Sex and Gender Disparities in Missed Acute Ischemic Stroke: A Nested Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Case and Control Ascertainment
2.3. Patient and Stroke Variables
2.4. Gender-Related Socioeconomic Variables
2.4.1. Civil Status and Living Situation
2.4.2. Education Level
2.4.3. Professional Activity and Categories
2.4.4. Having Children
2.5. Gendered Socioeconomic Position Score
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Univariate Analysis: Sociodemographic Characteristics of Patients
3.2. Multivariate Analysis: Sex and Gender Differences in M-AIS
3.3. Gendered SEP Score in M-AIS
4. Discussion
4.1. Differences in Stroke Characteristics Between Women and Men
4.2. Gender-Related Socioeconomic Variables Associated with M-AIS
4.3. Gendered SEP Score and M-AIS
4.4. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
AIS | Acute ischemic stroke |
M-AIS | Missed acute ischemic stroke |
CVRF | Cerebrovascular risk factor |
ED | Emergency department |
mRS | modified Rankin Scale |
NIHSS | National Institutes of Health stroke scale |
OR | Odds ratio |
SEP | Socioeconomic position |
LPGH | Last proof of good health |
References
- Norris, J.W.; Hachinski, V.C. Misdiagnosis of stroke. Lancet 1982, 1, 328–331. [Google Scholar] [PubMed]
- Kothari, R.U.; Brott, T.; Broderick, J.P.; Hamilton, C.A. Emergency physicians. Accuracy in the diagnosis of stroke. Stroke 1995, 12, 2238–2241. [Google Scholar] [CrossRef] [PubMed]
- Huff, J.S. Stroke mimics and chameleons. Emerg. Med. Clin. N. Am. 2002, 20, 583–595. [Google Scholar]
- Tarnutzer, A.A.; Lee, S.H.; Robinson, K.A.; Wang, Z.; Edlow, J.A.; Newman-Toker, D.E. ED misdiagnosis of cerebrovascular events in the era of modern neuroimaging. Neurology 2017, 88, 1468–1477. [Google Scholar]
- Dupre, C.M.; Libman, R.; Dupre, S.I.; Katz, J.M.; Rybinnik, I.; Kwiatkowski, T. Stroke Chameleons. J. Stroke Cerebrovasc. Dis. 2014, 23, 374–378. [Google Scholar]
- Richoz, B.; Hugli, O.; Dami, F.; Carron, P.N.; Faouzi, M.; Michel, P. Acute stroke chameleons in a university hospital: Risk factors, circumstances, and outcomes. Neurology 2015, 85, 505–511. [Google Scholar]
- Edlow, J.A.; Selim, M.H. Atypical presentations of acute cerebrovascular syndromes. Lancet Neurol. 2011, 10, 550–560. [Google Scholar]
- Newman-Toker, D.E.; Moy, E.; Valente, E.; Coffey, R.; Hines, A.L. Missed diagnosis of stroke in the emergency department: A cross-sectional analysis of a large population-based sample. Diagnosis 2014, 1, 155–166. [Google Scholar]
- Niklasson, A.; Herlitz, J.; Jood, K. Socioeconomic disaprities in prehospital stroke care. Scand. J. Trauma Resusc. Emerg. Med. 2019, 27, 53. [Google Scholar] [CrossRef]
- Govindarajan, P.; Friedman, B.T.; Delgadillo, J.Q.; Ghilarducci, D.; Cook, L.J.; Grimes, B.; McCulloch, C.E.; Johnston, S.C. Race and Sex Disparities in Prehospital Recognition of ACute Stroke. Acad. Emerg. Med. 2015, 22, 264–272. [Google Scholar] [CrossRef]
- Nowatzki, N.; Grant, K.R. Sex Is Not Enough: The Need for Gender-Based Analysis in Health Research. Health Care Women Int. 2011, 32, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER guidelines and recommended use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Klinge, I. Best Practices in the Study of Gender. Curr. Top. Behav. Neurosci. 2023, 62, 27–46. [Google Scholar]
- Krieger, N. Genders, sexes, and health: What are the connections—And why does it matter? Int. J. Epidemiol. 2003, 32, 652–657. [Google Scholar] [CrossRef]
- Johnson, J.L.; Greaves, L.; Repta, R. Better science with sex and gender: Facilitating the use of a sex and gender-based analysis in health research. Int. J. Equity Health 2009, 8, 14. [Google Scholar] [CrossRef]
- Risman, B.J.; Davis, G. From sex roles to gender structure. Curr. Sociol. 2013, 61, 733–755. [Google Scholar] [CrossRef]
- Colineaux, H.; Soulier, A.; Lepage, B.; Kelly-Irving, M. Considering sex and gender in Epidemiology: A challenge beyond termi-nology. From conceptual analysis to methodological strategies. Biol. Sex Differ. 2022, 13, 23. [Google Scholar] [CrossRef]
- Hankivsky, O. Women’s health, men’s health, and gender and health: Implications of intersectionality. Soc. Sci. Med. 2012, 74, 1712–1720. [Google Scholar] [CrossRef]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Community Health 2006, 60, 7–12. [Google Scholar] [CrossRef]
- Michel, P.; Odier, C.; Rutgers, M.; Reichhart, M.; Maeder, P.; Meuli, R.; Wintermark, M.; Maghraoui, A.; Faouzi, M.; Croquelois, A.; et al. The Acute STroke Registry and Analysis of Lausanne (ASTRAL): Design and baseline analysis of an ischemic stroke registry including acute multimodal imaging. Stroke 2010, 41, 2491–2498. [Google Scholar] [CrossRef]
- Rankin, J. Cerebral Vascular Accidents in Patients over the Age of 60: II. Prognosis. Scott. Med. J. 1957, 2, 200–215. [Google Scholar] [PubMed]
- Brott, T.; Adams, H.P., Jr.; Olinger, C.P.; Marler, J.R.; Barsan, W.G.; Biller, J.; Spilker, J.; Holleran, R.; Eberle, R.; Hertzberg, V. Measurements of acute cerebral infarction: A clinical examination scale. Stroke 1989, 20, 864–870. [Google Scholar]
- Williams, L.S.; Yilmaz, E.Y.; Lopez-Yunez, A.M. Retrospective assessment of initial stroke severity with the NIH Stroke Scale. Stroke 2000, 31, 858–862. [Google Scholar]
- Raparelli, V.; Norris, C.M.; Bender, U.; Herrero, M.T.; Kautzky-Willer, A.; Kublickiene, K.; El Emam, K.; Pilote, L.; Humphries, K.H.; Parry, M.; et al. Identification and inclusion of gender factors in retro-spective cohort studies: The GOING-FWD framework. BMJ Glob. Health 2021, 6, e005413. [Google Scholar]
- Federal Statistical Office. Level of Education. Available online: https://www.bfs.admin.ch/bfs/en/home/statistics/education-science/level-education.html (accessed on 31 August 2023).
- Federal Statistical Office. Socio-Professional Categories 2021. Available online: https://www.bfs.admin.ch/bfs/fr/home/statistiques/travail-remuneration/nomenclatures/csp2021.assetdetail.17584606.html (accessed on 31 August 2023).
- Richard, A.; Wisniak, A.; Perez-Saez, J.; Garrison-Desany, H.; Petrovic, D.; Piumatti, G.; Baysson, H.; Picazio, A.; Pennacchio, F.; De Ridder, D.; et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies, risk factors for infection and associated symptoms in Geneva, Switzerland: A population-based study. Scand. J. Public Health 2022, 50, 124–135. [Google Scholar] [CrossRef]
- Pelletier, R.; Ditto, B.; Pilote, L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom. Med. 2015, 77, 517–526. [Google Scholar] [CrossRef]
- Ballering, A.V.; Olde Hartman, T.C.; Rosmalen, J.G.M. Gender scores in epidemiological research: Methods, advantages and impli-cations. J. Epidemiol. Community Health 2024, 43, 100962. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strenghtening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Hurley, R.W.; Adams, M.C.B. Sex, Gender, and Pain: An Overview of a Complex Field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [PubMed]
- Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Wiliams, B.; Riley, J.L. Sex, Gender, and Pain: A Review of Recent Clinical and Experimental Findings. J. Pain 2009, 10, 447–485. [Google Scholar]
- Federal Statistical Office. Pension Gap. 2023. Available online: https://www.bfs.admin.ch/bfs/fr/home/statistiques/situation-economique-sociale-population/egalite-femmes-hommes/revenu/ecart-rente.html (accessed on 6 July 2023).
- Kowalski, R.G.; Claassen, J.; Kreiter, K.T.; Bates, J.E.; Ostapkovich, N.D.; Connolly, E.S.; Mayer, S.A. Initial misdiagnosis and outcome after subarachnoid hemorrhage. JAMA 2004, 291, 866–869. [Google Scholar] [PubMed]
- Darmon, M. Réparer Les Cerveaux; La découverte: Paris, France, 2021. [Google Scholar]
- Toivanen, S. Social Determinants of Stroke as Related to Stress at Work among Working Women: A Literature Review. Stroke Res. Treat. 2012, 2012, 873678. [Google Scholar] [PubMed]
- Hänsel, M.; Steigmiller, K.; Luft, A.R.; Gebhard, C.; Held, U.; Wegener, S. Neurovascular disease in Switzerland: 10-year trends show non-traditional risk factors on the rise and higher exposure in women. Eur. J. Neurol. 2022, 29, 2851–2860. [Google Scholar] [PubMed]
- Sader, S.S.; Lewis, S.M.; Verdonk, P.; Verschuren, W.M.M.; Picavet, H.S.J. Masculine gender affects sex differences in the prevalence of chronic health problems—The Doetinchem Cohort Study. Prev. Med. Rep. 2023, 33, 102202. [Google Scholar]
- Le Boudec, J.; Félix, S.; Gachoud, D.; Monti, M.; Barazzoni, M.S.; Clair, C. The influence of patient gender on medical students’ care: Evaluation during an objective structured clinical examination. Patient Educ. Couns. 2023, 110, 107655. [Google Scholar]
- Smith, P.M.; Koehoorn, M. Measuring gender when you don’t have a gender measure: Constructing a gender index using survey data. Int. J. Equity Health 2016, 15, 82. [Google Scholar]
Patient Characteristics by Administrative Sex | Women | Men | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
cases n = 80 | controls n = 79 | cases n = 102 | controls n = 103 | |||||||
Administrative sex ref:women, n (%) | ||||||||||
Age, mean (SD) | 71.7 | (18.5) | 71.7 | (18.5) | 62.6 | (19.3) | 67.4 | (13.8) | * | |
Stroke symptoms at admission, n (%) | ||||||||||
Paresis | 48 | (60.0) | 67 | (85.9) | ** | 57 | (56.4) | 79 | (76.7) | ** |
Sensory deficit | 25 | (31.3) | 37 | (48.1) | * | 29 | (28.7) | 53 | (51.5) | ** |
Visual fields deficit | 18 | (22.5) | 35 | (46.1) | ** | 30 | (29.7) | 41 | (39.8) | |
Eye deviation | 7 | (8.8) | 28 | (35.9) | ** | 11 | (10.9) | 23 | (22.3) | * |
Cerebellar deficit | 24 | (30.4) | 10 | (13.2) | ** | 38 | (38.4) | 33 | (32.7) | |
Dysarthria | 38 | (47.5) | 43 | (55.8) | 41 | (41.0) | 49 | (48.0) | ||
Aphasia | 23 | (29.1) | 30 | (38.5) | 25 | (25.0) | 26 | (25.2) | ||
Vigilance deficit | 12 | (15.0) | 16 | (20.3) | 28 | (27.5) | 10 | (9.7) | ** | |
Neglect | 14 | (17.5) | 29 | (37.7) | 11 | (11.0) | 26 | (25.2) | ** | |
Arterial territory, n (%) | ** | ** | ||||||||
Anterior | 37 | (48.1) | 57 | (73.1) | 42 | (42.4) | 65 | (66.3) | ||
Posterior | 31 | (40.3) | 18 | (23.1) | 48 | (44.5) | 26 | (26.5) | ||
Both | 8 | (10.4) | 0 | (0.0) | 7 | (7.0) | 4 | (4.1) | ||
Undetermined | 1 | (1.3) | 3 | (3.9) | 2 | (2.0) | 3 | (3.1) | ||
Gender-related socioeconomic variables, n (%) | ||||||||||
Civil status | * | |||||||||
Widow | 22 | (27.5) | 30 | (40.0) | 8 | (7.8) | 10 | (10.1) | ||
Single | 12 | (15.0) | 6 | (8.0) | 26 | (25.5) | 11 | (11.1) | ||
Married | 32 | (40.0) | 27 | (36.0) | 50 | (49.0) | 63 | (63.6) | ||
Divorced | 14 | (14.0) | 12 | (16.0) | 18 | (17.7) | 15 | (15.2) | ||
Living situation | ||||||||||
Living alone | 39 | (48.8) | 25 | (47.2) | 31 | (30.7) | 19 | (24.1) | ||
Living in a household | 41 | (51.3) | 28 | (52.8) | 70 | (69.3) | 60 | (76.0) | ||
Education level | ||||||||||
Low | 37 | (78.2) | 32 | (78.1) | 51 | (78.5) | 37 | (66.1) | ||
High | 10 | (21.3) | 9 | (22.0) | 14 | (21.5) | 19 | (33.9) | ||
Professional categories | ||||||||||
High | 4 | (6.8) | 3 | (6.4) | 7 | (8.9) | 14 | (22.2) | ||
Middle | 16 | (27.1) | 5 | (10.6) | 13 | (16.5) | 12 | (19.1) | ||
Low | 35 | (59.3) | 32 | (68.1) | 54 | (68.4) | 34 | (54.0) | ||
None | 4 | (6.8) | 7 | (14.9) | 5 | (6.3) | 3 | (4.8) | ||
Professionally active | 22 | (28.2) | 15 | (19.0) | 37 | (38.5) | 34 | (33.3) | ||
Having children | 50 | (72.5) | 43 | (75.4) | 51 | (60.0) | 39 | (69.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Swiss Federation of Clinical Neuro-Societies. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barras, C.; Amiguet, M.; Schwarz, J.; Michel, P.; Clair, C. Sex and Gender Disparities in Missed Acute Ischemic Stroke: A Nested Case-Control Study. Clin. Transl. Neurosci. 2025, 9, 22. https://doi.org/10.3390/ctn9020022
Barras C, Amiguet M, Schwarz J, Michel P, Clair C. Sex and Gender Disparities in Missed Acute Ischemic Stroke: A Nested Case-Control Study. Clinical and Translational Neuroscience. 2025; 9(2):22. https://doi.org/10.3390/ctn9020022
Chicago/Turabian StyleBarras, Cécile, Michael Amiguet, Joëlle Schwarz, Patrik Michel, and Carole Clair. 2025. "Sex and Gender Disparities in Missed Acute Ischemic Stroke: A Nested Case-Control Study" Clinical and Translational Neuroscience 9, no. 2: 22. https://doi.org/10.3390/ctn9020022
APA StyleBarras, C., Amiguet, M., Schwarz, J., Michel, P., & Clair, C. (2025). Sex and Gender Disparities in Missed Acute Ischemic Stroke: A Nested Case-Control Study. Clinical and Translational Neuroscience, 9(2), 22. https://doi.org/10.3390/ctn9020022