Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Phase Diagram Construction
2.3. Electrical Conductivity Measurements
2.4. Determination of Surface Tension
2.5. DLS Measurements
2.6. FT-IR Measurements
2.7. Synthesis of Solid Silica Nanoparticles (SSNs)
2.8. The Preparation of Nanoparticle Samples for TEM Imaging
3. Results and Discussion
3.1. Phase Behavior of the Heptanol/Ethanol/Water Ternary System
3.2. Electrical Conductivity Analysis
3.3. Surface Tension
3.4. DLS
3.5. FT-IR Spectrum
3.6. Synthesized SSNs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prince, L.M. Microemulsions versus Micelles. J. Colloid Interface Sci. 1975, 52, 182–188. [Google Scholar] [CrossRef]
- Paul, B.K.; Moulik, S.P. Microemulsions: An Overview. J. Dispers. Sci. Technol. 1997, 18, 301–367. [Google Scholar] [CrossRef]
- Masahiko, A. Macro- and Microemulsions. J. Jpn. Oil Chem. Soc. 1998, 47, 819–843. [Google Scholar]
- Solans, C.; García-Celma, M.J. Surfactants for Microemulsions. Curr. Opin. Colloid Interface Sci. 1997, 2, 464–471. [Google Scholar] [CrossRef]
- Han, Y.; Pan, N.; Li, D.; Liu, S.; Sun, B.; Chai, J.; Li, D. Formation Mechanism of Surfactant-Free Microemulsion and a Judgment on Whether It Can Be Formed in One Ternary System. Chem. Eng. J. 2022, 437, 135385. [Google Scholar] [CrossRef]
- Olkowska, E.; Polkowska, Z.; Namieśnik, J. Analytics of Surfactants in the Environment: Problems and Challenges. Chem. Rev. 2011, 111, 5667–5700. [Google Scholar] [CrossRef]
- Zhang, X.; Song, M.; Chai, J.; Cui, X.; Wang, J. Preparation, Characterization and Application of a Surfactant-Free Microemulsion Containing 1-Octen-3-Ol, Ethanol, and Water. J. Mol. Liq. 2020, 300, 112278. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Zhu, B.; Zhou, Y.; Liu, X.; Yang, C. Temperature-Switchable Surfactant-Free Microemulsion. Langmuir 2020, 36, 7356–7364. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Wang, L.; Dai, S.; Wang, B.; Wu, Y. Oil Removal from Solid Surface by Using Surfactant-Free Microemulsion Regulated by CO2: A Sustainable Approach for Treating Oily Waste. J. Clean. Prod. 2022, 345, 130990. [Google Scholar] [CrossRef]
- Hankel, R.F.; Rojas, P.E.; Cano-Sarabia, M.; Sala, S.; Veciana, J.; Braeuer, A.; Ventosa, N. Surfactant-Free CO2-Based Microemulsion-like Systems. Chem. Commun. 2014, 50, 8215–8218. [Google Scholar] [CrossRef]
- Hou, W.; Xu, J. Surfactant-Free Microemulsions. Curr. Opin. Colloid Interface Sci. 2016, 25, 67–74. [Google Scholar] [CrossRef]
- Gudelj, M.; Šurina, P.; Jurko, L.; Prkić, A.; Bošković, P. The Additive Influence of Propane-1,2-Diol on SDS Micellar Structure and Properties. Molecules 2021, 26, 3773. [Google Scholar] [CrossRef]
- Krickl, S.; Jurko, L.; Wolos, K.; Touraud, D.; Kunz, W. Surfactant-Free Microemulsions with Cleavable Constituents. J. Mol. Liq. 2018, 271, 112–117. [Google Scholar] [CrossRef]
- Wang, A.; Liu, Z.; Xu, L.; Lou, N.; Li, M.; Liu, L. Controllable Click Synthesis of Poly(Ionic Liquid)s by Surfactant-Free Ionic Liquid Microemulsions for Selective Dyes Reduction. React. Funct. Polym. 2020, 147, 104464. [Google Scholar] [CrossRef]
- Mirhoseini, B.S.; Salabat, A. A Novel Surfactant-Free Microemulsion System for the Synthesis of Poly (Methyl Methacrylate)/Ag Nanocomposite. J. Mol. Liq. 2021, 342, 117555. [Google Scholar] [CrossRef]
- Drapeau, J.; Verdier, M.; Touraud, D.; Kröckel, U.; Geier, M.; Rose, A.; Kunz, W. Effective Insect Repellent Formulation in Both Surfactantless and Classical Microemulsions with a Long-Lasting Protection for Human Beings. Chem. Biodivers. 2009, 6, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Zoumpanioti, M.; Karali, M.; Xenakis, A.; Stamatis, H. Lipase Biocatalytic Processes in Surfactant Free Microemulsion-like Ternary Systems and Related Organogels. Enzyme Microb. Technol. 2006, 39, 531–539. [Google Scholar] [CrossRef]
- Han, Y.; Liu, S.; Du, Y.; Li, D.; Pan, N.; Chai, J.; Li, D. A New Application of Surfactant-Free Microemulsion: Solubilization and Transport of Drugs and Its Transdermal Release Properties. J. Taiwan Inst. Chem. Eng. 2022, 138, 104473. [Google Scholar] [CrossRef]
- Song, L.; Jia, H.; Zhang, F.; Jia, H.; Wang, Y.; Xie, Q.; Fan, F.; Wang, Q.; Wen, S. Sustainable Utilization of Surfactant-Free Microemulsion Regulated by CO2 for Treating Oily Wastes: A Interpretation of the Response Mechanism. Langmuir 2024, 40, 960–967. [Google Scholar] [CrossRef]
- Liu, W.; Pan, N.; Han, Y.; Li, D.; Chai, J. Solubilization, Stability and Antioxidant Activity of Curcumin in a Novel Surfactant-Free Microemulsion System. LWT 2021, 147, 111583. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.; Dai, S.; Lu, H. Surfactant-Free Microemulsion Based on CO2-Induced Ionic Liquids. J. Phys. Chem. B 2019, 123, 9024–9030. [Google Scholar] [CrossRef]
- Xu, J.; Cui, Y.; Wang, R.; Shi, Z.; Wu, C.; Li, D. Mesoporous La-Based Nanorods Synthesized from a Novel IL-SFME for Phosphate Removal in Aquatic Systems. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 624, 126689. [Google Scholar] [CrossRef]
- Marcus, J.; Touraud, D.; Prévost, S.; Diat, O.; Zemb, T.; Kunz, W. Influence of Additives on the Structure of Surfactant-Free Microemulsions. Phys. Chem. Chem. Phys. 2015, 17, 32528–32538. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jing, J.; Li, X.; Yue, W.; Qi, J.; Wang, N.; Lu, H. CO2-Responsive Hydrophobic Deep Eutectic Solvent Based on Surfactant-Free Microemulsion-Mediated Synthesis of BaF2 Nanoparticles. Langmuir 2023, 39, 1181–1189. [Google Scholar] [CrossRef]
- Li, M.; Yuan, J.; Yang, Q.; Liu, Z.; Meng, S.; Wang, X.; Peng, C.; Yin, T. Therapeutic Deep Eutectic Solvents Based on Natural Product Matrine and Caprylic Acid: Physical Properties, Cytotoxicity and Formation of Surfactant Free Microemulsion. J. Drug Deliv. Sci. Tehnol. 2023, 90, 105177. [Google Scholar] [CrossRef]
- Anjali; Pandey, S. Formation of Ethanolamine-Mediated Surfactant-Free Microemulsions Using Hydrophobic Deep Eutectic Solvents. Langmuir 2024, 40, 2254–2267. [Google Scholar] [CrossRef] [PubMed]
- Huber, V.; Muller, L.; Degot, P.; Touraud, D.; Kunz, W. NADES-Based Surfactant-Free Microemulsions for Solubilization and Extraction of Curcumin from Curcuma Longa. Food Chem. 2021, 355, 129624. [Google Scholar] [CrossRef] [PubMed]
- Tarkas, H.; Rokade, A.; Upasani, D.; Pardhi, N.; Rokade, A.; Sali, J.; Patole, S.P.; Jadkar, S. Pioneering Method for the Synthesis of Lead Sulfide (PbS) Nanoparticles Using a Surfactant-Free Microemulsion Scheme. RSC Adv. 2024, 14, 4352–4361. [Google Scholar] [CrossRef]
- Tarkas, H.S.; Marathe, D.M.; Mahajan, M.S.; Muntaser, F.; Patil, M.B.; Tak, S.R.; Sali, J.V. Synthesis of Tin Monosulfide (SnS) Nanoparticles Using Surfactant Free Microemulsion (SFME) with the Single Microemulsion Scheme. Mater. Res. Express 2017, 4, 025018. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Zhang, X.; Wang, Q.; Song, M.; Chai, J. Preparation of Nano-TiO2 by a Surfactant-Free Microemulsion-Hydrothermal Method and Its Photocatalytic Activity. Langmuir 2019, 35, 9255–9263. [Google Scholar] [CrossRef]
- Sun, B.; Chai, J.; Chai, Z.; Zhang, X.; Cui, X.; Lu, J. A Surfactant-Free Microemulsion Consisting of Water, Ethanol, and Dichloromethane and Its Template Effect for Silica Synthesis. J. Colloid Interface Sci. 2018, 526, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Deng, Q.; Du, N.; Hou, W. Surfactant-Free Microemulsions of n-Butanol, Ethanol, and Water. J. Mol. Liq. 2023, 390, 122980. [Google Scholar] [CrossRef]
- Klemm, W.R. Biological Water and Its Role in the Effects of Alcohol. Alcohol 1998, 15, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Liu, X. Temperature-Induced Reversible-Phase Transition in a Surfactant-Free Microemulsion. Langmuir 2019, 35, 14358–14363. [Google Scholar] [CrossRef]
- Marcus, J.; Klossek, M.L.; Touraud, D.; Kunz, W. Nano-Droplet Formation in Fragrance Tinctures. Flavour Fragr. J. 2013, 28, 294–299. [Google Scholar] [CrossRef]
- Bošković, P.; Sokol, V.; Zemb, T.; Touraud, D.; Kunz, W. Weak Micelle-Like Aggregation in Ternary Liquid Mixtures as Revealed by Conductivity, Surface Tension, and Light Scattering. J. Phys. Chem. B 2015, 119, 9933–9939. [Google Scholar] [CrossRef]
- Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Plant-Extract-Mediated Synthesis of Metal Nanoparticles. J. Chem. 2021, 2021. [Google Scholar] [CrossRef]
- Hassan, P.A.; Rana, S.; Verma, G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering. Langmuir 2015, 31, 3–12. [Google Scholar] [CrossRef]
- Holthoff, H.; Egelhaaf, S.U.; Borkovec, M.; Schurtenberger, P.; Sticher, H. Coagulation Rate Measurements of Colloidal Particles by Simultaneous Static and Dynamic Light Scattering. Langmuir 1996, 12, 5541–5549. [Google Scholar] [CrossRef]
- Lagourette, B.; Peyrelasse, J.; Boned, C.; Clausse, M. Percolative Conduction in Microemulsion Type Systems. Nature 1979, 281, 60–62. [Google Scholar] [CrossRef]
- Bošković, P.; Sokol, V.; Touraud, D.; Prkić, A.; Giljanović, J. The Nanostructure Studies of Surfactant-Free-Microemulsions in Fragrance Tinctures. Acta Chim. Slov. 2016, 63, 138–143. [Google Scholar] [CrossRef]
- Ni, P.; Hou, W.-G. A Novel Surfactant-Free Microemulsion System: Ethanol/Furaldehyde/H2O. Chin. J. Chem. 2008, 26, 1985–1990. [Google Scholar] [CrossRef]
- Zhu, H.; Yin, J. Effect of Cosolvent Ethanol on Solubilization of Ionic Liquids in Supercritical CO2Microemulsions: Experiments and Simulations. J. Chem. Eng. Data 2021, 66, 347–359. [Google Scholar] [CrossRef]
- Magrode, N.; Poomanee, W.; Kiattisin, K.; Ampasavate, C. Microemulsions and Nanoemulsions for Topical Delivery of Tripeptide-3: From Design of Experiment to Anti-Sebum Efficacy on Facial Skin. Pharmaceutics 2024, 16, 554. [Google Scholar] [CrossRef] [PubMed]
- Klossek, M.L.; Touraud, D.; Zemb, T.; Kunz, W. Structure and Solubility in Surfactant-Free Microemulsions. ChemPhysChem 2012, 13, 4116–4119. [Google Scholar] [CrossRef]
- Zemb, T.N.; Klossek, M.; Lopian, T.; Marcus, J.; Schöettl, S.; Horinek, D.; Prevost, S.F.; Touraud, D.; Diat, O.; Marčelja, S.; et al. How to Explain Microemulsions Formed by Solvent Mixtures without Conventional Surfactants. Proc. Natl. Acad. Sci. USA 2016, 113, 4260–4265. [Google Scholar] [CrossRef]
- Xu, J.; Deng, H.; Song, J.; Zhao, J.; Zhang, L.; Hou, W. Synthesis of Hierarchical Flower-like Mg2Al-Cl Layered Double Hydroxide in a Surfactant-Free Reverse Microemulsion. J. Colloid Interface Sci. 2017, 505, 816–823. [Google Scholar] [CrossRef]
- Bourebrab, M.A.; Oben, D.T.; Durand, G.G.; Taylor, P.G.; Bruce, J.I.; Bassindale, A.R.; Taylor, A. Influence of the Initial Chemical Conditions on the Rational Design of Silica Particles. J. Sol-Gel Sci. Technol. 2018, 88, 430–441. [Google Scholar] [CrossRef]
- Park, S.K.; Do Kim, K.; Kim, H.T. Preparation of Silica Nanoparticles: Determination of the Optimal Synthesis Conditions for Small and Uniform Particles. Colloids Surfaces A Physicochem. Eng. Asp. 2002, 197, 7–17. [Google Scholar] [CrossRef]
Point | Hydrodynamic Radii/nm |
---|---|
AB 6 | 5.31 |
AB 8 | 6.98 |
AB 10 | 6.39 |
B 8 | 7.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudelj, M.; Kranjac, M.; Jurko, L.; Tomšič, M.; Cerar, J.; Prkić, A.; Bošković, P. Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water. Colloids Interfaces 2024, 8, 53. https://doi.org/10.3390/colloids8050053
Gudelj M, Kranjac M, Jurko L, Tomšič M, Cerar J, Prkić A, Bošković P. Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water. Colloids and Interfaces. 2024; 8(5):53. https://doi.org/10.3390/colloids8050053
Chicago/Turabian StyleGudelj, Martina, Marina Kranjac, Lucija Jurko, Matija Tomšič, Janez Cerar, Ante Prkić, and Perica Bošković. 2024. "Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water" Colloids and Interfaces 8, no. 5: 53. https://doi.org/10.3390/colloids8050053
APA StyleGudelj, M., Kranjac, M., Jurko, L., Tomšič, M., Cerar, J., Prkić, A., & Bošković, P. (2024). Structure and Potential Application of Surfactant-Free Microemulsion Consisting of Heptanol, Ethanol and Water. Colloids and Interfaces, 8(5), 53. https://doi.org/10.3390/colloids8050053