Isolated from Human Tissues. J. Virol. 2005, 79, 14793–14803. [Google Scholar] [CrossRef]
- Kruzik, A.; Fetahagic, D.; Hartlieb, B.; Dorn, S.; Koppensteiner, H.; Horling, F.M.; Scheiflinger, F.; Reipert, B.M.; Rosa, M. Prevalence of Anti-Adeno-Associated Virus Immune Responses in International Cohorts of Healthy Donors. Mol. Ther. Methods Clin. Dev. 2019, 14, 126–133. [Google Scholar] [CrossRef]
- Hamilton, B.A.; Wright, J.F. Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Front. Immunol. 2021, 12, 675897. [Google Scholar] [CrossRef]
- Boutin, S.; Monteilhet, V.; Veron, P.; Leborgne, C.; Benveniste, O.; Montus, M.F.; Masurier, C. Prevalence of Serum IgG and Neutralizing Factors against Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: Implications for Gene Therapy Using AAV Vectors. Hum. Gene Ther. 2010, 21, 704–712. [Google Scholar] [CrossRef]
- Fu, H.; Meadows, A.S.; Pineda, R.J.; Kunkler, K.L.; Truxal, K.V.; McBride, K.L.; Flanigan, K.M.; McCarty, D.M. Differential Prevalence of Antibodies Against Adeno-Associated Virus in Healthy Children and Patients with Mucopolysaccharidosis III: Perspective for AAV-Mediated Gene Therapy. Hum. Gene Ther. Clin. Dev. 2017, 28, 187–196. [Google Scholar] [CrossRef]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef]
- Stone, D.; Aubert, M.; Jerome, K.R. Adeno-Associated Virus Vectors and Neurotoxicity-Lessons from Preclinical and Human Studies. Gene Ther. 2023, 32, 60–73. [Google Scholar] [CrossRef]
- Stone, D.; Aubert, M.; Jerome, K.R. Breaching the Blood-Brain Barrier: AAV Triggers Dose-Dependent Toxicity in the Brain. Mol. Ther. Methods Clin. Dev. 2023, 31, 101105. [Google Scholar] [CrossRef]
- Xiong, W.; Wu, D.M.; Xue, Y.; Wang, S.K.; Chung, M.J.; Ji, X.; Rana, P.; Zhao, S.R.; Mai, S.; Cepko, C.L. AAV Cis-Regulatory Sequences Are Correlated with Ocular Toxicity. Proc. Natl. Acad. Sci. USA 2019, 116, 5785–5794. [Google Scholar] [CrossRef]
- Brommel, C.M.; Cooney, A.L.; Sinn, P.L. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum. Gene Ther. 2020, 31, 985–995. [Google Scholar] [CrossRef]
- Mingozzi, F.; Anguela, X.M.; Pavani, G.; Chen, Y.; Davidson, R.J.; Hui, D.J.; Yazicioglu, M.; Elkouby, L.; Hinderer, C.J.; Faella, A.; et al. Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys. Sci. Transl. Med. 2013, 5, 194ra92. [Google Scholar] [CrossRef]
- Brown, D.; Altermatt, M.; Dobreva, T.; Chen, S.; Wang, A.; Thomson, M.; Gradinaru, V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front. Immunol. 2021, 12, 730825. [Google Scholar] [CrossRef]
- Agbandje-McKenna, M.; Kleinschmidt, J. AAV Capsid Structure and Cell Interactions. In Methods in Molecular Biology; Humana Press: Clifton, NJ, USA, 2011; Volume 807, pp. 47–92. [Google Scholar]
- Xie, Q.; Bu, W.; Bhatia, S.; Hare, J.; Somasundaram, T.; Azzi, A.; Chapman, M.S. The Atomic Structure of Adeno-Associated Virus (AAV-2), a Vector for Human Gene Therapy. Proc. Natl. Acad. Sci. USA 2002, 99, 10405–10410. [Google Scholar] [CrossRef]
- Lam, A.K.; Frabutt, D.; Li, L.; Xiao, W. Chemical Modifications of the Capsid for Redirecting and Improving the Efficacy of Adeno-Associated Virus Vectors. Hum. Gene Ther. 2021, 32, 1433–1438. [Google Scholar] [CrossRef]
- Pham, Q.; Glicksman, J.; Chatterjee, A. Chemical Approaches to Probe and Engineer AAV Vectors. Nanoscale 2024, 16, 13820–13833. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, J.; Xiao, S.; Liang, X.; Li, Y.; Mo, F.; Xin, X.; Yang, Y.; Gao, C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int. J. Nanomed. 2024, 19, 7691–7708. [Google Scholar] [CrossRef]
- Bourg, N.; Hong, A.V.; Lostal, W.; Jaber, A.; Guerchet, N.; Tanniou, G.; Bordier, F.; Bertil-froidevaux, E.; Georger, C.; Daniele, N.; et al. Co-Administration of Simvastatin Does Not Potentiate the Benefit of Gene Therapy in the mdx Mouse Model for Duchenne Muscular Dystrophy. Int. J. Mol. Sci. 2022, 23, 2016. [Google Scholar] [CrossRef]
- Israeli, D.; Cosette, J.; Corre, G.; Amor, F.; Poupiot, J.; Stockholm, D.; Montus, M.; Gjata, B.; Richard, I. An AAV-SGCG Dose-Response Study in a γ-Sarcoglycanopathy Mouse Model in the Context of Mechanical Stress. Mol. Ther. Methods Clin. Dev. 2019, 13, 494–502. [Google Scholar] [CrossRef]
- Eid, F.E.; Chen, A.T.; Chan, K.Y.; Huang, Q.; Zheng, Q.; Tobey, I.G.; Pacouret, S.; Brauer, P.P.; Keyes, C.; Powell, M.; et al. Systematic Multi-Trait AAV Capsid Engineering for Efficient Gene Delivery. Nat. Commun. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Asaad, W.; Volos, P.; Maksimov, D.; Khavina, E.; Deviatkin, A.; Mityaeva, O.; Volchkov, P. AAV Genome Modification for Efficient AAV Production. Heliyon 2023, 9, 15071. [Google Scholar] [CrossRef]
- Li, C.; Samulski, R.J. Engineering Adeno-Associated Virus Vectors for Gene Therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef]
- Nieuwenhuis, B.; Laperrousaz, E.; Tribble, J.R.; Verhaagen, J.; Fawcett, J.W.; Martin, K.R.; Williams, P.A.; Osborne, A. Improving Adeno-Associated Viral (AAV) Vector-Mediated Transgene Expression in Retinal Ganglion Cells: Comparison of Five Promoters. Gene Ther. 2023, 30, 503–519. [Google Scholar] [CrossRef]
- Duan, D. Systemic Delivery of Adeno-Associated Viral Vectors. Curr. Opin. Virol. 2016, 21, 16–25. [Google Scholar] [CrossRef]
- Tosolini, A.P.; Sleigh, J.N. Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Front. Mol. Neurosci. 2020, 13, 129. [Google Scholar] [CrossRef]
- Arabi, F.; Mansouri, V.; Ahmadbeigi, N. Gene Therapy Clinical Trials, Where Do We Go? An Overview. Biomed. Pharmacother. 2022, 153, 113324. [Google Scholar] [CrossRef]
- Ginn, S.L.; Mandwie, M.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene Therapy Clinical Trials Worldwide to 2023—An Update. J. Gene Med. 2024, 26, e3721. [Google Scholar] [CrossRef]
- Peng, J.; Zou, W.W.; Wang, X.L.; Zhang, Z.G.; Huo, R.; Yang, L. Viral-mediated gene therapy in pediatric neurological disorders. World J. Pediatr. WJP 2024, 20, 533–555. [Google Scholar] [CrossRef]
- Tordo, J.; O’Leary, C.; Antunes, A.S.L.M.; Palomar, N.; Aldrin-Kirk, P.; Basche, M.; Bennett, A.; D’Souza, Z.; Gleitz, H.; Godwin, A.; et al. A Novel Adeno-Associated Virus Capsid with Enhanced Neurotropism Corrects a Lysosomal Transmembrane Enzyme Deficiency. Brain J. Neurol. 2018, 141, 2014–2031. [Google Scholar] [CrossRef]
- Xu, L.; Yao, S.; Ding, Y.E.; Xie, M.; Feng, D.; Sha, P.; Tan, L.; Bei, F.; Yao, Y. Designing and Optimizing AAV-Mediated Gene Therapy for Neurodegenerative Diseases: From Bench to Bedside. J. Transl. Med. 2024, 22, 866. [Google Scholar] [CrossRef]
- Reilly, A.; Yaworski, R.; Beauvais, A.; Schneider, B.L.; Kothary, R. Long Term Peripheral AAV9-SMN Gene Therapy Promotes Survival in a Mouse Model of Spinal Muscular Atrophy. Hum. Mol. Genet. 2024, 33, 510–519. [Google Scholar] [CrossRef]
- Bey, K.; Deniaud, J.; Dubreil, L.; Joussemet, B.; Cristini, J.; Ciron, C.; Hordeaux, J.; Le Boulc’h, M.; Marche, K.; Maquigneau, M.; et al. Intra-CSF AAV9 and AAVrh10 Administration in Nonhuman Primates: Promising Routes and Vectors for Which Neurological Diseases? Molecular Therapy. Methods Clin. Dev. 2020, 17, 771. [Google Scholar] [CrossRef]
- Jensen, T.L.; Gøtzsche, C.R.; Woldbye, D.P.D. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front. Mol. Neurosci. 2021, 14, 695937. [Google Scholar] [CrossRef] [PubMed]
- Madsen, D.; Cantwell, E.R.; O’Brien, T.; Johnson, P.A.; Mahon, B.P. Adeno-Associated Virus Serotype 2 Induces Cell-Mediated Immune Responses Directed against Multiple Epitopes of the Capsid Protein VP1. J. Gen. Virol. 2009, 90 Pt 11, 2622–2633. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.L.; Li, H.; Faust, S.M.; Chi, E.; Zhou, S.; Wright, F.; High, K.A.; Ertl, H.C.J. CD8+ T Cell Recognition of Epitopes within the Capsid of Adeno-Associated Virus 8-Based Gene Transfer Vectors Depends on Vectors’ Genome. Mol. Ther. 2014, 22, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Pillay, S.; Meyer, N.L.; Puschnik, A.S.; Davulcu, O.; Diep, J.; Ishikawa, Y.; Jae, L.T.; Wosen, J.E.; Nagamine, C.M.; Chapman, M.S.; et al. An Essential Receptor for Adeno-Associated Virus Infection. Nature 2016, 530, 108–112. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, H.; Colosi, P. Effect of Genome Size on AAV Vector Packaging. Mol. Ther. 2010, 18, 80–86. [Google Scholar] [CrossRef]
- Jiang, Z.; Dalby, P.A. Challenges in Scaling up AAV-Based Gene Therapy Manufacturing. Trends Biotechnol. 2023, 41, 1268–1281. [Google Scholar] [CrossRef]
- Tustian, A.D.; Bak, H. Assessment of Quality Attributes for Adeno-Associated Viral Vectors. Biotechnol. Bioeng. 2021, 118, 4186–4203. [Google Scholar] [CrossRef]
- Castle, M.J.; Turunen, H.T.; Vandenberghe, L.H.; Wolfe, J.H. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Methods Mol. Biol. 2016, 1382, 133–149. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Xu, Y.; Zhang, Y.; Zhu, C. Advances in AAV-Mediated Gene Replacement Therapy for Pediatric Monogenic Neurological Disorders. Mol. Ther. Methods Clin. Dev. 2024, 32, 101357. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Xu, Y.; Zhang, Y.; Zhu, C. A Comprehensive Review of AAV-Mediated Strategies Targeting Microglia for Therapeutic Intervention of Neurodegenerative Diseases. J. Neuroinflamm. 2024, 21, 232. [Google Scholar] [CrossRef]
- Lin, R.; Zhou, Y.; Yan, T.; Wang, R.; Li, H.; Wu, Z.; Zhang, X.; Zhou, X.; Zhao, F.; Zhang, L.; et al. Directed Evolution of Adeno-Associated Virus for Efficient Gene Delivery to Microglia. Nat. Methods 2022, 19, 976–985. [Google Scholar] [CrossRef]
Challenges | Solutions |
---|---|
Pre-existing Immunity | Capsid Engineering, Decoy Capsids |
Limited Packaging Capacity | Dual Vector Systems, Mini-genes |
Off-target Effects | Tissue-specific Promoters, Targeted Delivery |
Dose-related Toxicity | Optimized Dosing, Immune Modulation |
Therapy Name | Indication | AAV Serotype | Stage |
---|---|---|---|
Upstaza® | Aromatic L-Amino Acid Decarboxylase (AADC) Deficiency | AAV2 | EMA Approved |
Luxturna® | Leber Congenital Amaurosis (LCA2) | AAV2 | FDA Approved |
Zolgensma® (NCT03505099) | Spinal Muscular Atrophy (SMA) | AAV9 | FDA Approved |
AAV2-BDNF (NCT05040217) | Early Alzheimer’s Disease | AAV2 | Phase I |
AAV2-GAD (NCT04228653) | Parkinson’s Disease | AAV2 | Phase I/II |
AAV2-RPE65 (NCT00749957) | Leber Congenital Amaurosis | AAV2 | Phase I/II |
AAV2- CNGA3 (NCT02935517) | Achromatopsia | AAV2 | Phase I/II |
AAV5-miHTT (NCT04120493) | Huntington’s Disease | AAV5 | Phase I/II |
AAV9-beta-gal (NCT04737460) | GM1 Gangliosidosis | AAV9, AAVrh.10 | Phase I/II |
AAV.PGRN (NCT06064890) | Frontotemporal Dementia (FTD-GRN) | AAV9 | Phase I/II |
AAV9-AP4M1 (NCT05518188) | Spastic Paraplegia Type 50 | AAV9 | Phase I/II |
AAV-hSMN1 (NCT06288230) | Spinal Muscular Atrophy | AAV | Phase I/II |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Joshi, V.; Kumar, V. Implications of AAV Serotypes in Neurological Disorders: Current Clinical Applications and Challenges. Clin. Transl. Neurosci. 2025, 9, 32. https://doi.org/10.3390/ctn9030032
Sharma S, Joshi V, Kumar V. Implications of AAV Serotypes in Neurological Disorders: Current Clinical Applications and Challenges. Clinical and Translational Neuroscience. 2025; 9(3):32. https://doi.org/10.3390/ctn9030032
Chicago/Turabian StyleSharma, Sachin, Vibhuti Joshi, and Vivek Kumar. 2025. "Implications of AAV Serotypes in Neurological Disorders: Current Clinical Applications and Challenges" Clinical and Translational Neuroscience 9, no. 3: 32. https://doi.org/10.3390/ctn9030032
APA StyleSharma, S., Joshi, V., & Kumar, V. (2025). Implications of AAV Serotypes in Neurological Disorders: Current Clinical Applications and Challenges. Clinical and Translational Neuroscience, 9(3), 32. https://doi.org/10.3390/ctn9030032