Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Mineral Samples Modified with Cu2+
2.2. Cell Maintenance
2.3. Virus Propagation and Titration
2.4. Morphological and Chemical Characterization of Vermiculite and Sepiolite Samples
2.5. Leaching of Cu2+ into the Solution
2.6. Virus Clearance and Adsorption Studies with Cu2+-Modified Phyllosilicate Minerals
2.7. Virus Reduction Kinetics and Rate Constant
2.8. Toxicity Analysis of the Phyllosilicate Minerals Against PK-13 and MRC-5 Cells
2.9. Statistical Analysis
3. Results
3.1. Morphological and Chemical Characterization of Vermiculite and Sepiolite Modified with Cu2+
3.2. Virus Clearance with Copper-Modified Phyllosilicate Mineral
3.3. Virus Adsorption: The Mechanism of Virus Clearance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birkett, M.; Dover, L.; Cherian Lukose, C.; Wasy Zia, A.; Tambuwala, M.M.; Serrano-Aroca, A. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int. J. Mol. Sci. 2022, 23, 1162. [Google Scholar] [CrossRef] [PubMed]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, U.; Khandelwal, M.; Deshpande, A.S. Antimicrobial surfaces: A review of synthetic approaches, applicability and outlook. J. Mater. Sci. 2021, 56, 17915–17941. [Google Scholar] [CrossRef]
- Mitra, D.; Kang, E.T.; Neoh, K.G. Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications. ACS Appl. Mater. Interfaces 2020, 12, 21159–21182. [Google Scholar] [CrossRef]
- Alavi, M.; Kamarasu, P.; McClements, D.J.; Moore, M.D. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv. Colloid Interface Sci. 2022, 306, 102726. [Google Scholar] [CrossRef]
- Tian, H.; He, B.; Yin, Y.; Liu, L.; Shi, J.; Hu, L.; Jiang, G. Chemical Nature of Metals and Metal-Based Materials in inactivation of Viruses. Nanomaterials 2022, 12, 2345. [Google Scholar] [CrossRef] [PubMed]
- Horie, M.; Ogawa, H.; Yoshida, Y.; Yamada, K.; Hara, A.; Ozawa, K.; Matsuda, S.; Mizota, C.; Tani, M.; Yamamoto, Y.; et al. Inactivation and morphological changes of avian influenza virus by copper ions. Arch. Virol. 2008, 153, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Bright, K.R.; Sicairos-Ruelas, E.E.; Gundy, P.M.; Gerba, C.P. Assessment of the Antiviral Properties of Zeolites Containing Metal Ions. Food Environ. Virol. 2008, 1, 37–41. [Google Scholar] [CrossRef]
- Mertens, B.S.; Moore, M.D.; Jaykus, L.A.; Velev, O.D. Efficacy and Mechanisms of Copper Ion-Catalyzed Inactivation of Human Norovirus. ACS Infect. Dis. 2022, 8, 855–864. [Google Scholar] [CrossRef]
- Govind, V.; Bharadwaj, S.; Sai Ganesh, M.R.; Vishnu, J.; Shankar, K.V.; Shankar, B.; Rajesh, R. Antiviral properties of copper and its alloys to inactivate COVID-19 virus: A review. Biometals 2021, 34, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Ogawa, H.; Bui, V.N.; Inoue, H.; Fukuda, J.; Ohba, M.; Yamamoto, Y.; Nakamura, K. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials. Antivir. Res. 2012, 93, 225–233. [Google Scholar] [CrossRef]
- Sengupta, D.; Timilsina, U.; Mazumder, Z.H.; Mukherjee, A.; Ghimire, D.; Markandey, M.; Upadhyaya, K.; Sharma, D.; Mishra, N.; Jha, T. Dual activity of amphiphilic Zn (II) nitroporphyrin derivatives as HIV-1 entry inhibitors and in cancer photodynamic therapy. Eur. J. Med. Chem. 2019, 174, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.; Michels, H.; Keevil, C. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 2007, 73, 2748–2750. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ko, Y.-S.; Jung, H.; Lee, C.; Woo, K.; Ko, G. Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments. Sci. Total Environ. 2018, 625, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Vonnemann, J.; Sieben, C.; Wolff, C.; Ludwig, K.; Böttcher, C.; Herrmann, A.; Haag, R. Virus inhibition induced by polyvalent nanoparticles of different sizes. Nanoscale 2014, 6, 2353–2360. [Google Scholar] [CrossRef] [PubMed]
- Sunada, K.; Minoshima, M.; Hashimoto, K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. J. Hazard. Mater. 2012, 235–236, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Duval, R.E.; Hartemann, P.; Engels-Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124, 1032–1046. [Google Scholar] [CrossRef]
- Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Amiri, M.T.; Bensimon, M.; Pulgarin, C. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. J. Hazard. Mater. 2017, 339, 223–231. [Google Scholar] [CrossRef]
- Barcelos, I.D.; de Oliveira, R.; Schleder, G.R.; Matos, M.J.S.; Longuinhos, R.; Ribeiro-Soares, J.; Barboza, A.P.M.; Prado, M.C.; Pinto, E.S.; Gobato, Y.G.; et al. Phyllosilicates as earth-abundant layered materials for electronics and optoelectronics: Prospects and challenges in their ultrathin limit. J. Appl. Phys. 2023, 134, 090902. [Google Scholar] [CrossRef]
- Brown, G. Crystal structures of clay minerals and related phyllosilicates. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1984, 311, 221–240. [Google Scholar]
- Cecilia, J.A.; Vilarrasa-García, E.; Cavalcante, C.L.; Azevedo, D.C.S.; Franco, F.; Rodríguez-Castellón, E. Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 Capture. J. Environ. Chem. Eng. 2018, 6, 4573–4587. [Google Scholar] [CrossRef]
- Cura D’Ars de Figueiredo, J., Jr.; Diniz Pereira Marques, H.; Goulart Silva, G. Expanded vermiculite and polyvinyl acetate composite as gap filler for wooden objects conservation. J. Cult. Herit. 2022, 55, 88–94. [Google Scholar] [CrossRef]
- Diler, H.; Durmaz, S.; Acar, M.; Aras, U.; Erdil, Y.Z. The Effect of Vermiculite on Flame Retardancy, Physical and Mechanical Properties of Wood Plastic Composites. BioResources 2024, 19, 183. [Google Scholar] [CrossRef]
- Sethurajaperumal, A.; Manohar, A.; Banerjee, A.; Varrla, E.; Wang, H.; Ostrikov, K.K. A thermally insulating vermiculite nanosheet–epoxy nanocomposite paint as a fire-resistant wood coating. Nanoscale Adv. 2021, 3, 4235–4243. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.; Gertisser, R.; Zholobenko, V. Structural features and stability of Spanish sepiolite as a potential catalyst. Appl. Clay Sci. 2018, 162, 297–304. [Google Scholar] [CrossRef]
- Hrenovic, J.; Tibljas, D.; Ivankovic, T.; Kovacevic, D.; Sekovanic, L. Sepiolite as carrier of the phosphate-accumulating bacteria Acinetobacter junii. Appl. Clay Sci. 2010, 50, 582–587. [Google Scholar] [CrossRef]
- Pérez-Maqueda, L.; Balek, V.; Poyato, J.; Perez-Rodriquez, J.; Šubrt, J.; Bountsewa, I.; Beckman, I.; Málek, Z. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD. J. Therm. Anal. Calorim. 2003, 71, 715–726. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Drelich, J.; Li, B.; Bowen, P.; Hwang, J.-Y.; Mills, O.; Hoffman, D. Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material. Appl. Surf. Sci. 2011, 257, 9435–9443. [Google Scholar] [CrossRef]
- Miller, D.M.; Buettner, G.R.; Aust, S.D. Transition metals as catalysts of “autoxidation” reactions. Free Radic. Biol. Med. 1990, 8, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Dim, S.; Edri, A.; Greenshpan, Y.; Ottolenghi, A.; Eisner, N.; Tzadka, S.; Pandey, A.; Ben Nun, H.; Le Saux, G.; et al. Nanocomposite coatings for the prevention of surface contamination by coronavirus. PLoS ONE 2022, 17, e0272307. [Google Scholar] [CrossRef]
- Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L.; Ducker, W.A. A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces 2020, 12, 34723–34727. [Google Scholar] [CrossRef] [PubMed]
- Borkow, G.; Gabbay, J. Putting copper into action: Copper-impregnated products with potent biocidal activities. FASEB J. 2004, 18, 1728–1730. [Google Scholar] [CrossRef]
- Joshi, P.U.; Meingast, C.L.; Xu, X.; Holstein, M.; Feroz, H.; Ranjan, S.; Ghose, S.; Li, Z.J.; Heldt, C.L. Virus inactivation at moderately low pH varies with virus and buffer properties. Biotechnol. J. 2022, 17, e2100320. [Google Scholar] [CrossRef]
- Barone, P.W.; Wiebe, M.E.; Leung, J.C.; Hussein, I.T.M.; Keumurian, F.J.; Bouressa, J.; Brussel, A.; Chen, D.; Chong, M.; Dehghani, H.; et al. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. 2020, 38, 563–572. [Google Scholar] [CrossRef]
- Molitor, T.; Joo, H.; Collett, M. Porcine parvovirus: Virus purification and structural and antigenic properties of virion polypeptides. J. Virol. 1983, 45, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Tarka, P.; Nitsch-Osuch, A. Evaluating the Virucidal Activity of Disinfectants According to European Union Standards. Viruses 2021, 13, 534. [Google Scholar] [CrossRef]
- Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015, 6, e01697-15. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Murallidharan, J.S.; Agrawal, A.; Bhardwaj, R. Why coronavirus survives longer on impermeable than porous surfaces. Phys. Fluids 2021, 33, 021701. [Google Scholar] [CrossRef] [PubMed]
- Firquet, S.; Beaujard, S.; Lobert, P.E.; Sane, F.; Caloone, D.; Izard, D.; Hober, D. Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces. Microbes Env. 2015, 30, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Kolb, A.F.; Maile, J.; Heister, A.; Siddell, S.G. Characterization of functional domains in the human coronavirus HCV 229E receptor. J. Gen. Virol. 1996, 77, 2515–2521. [Google Scholar] [CrossRef]
- Turpeinen, D.G.; Joshi, P.U.; Kriz, S.A.; Kaur, S.; Nold, N.M.; O’Hagan, D.; Nikam, S.; Masoud, H.; Heldt, C.L. Continuous purification of an enveloped and non-enveloped viral particle using an aqueous two-phase system. Sep. Purif. Technol. 2021, 269, 118753. [Google Scholar] [CrossRef]
- Sorci, M.; Fink, T.D.; Sharma, V.; Singh, S.; Chen, R.; Arduini, B.L.; Dovidenko, K.; Heldt, C.L.; Palermo, E.F.; Zha, R.H. Virucidal N95 Respirator Face Masks via Ultrathin Surface-Grafted Quaternary Ammonium Polymer Coatings. ACS Appl. Mater. Interfaces 2022, 14, 25135–25146. [Google Scholar] [CrossRef] [PubMed]
- Heldt, C.L.; Hernandez, R.; Mudiganti, U.; Gurgel, P.V.; Brown, D.T.; Carbonell, R.G. A colorimetric assay for viral agents that produce cytopathic effects. J. Virol. Methods 2006, 135, 56–65. [Google Scholar] [CrossRef]
- Hiatt, C. Kinetics of the inactivation of viruses. Bacteriol. Rev. 1964, 28, 150–163. [Google Scholar] [CrossRef]
- Steudel, A.; Weidler, P.G.; Schuhmann, R.; Emmerich, K. Cation Exchange Reactions of Vermiculite With Cu-Triethylenetetramine as Affected by Mechanical and Chemical Pretreatment. Clays Clay Miner. 2024, 57, 486–493. [Google Scholar] [CrossRef]
- Erdoğan, B.; Esenli, F. Sepiolite as an efficient adsorbent for ethylene gas. Clay Miner. 2022, 56, 222–228. [Google Scholar] [CrossRef]
- Shirozu, H.; Bailey, S.W. Crystal structure of a two-layer Mg-vermiculite. Am. Mineral. 1966, 51, 1124–1143. [Google Scholar]
- Marcos, C. Structural changes in vermiculites induced by temperature, pressure, irradiation, and chemical treatments. In Clay Science and Technology; IntechOpen: London, UK, 2020. [Google Scholar]
- Nath, D.; Santhosh, R.; Pal, K.; Sarkar, P. Nanoclay-based active food packaging systems: A review. Food Packag. Shelf Life 2022, 31, 100803. [Google Scholar] [CrossRef]
- Hillier, S.; Marwa, E.M.M.; Rice, C.M. On the mechanism of exfoliation of ‘Vermiculite’. Clay Miner. 2018, 48, 563–582. [Google Scholar] [CrossRef]
- Hundáková, M.; Valášková, M.; Samlíková, M.; Pazdziora, E. Vermiculite With Ag and Cu Used as an Antibacterial Nanofiller in Polyethylene/ Vermikulit S Ag A Cu Použitý Jako Antibakteriální Nanoplnivo V Polyethylenu. GeoScience Eng. 2014, 60, 28–36. [Google Scholar] [CrossRef]
- Alkan, M.; Demirbas, O.; Dogan, M. Electrokinetic properties of sepiolite suspensions in different electrolyte media. J. Colloid. Interface Sci. 2005, 281, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Can, M.F.; Çınar, M.; Benli, B.; Özdemir, O.; Çelik, M.S. Determining the fiber size of nano structured sepiolite using Atomic Force Microscopy (AFM). Appl. Clay Sci. 2010, 47, 217–222. [Google Scholar] [CrossRef]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil. Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Borkow, G. Use of Biocidal Surfaces for Reduction of Healthcare Acquired Infections; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
Mineral Powder | Sample Name | Cu2+ in the Mineral (%w) | Cu2+ Released into Solution (ppm) |
---|---|---|---|
Vermiculite | V | 0 | --- |
Vermiculite with Cu2+ | V-Cu | 4.30 | <0.05 |
Unexfoliated Vermiculite with Cu2+ | UnV-Cu | 3.32 | 4.764 |
Sepiolite with Cu2+ | S-Cu | 5.44 | 0.267 |
Sepiolite | S | 0 | --- |
Cuprous oxide | Cu2O | 87.04 | 0.066 |
Phyllosilicate Minerals | Virus | Time of Incubation (h) | Rate Constant (s−1) | R2 Value |
---|---|---|---|---|
V-Cu | PPV | 2 | 3.90 ± 1.4 | 0.74 |
UnV-Cu | 2 | 3.03 ± 1.2 | 0.76 | |
S-Cu | 2 | 4.84 ± 2.3 | 0.79 | |
Cu2O | 24 | 0.31 ± 0.03 | 0.83 | |
V-Cu | HCoV | 24 | 0.14 ± 0.14 | 0.74 |
UnV-Cu | 1 | 4.47 ± 1.48 | 0.71 | |
S-Cu | 1 | 6.36 ± 2.38 | 0.72 | |
Cu2O | 2 | 3.38 ± 0.53 | 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Singh, S.; Nold, N.M.; Kaur, S.; Li, B.; Heldt, C.L. Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses. Colloids Interfaces 2025, 9, 13. https://doi.org/10.3390/colloids9010013
Sharma V, Singh S, Nold NM, Kaur S, Li B, Heldt CL. Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses. Colloids and Interfaces. 2025; 9(1):13. https://doi.org/10.3390/colloids9010013
Chicago/Turabian StyleSharma, Vaishali, Sneha Singh, Natalie M. Nold, Supreet Kaur, Bowen Li, and Caryn L. Heldt. 2025. "Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses" Colloids and Interfaces 9, no. 1: 13. https://doi.org/10.3390/colloids9010013
APA StyleSharma, V., Singh, S., Nold, N. M., Kaur, S., Li, B., & Heldt, C. L. (2025). Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses. Colloids and Interfaces, 9(1), 13. https://doi.org/10.3390/colloids9010013